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A DYNAMIC APPROACH FOR RAILWAY SEMANTIC

SEGMENTATION
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Abstract. Railway semantic segmentation is the task of highlighting rail
blades in images taken from the ego-view of the train. Solving this task
allows for further image processing on the rails, which can be used for
more complex problems such as switch or fault detection. In this paper we
approach the railway semantic segmentation using two deep architectures
from the U-Net family, U-Net and ResUNet++, using the most compre-
hensive dataset available at the time of writing from the railway scene,
namely RailSem19. We also investigate the effects of image augmentations
and different training dataset sizes, as well as the performance of the mod-
els on dark images. We have compared our solution to other approaches
and obtained competitive results with larger scores.

1. Introduction

Railway transportation is one of the most efficient modes of moving people
and goods from one location to another [7]. The original train routes, which
consisted of a small number of stops connecting one point of interest to an-
other, were employed for industrial purposes. More stations were created to
assist railway transit as more enterprises saw it as a viable way of carrying
freight and passengers. As a result, there was a greater demand for routes
between stations.

While numerous advances in scene understanding for autonomous driving
have been made in recent decades, one subject has received little attention:
autonomous trains. Such systems should require as little human intervention
as possible. Although fully-autonomous metro systems exist in some modern
cities, smart systems for long distance cargo trains are still to be developed.
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At first glance, the task of building smart trains appears to be simpler to
solve than the problem of smart cars or trucks. Trains have a limited range
of motion due to the rails on which they travel, thus most of the autonomy
consists of adjusting the speed based on different factors such as rail topology
(curves, switches), obstacles or adverse weather conditions. In reality, it may
be as difficult to solve the task of railway scene understanding as it is to solve
the task for road scene understanding, since there are many different traffic
signs and lights located in various places along the rail track.

When building a fully autonomous train, the semantic segmentation of the
rails is an important aspect that must be considered. This task can be consid-
ered as a subproblem for more complex tasks such as detection of switches [12]
or anomalies [11], adapting the speed of movement based on the topology of
the rails or smart breaking in case of obstacles. It is critical to build a model
that can accurately highlight the rails in an image with as few incorrect pixels
as possible. This solution might be used in a safety-critical system where even
the tiniest mistake could result in derailment or even crashes.

Currently, the task of rails detection can be solved by using two different
approaches [22]. The first one implies using image processing techniques such
as image edge detection to search for rail features. The second one consists of
using deep convolutional neural networks with powerful semantic segmentation
potential. This approach can extract edges, colors or textures of rails in more
complex images with multiple rail intersections.

In this paper we propose an intelligent solution to the rails semantic seg-
mentation problem using deep neural networks, which leads to better results
when compared to the current literature on this problem using the most com-
prehensive dataset from the rail scene available. Our solution receives as input
an image taken from the egocentric point of view of the train containing one
or multiple rail tracks. The output is an image of the same size as the input
containing white pixels for the rail blades and black pixels for everything else.

The aim of this paper is to answer the following research questions:

• How reliable are the proposed methods for semantic segmentation
given a dynamic environment (i.e. the camera on the train)?

• How can we surpass the current state-of-the-art for the rails segmen-
tation problem?

The structure of the paper is the following: Section 2 describes related
methods used for solving this task, Section 3 presents the proposed approach
for the rails semantic segmentation task and Section 4 describes the experi-
ments and the obtained results. Section 5 concludes the paper by offering an
overview of the work and some future considerations.
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2. Related Work

The task of rail semantic segmentation has received some attention in the
past years.

Wang et al. [24] developed an end-to-end model that combines feature ex-
traction using the ResNet-50 backbone [8], followed by a fully convolutional
network for detecting the railroad based on a custom Railroad Segmentation
Dataset (RSDS) consisting of 3000 images of size 1920x1080 divided as it fol-
lows: 2500 images for training, 200 for validation and 300 for test. They
achieve a reasonable inference time of 20FPS (Frames Per Second) by extract-
ing both the rails and their interior area, namely the sleeper. The weights
used by the ResNet50 backbone were trained on the ImageNet dataset [18] by
performing a fine-tuning process. They obtain a mean IoU of 0.898 and a Dice
score (F1 measure) of 0.868.

Zhen Tao et al. [22] use a deep neural network called RailNet for extracting
the rail lines features from an image. This network is trained to generate the
binary segmentation map of the rails, which is then processed together with the
orginal image using a line fitting algorithm based on a sliding window technique
(two-stage detector). Since the system will be used in real-time situations, the
inference time represents a key factor to be taken in consideration. In order
to obtain a fast inference time of 74FPS and allow the model to be used on
memory-constrained devices, they use Depthwise Convolutions, which were
initially introduced in [19]. They create a custom dataset called RAWRail
containing 3000 railroad tracks pictures of size 640x360 in which there may
be three different types of tracks: straight, curved to the left or curved to the
right, 1000 samples for each type. The images are grouped together with the
segmentation mask containing the two parallel rails as the positive class and
the background as the negative class. They divided the dataset into training,
validation and test sets following the ratio 0.9:0.05:0.05 and manage to obtain
an accuracy of 98.6% on the test set.

Zendel et al. [26] have created the largest dataset presently available com-
prising annotated photos obtained from the egocentric perspective of trains,
called RailSem19. They have applied deep learning approaches to solve the
semantic segmentation task, employing the FRRN (Full-Resolution Residual
Network) architecture, which was pre-trained on the Cityscapes dataset [4]
and fine-tuned using 4000 training photos randomly selected from the dataset.
Based on the ResNet50 backbone, this architecture comprises of an end-to-
end model that combines feature extraction and semantic segmentation. The
FRRN architecture comes in two flavors: FRRN A and FRRN B, which differ
in terms of the input image size: FRRN A processes images of 256×512 pixels
and FRRN B processes images of 512×1024 pixels. They have used the FRRN
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B version with a 512 × 512 input size because it has a larger receptive field,
performing better than FRRN A. For the semantic segmentation task, after
60 epochs of training, Zendel et al. have obtained an intersection over union
(IoU) of 71.5% for the rails class. The images were resized to 512 × 512 and
they used a batch size of 2 on a single RTX2080Ti GPU.

Li et al. [15] have also used the RailSem19 dataset for the semantic seg-
mentation task, but on another architecture named RailNet. The authors have
used a VGG-16 backbone [20] on top of which they have added an Information
Aggregation Module (IAM) that builds a relationship between each row and
column of pixels from the image to semantically segment the rail blades. The
weights of this module are acquired in two ways: by using simple learnable
weights (RailNet-LW) that get updated with the gradient descent process or
by using attention-based weights (RailNet-AW) that work better with the un-
balanced class distribution. They divided the RailSem19 dataset into 5000
images for training and 3500 for validation and managed to obtain a mean
IoU of 0.54 and a mean recall of 0.89 on the validation set using the attention-
based version. They have resized the images to 160x320 and have used an
extended version of the focal loss [1].

Jahan et al. [11] have also used the RailSem19 dataset to perform seman-
tic segmentation on the rails using deep learning architectures. They used a
U-Net type architecture in which the feature extractor backbone was changed
to either VGG [20] or ResNet [8] in order to increase its performance. The
weights of these networks were pre-trained on the ImageNet dataset [18]. They
also experimented with two types of loss functions: Weighted Binary Cross-
Entropy and Focal Loss. Instead of working with grayscale images, Jahan et
al. [11] used RGB images of size 892 × 596 with a batch size of 4 on two
NVIDIA GeForce GTX 1080 Ti GPUs. They made use of image augmenta-
tion techniques to increase the performance of the models by using horizontal
flipping, random noise, random brightness and random contrast. They obtain
the best mean intersection over union (mIoU) of 52.78% after 46 epochs when
training on 8390 images, validating on 60 samples and testing on 50 images.

3. Our Approach

In this section we present our approach for the rails semantic segmentation
problem using U-Net architectures. We describe the formalization of the task,
the chosen architectures, the dataset and the loss functions used for experi-
mentation.

3.1. Formalism. We define a two-dimensional image as a bidimensional ma-
trix with r rows and c columns with topology I = {1, ..., r}×{1, ..., c}. Define
img : I → O, where O has one of the following forms based on the image type:
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• RGB image: O = {0, ..., 255}3;
• grayscale image: O = {0, ..., 255};
• binary image: O = {0, 1}.

Therefore, img(i, j) = o, o ∈ O, i ∈ {1, ..., r}, j ∈ {1, ..., c}, where (i, j) is
a pair of integers denoting the coordinates of the image and o represents its
value at that position.

We define the segmentation mask or the ground truth as YGT : I →
{0, ...,K − 1} where K represents the number of types of objects considered
for segmentation or the number of different segments considered. Therefore,
YGT (i, j) = k, k ∈ {0, ...,K − 1}. Similarly, the prediction given by the seg-
mentation model can be defined as Yp : I → {0, ...,K − 1}, Yp(i, j) = k, k ∈
{0, ...,K − 1}.

The semantic segmentation model considered in this paper can be formal-
ized as an algorithm that takes as input an image img and outputs an image
mask where img,mask : I → O.

3.2. Architectures. For the rails segmentation problem we have chosen mod-
els from the U-Net family, which feature an encoder-decoder architecture with
skip connections between distanced layers. Although these types of archi-
tectures were designed to solve the semantic segmentation task for medical
images, many studies have shown how well they work for other tasks as well
[2, 14]. In our experiments we have considered two model architectures: U-Net
[17] and ResUNet++ [13].

3.2.1. U-Net. This architecture has a U-like structure formed of a contracting
path and an expansive path [17]. The contracting path, otherwise known as
the downward or encoder path, is used to learn what features are present in
the image, while the expansive path, known as the decoder path, is used to
distinguish where the learnt features are located in the image. Between the
two parts of the network, skip-connections are used in order to concatenate
depthwise information from the downward path to the expansive path. In
2015, the ISBI cell tracking challenge1 was won by the U-Net architecture,
showing state-of-the-art performance at that time.

3.2.2. ResUNet++. This architecture, introduced in 2019 builds on top of
U-Net [13]. It adds the following: Squeeze and Excite blocks, Atrous Spatial
Pyramidal Pooling (ASPP), and attention blocks. The Squeeze and Excite
blocks [9] are used to recalibrate channel-wise feature responses by explic-
itly modelling interdependencies between channels. Atrous Spatial Pyramidal
Pooling [3] is used to capture contextual information at various scales. ASPP

1https://biomedicalimaging.org/2015/program/isbi-challenges/.



66 ANDREI-ROBERT ALEXANDRESCU AND ALEXANDRU MANOLE

acts as a bridge between the encoder and the decoder part of the architecture.
Attention Units are used to enhance the weights of some layers by learning on
what parts of the image to focus more, i.e. to pay more attention to.

All of the mentioned architectures work with squared input images for which
we choose 512× 512 as size representation.

3.3. Dataset. RailSem19 [26] is the most extensive dataset from the railway
scene at the time of writing, and we have used it in our study to train models
that solve the rail blade semantic segmentation challenge. It consists of 8500
photos captured from the train’s ego-view, having the size of 1920× 1080 pix-
els. The images were captured in a variety of weather, lighting, and seasons
in 38 different countries. Ground-truth masks for the rails segmentation pro-
cedure and bounding boxes for various elements from the railway scene are
included in the samples. The dataset is imbalanced from the perspective of
rails:background pixels ratio. For each pixel annotated as rail, there are ≈ 37
pixels annotated as background.

3.4. Loss Functions. We have tried to use different loss functions during
the training step of our approach: Binary Cross-Entropy, Weighted Binary
Cross-Entropy, Tversky similarity index and Focal Tversky Loss function. In
the following we present the definitions of these functions.

Let y be the ground-truth and ŷ the value predicted by the model. For
the segmentation problem with two classes, rails and background, the Binary
Cross-Entropy [6] loss function is defined as:

(1) BCE(y, ŷ) = −(ylog(ŷ) + (1− y)log(1− ŷ)).

Since the RailSem19 dataset used in our study is imbalanced, the Weighted
Binary Cross-Entropy version of the loss was also considered:

(2) WBCE(y, ŷ) = −(w ∗ ylog(ŷ) + (1− y)log(1− ŷ)),

where w is the weight represented by the ratio between background and
rails pixels. This way, the loss gives more weight to the positive class (i.e.,
rails class in our study) when y=1, thus leading to a higher value of the loss
function in cases the predicted value ŷ is off. This allows the optimizer to
improve the model predictions for the positive class.

The Tversky similarity index [23] was used to balance False Positives and
False Negatives. This index is a generalization of 4.1, expressed as:

(3) TIc =

∑N
i=1 picgic + ϵ∑N

i=1 picgic + α
∑N

i=1 picgic + β
∑N

i=1 picgic + ϵ
,
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where pic is the probability that pixel i belongs to class c and pic is the prob-
ability that pixel i does not belong to class c. Conversely, the same is true for
gic and gic respectively.

Since small regions of interest (ROIs) do not contribute to the loss signif-
icantly, i.e. the value of the loss is smaller for such ROIs, the Focal Tversky
Loss function (FTL) was poposed in the work of Abraham and Khan [1]. It is
parametrized by γ to switch between easy background and hard ROI training
examples. The Focal Tversky Loss function is defined as:

(4) FTLc =
∑
c

(1− TIc)
1/γ ,

where γ varies in the range [1, 3]. Abraham and Khan [1] hypothesize that
using a higher α in the generalized loss function from Equation 4 improves
the model convergence by shifting the focus to minimize False Negative pre-
dictions. They also mention the values they used: α = 0.7 and β = 0.3.

3.5. Our Semantic Segmentation Process. The goal of our study is to
solve a real problem, automatic rails identification in images, thus the data
on which the chosen models will be used may come in different shapes and
forms. The associated software is supposed to operate on images retrieved
by a video camera placed on top of the train, aimed towards the upcoming
rail track portion. It can be assumed that the format of the images is 16:9,
however it is less likely that all of the feed of the cameras will be of the same
resolution. Thus, we must ensure that the proposed method can be adapted
to different resolutions.

In order to address this issue without changing the shape of the rails upon
resizing the images to the appropriate sizes that can be fed into the network,
an offline pre-processing step is performed on the semantic segmentation data.

As the original size of the images from the RailSem19 dataset is 1920×1080
and the chosen models work with squared images, the proposed crop area is a
1080× 1080 square in the center of the image. An example of such a cropping
can be seen in Figure 1.

This offline step allows for using images of different sizes for the inference
time, which are resized to size 1080× 1080 without changing the aspect ratio
of the objects of interest (i.e. rails). The downside is that part of the image
is left out, however the most important part containing the rails on which the
train is moving on is preserved.

The images are then resized to 512 × 512 in order to be given as input to
the models to be trained. The output will be an image of size 512x512 with
black and white pixels where white pixels represent the rails and black pixels
denote the background.
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Figure 1. Example of cropping an image of size 1920× 1080.
The red square contains the cropped 1080× 1080 area.

The ratio between background and rail annotated pixels for the cropped
dataset is 36.09 : 1, which is similar to the one obtained for the normal
dataset that was 37 : 1. Knowing this, the weight for the loss function will
not be changed since the difference between 36.09 and 37 is not large.

4. Results

In this section we present the experiments performed during our study for
the rails semantic segmentation problem in order to answer the research ques-
tions. First, we describe the metrics used for the evaluation. Afterwards we
present the overfitting procedure performed to check the correctness of the
selected architectures. Lastly, we describe the settings for each experiment
and the obtained results.

4.1. Metrics. In order to evaluate the obtained results, the following metrics
were used:

• Intersection over Union (IoU) also known as the Jaccard metric [10],
is the most used evaluation metric in object segmentation. It is
used to determine True Positives and False Positives in a given set
of predictions. True positives (TP) represent those data samples
that were predicted correctly by the classifier to be a positive class,
while false positives (FP) represent the samples that were incorrectly
labeled as positive by the model.
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Considering an input image X, its corresponding ground-truth
mask Y , and the model Mseg, we can obtain Yp as Mseg(X) = Yp. In
order to define the mean IoU, denoted as mIoU , Y and Yp are used
as follows:

(5) mIoU =
|Y ∩ Yp|
|Y ∪ Yp|

.

This formula computes the mean IoU by considering all K types
of objects to be segmented. In order to compute the IoU for a single
class, the following formalism can be applied. Let k, k ∈ {0, 1, ...,K−
1} be the class for which we wish to compute the IoU score, then:

(6) IoUk =
|{(i, j)|i, j ∈ N∗, Y (i, j) = Yp(i, j) = k}|

|Y ∪ Yp|
,

where the tuple (i, j) can be interpreted as an (x, y) coordinate in a
two-dimensional image.

We have defined two metrics, one for each class: the IoU Rail
for the rails and IoU Background for the background. All of the
IoU metrics range from 0 to 1, where 0 means no intersection and 1
means perfect overlap.

• Dice (F1) Score is based on the Dice coefficient, which was first in-
troduced in [5]. This metric is used to measure the overlap between
two samples and is equivalent to the F1 score in a binary context.
The metric ranges from 0 to 1 where 1 denotes the absolute complete
overlap. Using the previously defined notations, the Dice Coefficient
can be expressed as in Equation 7:

(7) DC = 2
|Y ∩ Yp|
|Y |+ |Yp|

.

4.2. Experiments. In order to check the appropriateness of the chosen ar-
chitectures for the rails semantic segmentation problem we have performed
different experiments. We wanted to compare the results obtained by our
models with the ones available in the literature (experiments A and B) which
use the RailSem19 corpus on similar data distributions. We have also tested
the performance of the U-Net model on dark images and tried to enhance the
performance by adding random brightness augmentations (experiment C).

The tables with results follow a similar column structure: Model denotes
the model used for experimentation, Parameters denotes the number of
learnable parameters corresponding to each model, mIoU represents the mean
IoU score, IoU Rail and IoU Bg denote the IoU scores for the rails and back-
ground classes, and column Dice contains the Dice scores.
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Experiment A. In the first experiment, we have compared the results obtained
by our models with the ones obtained by Zendel et al. [26] in their study.
Zendel et al. used a data distribution of 4000 samples, 3000 for training, 500
for validation, and 500 for testing. We did not approach the problem using
this three-way split. However we have split 3500 samples selected randomly
into 3000 samples for training and 500 samples for validation, and we report
the results on the validation dataset. The results obtained using U-Net and
ResUNet++ are showcased in Table 1.

Column Model contains the model trained and validated. Our models have
either the w1 or w5 suffix, denoting the used weight value for the Weighted
Binary Cross-Entropy loss.

Table 1. Rail semantic segmentation results with a 3000:500
random data distribution.

Model Parameters mIoU IoU Rail IoU Bg Dice
U-Net w1 30 M 0.81 0.63 0.98 0.77
U-Net w5 30 M 0.80 0.61 0.98 0.76

ResUNet++ w1 14 M 0.80 0.61 0.98 0.76
ResUNet++ w5 14 M 0.78 0.59 0.98 0.74
FRRNB [26] 16 M 0.71 - - -

In Table 1, it may be observed that the results obtained did manage to
surpass the results obtained by Zendel et al., which are included in Table 1 in
the last row. The architectures considered in our study function in a similar
way to FRRNs [16] by exploiting residual connections for helping localization
of pixels. Despite this, U-Nets lead to better results. Moreover, we have ob-
tained these results without pre-training the networks on CityScapes [4]. Both
U-Net and ResUNet++ surpass Zendel et al.’s results, with ResUNet++ hav-
ing the least number of parameters. The U-Net model obtains slightly better
results, however it utilizes approximately double the number of parameters.
A size-performance trade-off must be made between the two.

For this experiment, the images size was 512×512, similar to the ones used
in Zendel et al’s study. The weight decay was set to 1e−3 and dropout layers
were used with probability 0.2. Although counter-intuitive, the unweighted
loss function with a weight of 1 leads to slightly better results in less time.
An explanation for this might be that using a larger weight for the rails class,
the loss is penalised harder, thus decreasing the learning speed. The models
were trained for 32, 36, 22, 38 epochs respectively in the order presented in
Table 1. These values were chosen after training until reaching a plateau
in the loss value, meaning that no further improvements could be obtained.
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The ResUNet++ architecture takes longer to reach the performance of U-Net
because it has more complex components.

Experiment B. In the second experiment, we have compared our selected mod-
els to the RailNet architecture from Haoran Li et al. [15]. For this, 5000 images
were randomly sampled for training, while the remaining 3500 were used for
validation. The outcome of this experiment is given in Table 2.

Table 2. Rail semantic segmentation results on a 5000:3500
random data distribution.

Model Parameters mIoU IoU Rail IoU Bg Dice
U-Net w1 30 M 0.81 0.64 0.98 0.78
U-Net w5 30 M 0.70 0.44 0.97 0.61

ResUNet++ w1 14 M 0.79 0.60 0.98 0.75
ResUNet++ w5 14 M 0.78 0.58 0.98 0.74
RailNet [15] 138 M 0.54 - - -

Surprisingly, the results obtained using the 5000:3500 data distribution are
considerably larger than the ones obtained by Haoran Li et al. [15]. These
results were obtained using the same random distribution of samples. All
models were trained with a batch size of 4 for 20 to 40 epochs. Similar to
previous experiments, the models trained with a loss function weight of 1 lead
to better results. The best results were selected. Resulting samples are visible
in Figures 2 and 3, for U-Net and ResUNet++ respectively.

The encoder-decoder architecture with skip connections that is represented
by U-Net and ResUNet++ appears to be performing better on this task than
the VGG architecture combined with an Information Aggregation Module used
by Haoran Li et al. [15]. It also has fewer parameters.

Experiment C. The last experiment was performed in order to better under-
stand how the model behaves in dark conditions. For the training set, both
daylight images and dark images were considered. To be more precise, a total
of 3500 images were selected consisting of 3095 day images and 405 dark im-
ages. The train:validation split was 80:20. The training set consists of 2467
day images and 619 dark images, while the validation set contains 324 day
images and 81 dark images.

Three different validation sets were considered: the one previously detailed,
one with day images exclusively and one with dark images only. The results
of these experiments are given in Table 3, where DN denotes day and night
samples, D denotes day only samples, and N denotes night only samples.
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Figure 2. U-Net results on the 5000-3500 distribution.

Table 3. Results for the rails semantic segmentation task on
dark images with and without augmentations.

Val. Distribution Model mIoU Rail IoU IoU Bg Dice
DN U-Net 0.77 0.57 0.97 0.72
DN U-Net Aug 0.77 0.57 0.97 0.72
D U-Net 0.77 0.57 0.97 0.73
D U-Net Aug 0.77 0.57 0.97 0.73
N U-Net 0.75 0.53 0.97 0.69
N U-Net Aug 0.76 0.54 0.97 0.70

In order to address the issue of poor luminosity, one more training attempt
was made with augmentations, which would randomly decrease the brightness
of the grayscale images by decreasing from each pixel value a constant in order
to make them darker. This constant was set to 80 after manually testing
multiple values. This augmentation can be interpreted as transforming day
images into night images.

As expected, the results are not as high as those for the previous experiments
using approximately 3500 images in total. One of the reasons for this low
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Figure 3. ResUNet++ results on the 5000-3500 distribution.

performance is due to the nature of the task: it is more difficult to segment
rails in poor luminosity conditions.

An increase of 1.3 percentages in the Rail IoU score is observed when per-
forming the evaluation on night-only images using random brightness augmen-
tations. This outcome was expected since this type of augmentation helps the
model learn better representations for darker images.

4.3. Analysis. We have observed that the U-Net architecture leads to better
results than ResUNet++, although the latter uses more advanced features
designed to improve its performance. Nevertheless, both architectures are ap-
propriate for obtaining usable results for the rail semantic segmentation task.
We have also observed that a smaller weight term for the Binary Cross-Entropy
loss function leads to better results in less training time. This was expected
since a smaller weight means a lower penalisation when the background class
is predicted for a pixel instead of the rails class.

Since the variation between the results obtained using U-Net and ResUNet++
is quite small, it is difficult to proclaim a definitive winner. The decisive fac-
tor one could consider when comparing two network architectures would be
the size of the network. From this perspective, ResUNet++ is deemed to
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be better, having fewer trainable parameters. In the end, both architectures
accomplish the task of semantic segmentation on rails well enough.

To answer the first research question, we may assume that using the Re-
sUNet++ architecture, which has less parameters (14M) than U-Net (30M),
is suitable for a dynamic environment such as the camera on the train. To
add to this, the dataset used for training contains images in multiple weather
conditions (snow, rain, smog) and at different times of day and night, thus
increasing the usability of the trained models.

Using U-Net like architectures is the answer to the second research question,
since we obtained better numerical results than three other works from the
literature that aim to solve the same task. On top of the original architecture
implementations, we added Dropout layers [21] and considered weighted loss
functions for optimizing the models.

5. Conclusions and Future Considerations

In this article, an efficient solution was presented for solving the rails se-
mantic segmentation task using deep architectures from the U-Net family
on images taken from the perspective of the train. The considered architec-
tures, namely U-Net and ResUNet++, led to some competitive results when
compared to a selected range of related works. Our results surpassed the
state-of-the-art on this task by 9 percentages.

Despite this, the task is still challenging for fine-grained semantic segmen-
tation of rails that are further away from the camera. Other issues that are
still open for research include segmenting rails in dark places (night, tunnels)
or avoiding False Positives such as shadows or other objects similar to rails.

In the future, multiple aspects can be improved:

• The dataset aggregated by Zendel et al. [26] contains some images
that lack proper annotations for the rails class, meaning that some
rails are not annotated correctly. An improvement would be to anno-
tate these missing rail blades and to increase the number of samples.

• From the perspective of the considered architectures, more tests can
be performed with even more semantic segmentation architectures
in order to compare them and select the most appropriate one for
the rails semantic segmentation problem. Maybe even try a novel
architecture designed especially for this task.

• Since the images of the rails are provided by a camera placed on top
of the train, there is a high similarity between each frame: the rail
blades are almost in the same position, but slightly shifted between
consecutive frames. For this reason, an architecture that considers
the previous pixels classified as rails might perform better on this
task. An example of such an architecture is introduced in [25].
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• It would be useful to measure the FPS of the mentioned methods and
analyze what would be the most suitable hardware to be used on a
real train from the perspective of power consumption and feasibility.
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