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A REVIEW AND ANALYSIS OF THE EXISTING

LITERATURE ON MONOCHROMATIC PHOTOGRAPHY

COLORIZATION USING DEEP LEARNING

ALEXANDRU MARIAN ADĂSCĂLIŢEI

Abstract. It is universally known that, through the process of coloriza-
tion, one aims at converting a monochrome image into one of color, usually
because it was taken by the limited technology of previous decades. Our
work introduces the problem, summarizes the general deep learning so-
lutions, and discusses the experimental results obtained from open-source
repositories. Although the surveyed methods can be applied to other fields,
solely the content of photography is being considered. Our contribution
stands in the analysis of colorization in photography by examining used
datasets and methodologies for evaluation, data processing activities, and
the infrastructure demanded by these systems. We curated some of the
most promising papers, published between 2016 and 2021, and centered
our observations around software reliability, and key advancements in so-
lutions employing Generative Adversarial Networks and Neural Networks.

1. Introduction

Photography colorization, in the context of this paper, represents the pro-
cedure of artificially reconstructing color information in a picture that has
never been captured on a storage medium capable of recording color. In the
absence of such research, we took the challenge of providing a comprehensive
perspective on deep learning solutions. Approaches vary, with examples of
discriminative networks [4, 52], generative networks [15, 53], and adversarial
ones [1, 6]. In an area which have seen solutions as early as 1980, and modern
ones began to appear around 2002, only the recent years brought methods
to yield impressive results. A discussion was opened on 28 papers and 17

datasets, leading us through four main patterns, each with different models,
computational demands, and time costs. Through patterns, a common set of
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input values and processing steps are grouped under a common name, while
the models encompass technically detailed networks. However, color recon-
struction may yield structurally incoherent result, due to the lack of similar
visual content in the training phase of the models. To better assess, experi-
ments were conducted on a dataset of our own, managing to confirm a common
trend regarding colorization performance.

On the one hand, our research methodology aimed to study the existing
patterns, highlighting the main differences. On the other hand, we focused
on the architecture, and the use of data. Aside from photography, domains
such as communication protocols, medical imaging, and gaming could bene-
fit from data compression, physiological highlights, and photo-realistic scene
renderings, respectively. This paper contributes with a thorough analysis of
the existing papers and datasets, process guided by the following research
questions.

1.1. Aims and Research Questions. While our primary concern was the
best possible coverage of the literature, software reliability and open access
to the source code shaped our approach to a good extent, making us ask the
following initial research questions RQ 1 to 4.

RQ 1 As for now, is automatic colorization achievable without deep learn-
ing?

RQ 2 What solving patterns and deep learning models are usually em-
ployed?

RQ 3 How well would these models perform in professional applications?

The rest of the paper analyzes the work of the previous half of a decade,
with a five section structure, having the context and relevance of colorization
described in Section 2, patterns and models of learning in Section 3, literature
result analysis in Section 4, and the conclusions summarized in Section 5.

2. Context and Relevance

In explaining how light is stored on a computer, this section builds an intu-
itive reasoning path to understand why mathematical reconstruction formulas
can not infer color directly from the grayscale image.

2.1. Digital Representation. When it comes to the pictures we store on our
computers, they can be thought of as grids of numerical values, stacked upon
each other. In this stack, each layer stores in those numeric values information
regarding light absorption, by converting the electromagnetic wavelengths to
a color standard computers can reproduce. The purpose of such structures is
to mimic the eye’s response to natural light but in the context of a screen.
For example, transitioning from the wavelength measurements to the 1931
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Commission Internationale de l’éclairage (CIE) standard [41] one uses three
empirically determined weights, x̄λ, ȳλ, z̄λ, called tristimulus. As they only
measure the color perception, historically defined by a group of human ob-
servers, we will use these values to determine the actual components of CIE,
namely X, Y, and Z.

Color Space. The fundamental aspect of black and white photography, and
the reason behind lacking mathematical formulas for color reconstruction RQ1,
is that the technology capturing the visible light, either film rolls or digital
sensors, only keeps the brightness, a weighted average of the mixed wave-
lengths we call colors. What was previously a rich source of information, now
it became unable to tell what colors were in the scene. Using the Lab format,
one may train various models to predict the chromaticity based on the lumi-
nance channel, pretending it was the black and white image, and then, using
the discarded channels, measure the distance between the prediction and the
reality. A candidate model makes the transition from black and white to color
stacking two layers of chromaticity, which in the case of Lab one describes
blue/yellow, and the other one orange/violet information.

2.2. Progress and Relevance Over Time. Colorization is a practice as
old as photography itself, dating back to the eighteenth century, but recent
technological breakthroughs endowed us with tools capable to supplement the
monochrome record with a more appealing visual representation. Record-
ing light on a physical medium had to overcome the technological limitations
imposed by the early photographic materials which only captured shades of
black and white. At the beginning of the nineteenth century, around the year
1930 [21], color photography gave people access to an unconscious understand-
ing of the physical world through color. Nowadays, teams of artists such as
Dynamichrome [11], are closing the gap, manually reconstructing black and
white records. They are deciding how to approach the task, using their expe-
rience and intuition. Similarly, deep learning algorithms are calibrating their
parameters until the model is behaving as intended.

Methods that predate the 1980s had more of a mechanical nature, using
some of the early iterations of computers capable of graphical manipulation.
Although little research has been made publicly available until 2002, Wilson
Markle and Brian Hunt patented one of the earliest, if not the first attempt
of movie colorization [34] using a computer, in 1988. For each scene of a black
and white film pellicle, a color mask was applied to the frame. The adjacent
frames were then similarly colored, taking the motion into consideration. Each
of the areas indicated as having motion was processed by some adjacent pixels
algorithm, while static areas were inheriting the previously applied colors.
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3. Colorization Patterns and Learning Models

The following section is dedicated to answering RQ2 through a brief intro-
duction into the patterns’ general idea, and a discussion on the models’ traits.

3.1. Colorization Patterns. The source of data and the processing pattern
can have a decisive performance impact on the model. Predicting color chan-
nels depends on the type of information sources one has at their disposal,
whether it implies contextual hints, or large amounts of color images.

3.1.1. Data-Driven Colorization. Due to the fact that early algorithms heav-
ily relied on human interventions, the work that followed completely removed
preferences coming from the outside of the system. Su et al. [42] separated the
image as a whole from the objects within the frame, colorized each patch using
a network inherited from [52], and later fused the features while also avoiding
the artifacts. Even if limitations may appear when the object instances are not
well detected, it usually generates results with fine-tuned details without hu-
man interventions. Presumably, from the idea of finding the best local match,
and balancing global coherence, improved approaches will be derived. All
such approaches leverage large scale data and end-to-end training. Neverthe-
less, the decision of relying of fully autonomous processes was later reverted,
and human preferences began to be taken into account under various forms
that will be discussed in the following paragraphs.

3.1.2. Human-in-the-Loop Colorization. The shared knowledge of a commu-
nity, historical documents, or reference images contain information that artists
may access and use in their work, yet software methods are still unable to
deal with such diversity and spread of information when transferring color.
The following methods embrace the multi-modality of the problem, providing
colorization results that differ when changes are iteratively introduced by a
person. From such interactions, reinforcement learning may better predict
what would be of interest for humans in color photographs. However, seldom
is reinforcement learning present in the scene of colorization networks.

Based on Textual Descriptions. Notes were often placed on the back of legacy
photography, and even nowadays, colorization associated with a language has
rich sources of training data. Many social media platforms are improving their
indexing systems based on the words and sentences associated with the visual
content. Photography colorization based on captions conditions the nuances
to fit color palettes associated with the present words, building on the idea
that particular colors are associated with complex semantic concepts. One
may imagine that a cold evening varies in nuances of blue, while the golden



GRAYSCALE PHOTOGRAPHY COLORIZATION 39

hour covers everything in warm colors. Regions that could not be matched
from the text are then processed using a dominant color, such as denim blue.

Manjunatha et al. [33] concatenated units of text into every convolutional
block of the baseline network - a fully convolutional neural network, obtaining
a model that joins textual and visual feature maps at the cost of significant
parameter demands. To address the issue of parameter efficiency, the authors
employed a second approach to fuse the representations, using a feature-wise
linear modulation - Perez et al. [37]. Training on the dataset presented in Lin
et al. [31] yield unsatisfactory colorization due to image complexity and the
set size limitation, although accounting for over 82 · 103 images. In these cir-
cumstances, the baseline network was pre-trained on ImageNet, then the two
network variants presented in [33] were fine-tuned. The evaluation confirmed
a better precision in the second model, although no significant differences were
observed in both evaluation metrics or Turing tests. Both models performed
well under caption changes, and they were able to change the colorization
according to the updated sentences.

Image segmentation based on natural language expressions was approached
by Hu et al. [17], then based on their framework Chen et al. [7] improved
on features fusion, using a recurrent attentive module for deciding the num-
ber of text-to-image processing iterations. The framework matches image
regions with the words describing them, employing the recurrent attentive fu-
sion module that repeatedly reads the textual features maps until, through
the attention mechanism, enough information was retrieved. A deconvolu-
tional network later takes the fusion features map and up-scales it to the
width and height of the final image, with a depth comprised of the number of
classes resulted in segmentation and two chromaticity channels. Additionally,
Chen et al. [7] introduced the first colorization results obtained on Oxford-102
Flowers dataset [36].

Bahng et al. [3] proposed two generative adversarial networks, one for text-
to-palette generation, T, and another one, P, for palette-based colorization.
The generator of T learns mappings between color palettes and sequences of
words, while the discriminator distinguishes between real and fake palettes,
using the Huber loss across the network. P operates on two sub-networks, a
U-Net based colorization network, and a network that guides the colorization
based on the color palette generated by the caption, whose output is passed
to a Deep Convolutional Generative Adversarial Network (DCGAN) discrim-
inator. Provided with rich textual resources, the model generates multiple
color palettes, adapting to more than a couple of words, thus contrasting the
limitations of small input volumes that previous work brought. Following this
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idea, a dataset of more than 103 mappings between sequences of words and
palettes of five colors was introduced, and later applied on T’s training.

The language itself makes a great difference in colorization, as English has
eleven basic color categories, Russian twelve, and other languages might dras-
tically differ, with the number of color terms reaching as low as three - white,
dark, and red. Berlin and Kay theory addresses how various cultures share a
basic understanding of color, even if they have various manifestations at the
vocabulary level. Loreto et al. [32] presented a multi-agent simulation on how
the use of a language influences color terms.

Based on Color Hints. Learning deep priors was not always the obvious path,
and the early colorization approaches were envisioned to spread color strokes
in correlation with the luminosity channel. Deep image priors represent a
network’s ability to obtain some knowledge about the world, and then use it
in the actual task, where such knowledge comes in handy, and alone it is not
enough to find the answer we seek. Data-driven processing turned the coin,
making the process easier at the expense of user control. Might the best of both
worlds be obtained, then a truly robust tool would be handed to the creatives
ones, allowing for colorization preferences that would be difficult to include
otherwise. In the following paragraph, we explain how one may combine user
preferences and deep priors. Such user preferences come under the form of
hues defined at a specific point on the digital canvas (tablet/monitor). Aside
from the arbitrarily selected hues, the color hints get propagated through the
network after specifying them on the user interface.

Zhang et al. [52] beautifully covered the specifics of this pattern, employing
a CNN fusing low-level features extracted from clues with high-level semantic
information. The main branch uses a U-Net architecture, which additionally
absorbs the sparse color points through a Local Hints Network, L, and either
the histograms or the average saturation levels using a Global Hints Network,
G. Whenever the preference for a color is expressed on a drawing pad, a recom-
mendation of nine colors is obtained through running a k-means clustering on
G’s final per-pixel distribution. In our experiments, this method ranked first
when using their baseline model - the one with no hints provided. The user
interface requires up to 8GB of RAM for the Docker image, but the experience
is impressive. The codebase can be used without the graphical part, as the
repository is very well documented and maintained. As an improvement, Xiao
et al. [48] allowed for both global and local hints to be provided concurrently,
in contrast to only one type of hint at a time as it was permitter in the previous
approach [52].
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Based on Reference Color Images. Transferring the chromaticity information
from a semantically related color image to a target T monochromatic image is
the main focus of this paradigm, and whether the user provides a reference R

color image, or the system manages to retrieve the appropriate one, the idea
is to allow for a multi-modal colorization, which neural networks prevent from
happening using the dominant colors they have learned. One could imagine
passing colors from cherry blossom to a black and white Californian coast im-
age, obtaining synthetic, but artistic pink waves. Finding images with similar
semantics and luminance as the input we want to process might prove as dif-
ficult as giving the right hints. Thus, in He et al. [16] an image query reaches
to a gray-VGG-19 which in turn, based on its class, and the cosine similarity
of the tuples (Ri, T) computed using the features F5Ri,T and F6T,Ri from network’s
last convolutional layer and first fully-connected layer, narrows down the top
n images, generating a global ranking. Then, further pruning is realized using
semantic and luminance similarities, which are denoted in Equation 1 as the
sum’s two terms.

(1) score(Ri, T) =
∑
p

(d(F5T(p), F
5
Ri(q)) + βdH(CT(p), CRi(q)))

Where i = 0, n, β has been empirically set to 0.25, and T is our grayscale
image, for each point p from F 5

T the nearest neighbor q from F 5
Ri

is assigned
so that the pair minimizes the cosine distance. Then, CT(p) maps each point
from the feature map F5T to a grid cell from a down-scaled 16× 16 resolution
T, which in turn gets used in dH to compute the luminance similarity. The
semantic similarity directly applies the cosine similarity represented by d(x, y).
After the local ranking is determined, the reference retrieval algorithm yields
the top-1 reference image. The visual attribute correspondence technique used
is known as Deep Image Analogy, which is explained at length in the work of
Liao et al. [30].

A general downside of this pattern are the unrelated spots that should
be dealt with, thus He et al. [16] employs an end-to-end colorization sub-
network that simultaneously learns color sample selection, color propagation,
and dominant color prediction on two sub-branches, one for chrominance, and
one for perceptual correlation. While the chrominance branch propagates color
samples extracted from the reference to the entire image, the perceptual branch
makes a prediction for areas left uncolored by the reference, purely based on
dominant colors learned from the large-scale training set. This pattern was
also used in the work of He et al. [16], and Xu et al. [49].

3.2. Deep Learning Models. One would have to create a list of initial study
sources, therefore we provided in Table 1 our recommendation in terms papers
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that would represent a good read. The 28 papers influenced our opinion on
the matter, and although we did not refer directly to all of them, the manner
we grouped and filtered may represent a valuable source of information. In
addition, it would be fair to say that one approach does not account for all our
expectations, thus we focused on their strengths at the network level, making
small remarks visible on the fourth column.

Architecture Datasets Metrics Strengths Related studies
Convolutional Neural
Networks

[5], [9],
[13], [39],
[44], [47],
[55]

LPIPS,
PSNR,
SSIM

produces excelent predictions
for first time encountered parts
of an image

[4], [16], [18],
[26], [27],
[33], [42], [48],
[50],[51], [52]

Network Refinement [5], [14],
[22], [36],
[39], [46]

optimizes on conservative pre-
dictions

[2], [7], [8], [10],
[15], [38], [40]

Transformer [39] [25]

Generative Adversar-
ial Networks

[3], [23],
[28], [39],
[43], [47],
[54], [55]

less artifacts, better skin nu-
ances, reduced blue bias for
clothing

[1], [3], [6], [12],
[19], [20], [29],
[35], [45]

Table 1. Literature recommendations with the codebase freely
available on GitHub.

3.2.1. Convolutional Neural Networks. This class of models is known for the
heavy use in computer vision tasks. In the larger scheme of discriminating
or generating numerical values, starting from a 2D tensor representing the
luminosity, and ending up with two chromaticity tensors, the network’s lay-
ers, made out of convolutional kernels, are optimized and interconnected to
improve the end result. When convolved with the input, these filters are gen-
erating the feature maps. In colorization, two important aspects must persist:
the image ratio, which can be managed with padding, and that one should
avoid image distortions, preferring a stride operation for pooling in the case of
downsampling. The input image resolution ranges between 64 and 512 pixels,
while some models have no restrictions on the input resolution, but they yield
results within the previous boundaries. In the Lab format, the color values
range between −128 and 128, and get later transformed so that they match
the last layer activation (for example, for tanh would range between −1 and
1).

In general, the spatial information gets encoded, and lost, in exchange for
learning more about the input image, procedure associated with an encoder.
It is common to notice that additional features are added, fusing them into
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the output of the encoder, as they give us a stronger sense that we are in
the possession of an improved solution. As an example, Baldassare et al. [4]
used a pre-trained Inception-ResNet-v2 for features extraction alongside the
encoder. Then, the model is upsampling the compact representation, using as
much of the first layers as it needs to bring back spatial information. While
different approaches leverage different parts of the network to their advantage,
they have something in common in the way all approaches try to compress as
many and insightful features together and to create the chromaticity channels
out of them. In addition, hypercolumns are often used in this context (for
example in Larsson et al. [27]), because the last layer gives information too
coarse to precisely localize chromaticity descriptors in the pixels space, thus
storing the activation values for a pixel increases prediction accuracy in the
deeper layers.

Iizuka et al. [18] designed their approach based on Krizhevsky et al. [24],
with four components: three networks thought for low, middle, and global
features extraction, and a colorization network. A particularity of their work
was that they allowed for input files of any resolution, global image priors,
and colorization style transfer. When fusing global features with a purpose
similar to that of priors into the local features, the environmental information
influenced the colorization, avoiding, for example, green nuances for the water
surface. The model was trained exclusively on 224× 224 pixels images from
[55], augmenting via cropping from an initial 256× 256 pixels, and randomly
flipping in the vertical orientation. According to the authors, results may
be obtained on one of NVIDIA® Tesla® K80 GPU cores, with a batch size
of 128, and 11 epochs (accounting for 2 · 105 iterations), in approximately 3

weeks time. As a comparison point, in the work of Baldassarre et al. [4] the
same GPU unit completed the training stage in 23 hours, using a batch of
100, and 6 · 104 images, supporting the previous time estimation for training
on the entire ImageNet dataset (which contains 14 · 106 pictures). For He at
al. [16], training for 10 epochs, with a batch size of 256, took 2 days on eight
Titan XP GPUs. Two days were also enough for Xiao et al. [48] to train
their model using a batch size of 50 images, 4 · 104 iterations on NIVIDIA’s
GTX1080Ti GPU.

Larsson et al. [27] discarded the classification layer of a VGG-16 and trans-
formed this fully convolutional network into a model in which each pixel had
a probability distribution assigned over 313 ab pairs, a quantized color space
that may vary in size from one implementation to another. While the idea
was gaining traction due to existing progress documented in Zhang et al. [51],
it later influenced the hint-based work of Zhang et al. [52], in which it was
shaped into a pixel-level color recommendation. A VGG inspired network
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was also used in Zhang et al. [51], adding depth, dilated convolutions, and
an improved loss function in the form of a classification loss to compare the
probability distributions, while also making use of class rebalancing, without
which desaturated colors would have dominated. A VGG-19 was used in both
the similarity sub-network and the colorization one in the approach of He et
al. [16]. Other networks were remarked, such as the GoogleNet, AlexNet, and
Capsule Neural Networks, as well as those described in the work of Guadar-
rama et al. [15] and Zhao et al. [53] which use generative models, with a Pixel
Convolutional Neural Network in the first approach, and a color distribution
generator, coupled with a pixelated semantic generator in the latter.

3.2.2. Generative Adversarial Networks. Such networks, abbreviated GANs,
share a fair amount of traits with the work presented in the previous sub-
sections, consisting of two smaller networks. As the name denotes, the two
networks compete, having a generator network produce images indistinguish-
able from ground truth, and a discriminator classify which pair of images
contains the original color version. The training ends when the classification
no longer distinguished between the two types of images, real, and colorized.
The target is to avoid conservative predictions, and allow multiple colorization
results by varying the noise, thus offering highly realistic results. Conditional
GANs are most often employed, as the grayscale image represent part of the
input and it could not be transformed into randomly generated noise as the
traditional models would need. The generator takes the monochromatic im-
age as a prior, and later allows for multi-modality through noise applied in
the form of dropouts, or multi-layer noise coupled with multi-layer conditional
information.

While the work of Nazeri et al. [35] had both the discriminator and the
generator implemented after the U-Net architecture, the work of Cao et al. [6]
envisioned an alternative to the encoder-decoder structure. One may image
the encoder-decoder structure, where the middle part contains a U-Net archi-
tecture with skip connections between the layer i and n− i to compensate
for the bottleneck that prevents the low level information to reach the last
layers. Such approaches tend to process the overall image information, which
is suitable for transformations at the whole image scale, but in the case of
colorization, it lacks local guidance. Nazeri et al. [35] embraced this method,
and noticed, among other things, improved performance in the generator’s en-
coder when leaky ReLU was applied. However, Cao et al. [6] preserves details
at their location in space by using only convolutional layers in the generator.
The noise gets attenuated when introduced early, hence it would be beneficial
to introduce it in multiple layers. Complementing it, the multi-layer condi-
tional information may be easily achieved, due to the fact that the network
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never used spatial transformations that would have complicated the process.
Both [35] and [6] were inspired by the work of Isola et al. [19], given that
the general idea of image-to-image translation has strong points that could be
adapted from case to case.

An insightful read is the work of Antic et al. [1], called DeOldify. To the best
of our knowledge, it remains the only competitive approach that was not as-
sociated with a research paper. Antic introduced a new breed of architecture,
called NoGAN. Independently training the generator and the discriminator
gives us most of the insights we need, then, GAN training addresses the issue
of colorization realism. Shortening the GAN’s training manages to avoid arti-
facts formation, while also closing the gap towards vivid colors. When the two
networks are to be trained together, an inflection point in training will be no-
ticed shortly, marking the moment when the critic managed to reach a learning
threshold. When reached, the training must end, otherwise the quality varies
drastically. Although not yet defined, the inflection point was determined by
saving the checkpoints at each 0.1% of training data, and then manually in-
specting whether the quality of the images did abruptly drop. This approach
offers an artistic model, addressing details and color saturation, and a stable
one, tailored for landscapes and portraits. In the same category of rarely vis-
ited ideas, we noticed the PatchGAN discriminator employed in the work of
Victoria et al. [45]. Further exploration regarding pixel-level independence
between two patches could offer an excellent penalty system in colorization.

4. Literature Results Analysis

Since the early ’80s, the number of solutions proposed in literature remained
small, in the two digits figure, and out of those, the human eye may be fooled
by only a dozen of these algorithms. To further support research initiatives in
legacy photography colorization, we have manually curated a 102-photograph
dataset, shot on both film and digital mediums. Table 2 presents the re-
sults obtained from a variety of techniques, studying the context in which
these models perform best, but also when they reach their limitations. For
example, we often encountered models poorly selecting color distributions for
landscape scenes, while at the same time, accurate color palettes for portraits.
The results presented in this table were obtained from the open-source im-
plementation made available by the authors of these papers on GitHub. The
initial codebase was not changed in any manner.

In Table 2, the three columns denoting metrics, LPIPS, PSNR and SSIM rank
the models by statistical means, and they will be introduced in Section 4.2.
A number of factors contribute to a low score, such as patches left untouched,
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colors mappings without any real grounds, or spots leaking color into the im-
mediate vicinity. Most models process landscapes and nature scenes well, while
only particular portraits, urban events, and outdoor activities may deceive a
person. Even if the work of Antic et al. [1] and Iizuka et al. [18] sometimes
yields an unconvincing version of reality, it is impressive how those colors can,
at the same time, provide a starting point for artists, and a bridge to the
past for the general public. The last column summarizes the type of images
we believe, based on the experiments, that would optimally be colorized. We
aligned our results with those obtained in He et al. [16], Su et al. [42], and
Zhang et al. [52], thereby agreeing with the general trend.

An improved performance can be observed on the generative models’ side.
The first column ranks the performance starting from the lowest score, while
the other two columns rank in the opposite order. The metrics may have spe-
cific ranges of values, yet it remains a problem specific issue. The colorization
has, as for the moment, no testing methodology, and this state of develop-
ment leaves an opportunity for further research initiatives. To answer RQ3,
the existing methods can deliver when used in professional photography tasks,
being integrated into products targeting the general public. One example is
the work of Zhang et al. [52] that was included in Photoshop Elements 2020.

Paper
Colorization Metrics Recommended

↓ LPIPS σ ↑ PSNR σ ↑ SSIM σ types of images
Zhang et al. [52] 0.11678 0.04927 18.69112 3.41512 0.88102 0.08394 all
Iizuka et al. [18] 0.18068 0.06863 15.80264 3.94617 0.77813 0.12155 events, portraits,

landscapes
Antic et al. [1] 0.18389 0.08614 13.36557 3.55204 0.73828 0.12560 all
Zhang et al. [51] 0.22174 0.08790 13.60779 4.01649 0.77388 0.11998 landscapes
Kumar et al. [25] 0.30766 0.07357 11.22693 3.14602 0.53996 0.15731 close-up por-

traits, landscapes

Table 2. Performance evaluation made on a 102-image dataset
(github.com/alexdarie/color/images) containing urban land-
scapes and events, objects, and portraits.

4.1. Datasets Challenges. The main disadvantage when solving this task
is the training data, as we encountered only a hand full of datasets specifi-
cally designed for the task, as for example the Palette-and-Text dataset [3],
or the Chinese Youth Subculture dataset [29]. Aside from these, the existing
solutions inherited the most popular computer vision training sources. An
overview can be found in Table 1. Often, images from other tasks are either
semantically too simple, too small resolution-wise, or they lack descriptors
(textual or color clues), thereby partially preventing the learning process. Al-
though they might seem numerous, the existing sets lack diversity present in

github.com/alexdarie/color/images
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consistent amounts. Such a balanced dataset would take some of the time
spent on adapting to data, and move it towards learning from it.

4.2. Evaluation Metrics. Three metrics are most often used to assess the
results, namely Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index
Measure (SSIM), and the Learned Perceptual Image Patch Similarity (LPIPS),
yet they might neglect the human intuition with respect to the goal. Notable
about the first two would be that the PSNR centers around the MSE, while
SSIM is defined using three factors: luminance, contrast, and structural simi-
larity. In the case of LPIPS, it learns the similarity using deep neural network
activation function values.

An alternative to these metrics, recently highlighted, is the use of the Patch-
based Contrast Quality Index (PCQI), and the Underwater Image Quality Mea-
sure (UIQM). Nevertheless, when the human intuition is the next in line, our
recommendation is to have a prior empirical study, and an open mind, as they
are designed to address colorization efficiency, and not data compression loss.
PCQI accounts for the mean luminosity, change in contrast, and structural
distortion, while UIQM requires no reference image, and measures sharpness,
colorfulness, and contrast.

Despite all the effort, having a person assessing the colorization results
remains the golden standard at the moment, as mathematical observations
may miss important aspects. A test involves a number of correspondents
answering whether they think that the photography they see was colorized
or is the original one. Out of the total amount of trials, a fooling rate is
determined, accompanied by the probability that an observation occurred by
chance.

5. Conclusions and future work

The work presented in this paper sets the grounds for further colorization
initiatives. We initially explored whether data driven colorization may achieve
human level accuracy, and discovered that there are cases when it is possible.
Even alone, the fact that colorization optimizes time costs, and reduces manual
labor allows the general public to relive moments from their collection of old
photographs. Moreover, the tasks deriving from colorization have even wider
implications. Even if this challenge is governed by the absence of a dedicated
dataset, and the tendency to borrow techniques from image compression, the
generative models, and even the more straight forward convolutional neural
network can achieve impressive results.

The gap formed by the semantically complex images, will, in time, be closed
through optimizations specific to computational photography. The work of
Antic et al. [1], and Zhang et al. [52] would be our recommendation as a



48 ALEXANDRU MARIAN ADĂSCĂLIŢEI

model development gateway. As for solving the open problems, enough room
was left for improvement in areas such as color leaks, color normalization,
conservative predictions, as well as the resolution constraints. Making the
colorization models more accessible to the general public, and improving on
the existing approaches are the milestones we set for ourselves in the future.
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Email address: aaic2261@scs.ubbcluj.ro

github.com/venkai/RBDN
github.com/ericsujw/InstColorization
github.com/ericsujw/InstColorization
github.com/ZJULearning/diverse_image_synthesis
github.com/ZJULearning/diverse_image_synthesis

	1. Introduction
	1.1. Aims and Research Questions

	2. Context and Relevance
	2.1. Digital Representation
	Color Space
	2.2. Progress and Relevance Over Time

	3. Colorization Patterns and Learning Models
	3.1. Colorization Patterns
	3.2. Deep Learning Models

	4. Literature Results Analysis
	4.1. Datasets Challenges
	4.2. Evaluation Metrics

	5. Conclusions and future work
	Acknowledgments
	References

