
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVI, Number 1, 2021
DOI: 10.24193/subbi.2021.1.02

PERFORMANCE BENCHMARKING FOR NOSQL

DATABASE MANAGEMENT SYSTEMS

CAMELIA-FLORINA ANDOR

Abstract. NoSQL database management systems are very diverse and
are known to evolve very fast. With so many NoSQL database options
available nowadays, it is getting harder to make the right choice for certain
use cases. Also, even for a given NoSQL database management system,
performance may vary significantly between versions. Database perfor-
mance benchmarking shows the actual performance for different scenarios
on different hardware configurations in a straightforward and precise man-
ner. This paper presents a NoSQL database performance study in which
two of the most popular NoSQL database management systems (MongoDB
and Apache Cassandra) are compared, and the analyzed metric is through-
put. Results show that Apache Cassandra outperformes MongoDB in an
update heavy scenario only when the number of operations is high. Also,
for a read intensive scenario, Apache Cassandra outperformes MongoDB
only when both number of operations and degree of parallelism are high.

1. Introduction

Big data came along with big challenges regarding how to store, manage and
distribute a huge quantity of data, generated in short time and from diverse
sources. NoSQL databases were the response to these challenges, specialized
in solving specific big data problems. NoSQL database management systems
are diverse and it is harder to choose the best fit for specific use cases than
it is in the case of relational database management systems. Of course, rela-
tional database management systems present differences from one product to
another, but those differences are less significant than the differences between
NoSQL database management systems. Relational database management sys-
tems are based on the relational model, and the query language used is SQL,

Received by the editors: 18 April 2021.
2010 Mathematics Subject Classification. 68P15, 68P99.
1998 CR Categories and Descriptors. H.2.1 [Database Management]: Logical design

– Data models; H.2.4 [Database Management]: Systems – Distributed databases, Parallel
databases.

Key words and phrases. NoSQL database, performance benchmarking, MongoDB,
Cassandra.

23



24 CAMELIA-FLORINA ANDOR

but NoSQL database management systems do not share the same data model
or query language. It’s quite common to see a different query language for
each NoSQL implementation, and a specific data model, usually other than
relational. Figuring out which NoSQL database management system fits best
your use case is far more difficult than it seems at first, and it requires a thor-
ough study of several NoSQL technical documentations and fine tuning. The
hardware configuration is also important, and performance benchmarking is a
good solution in this case. As NoSQL database management systems have a
fast evolution, observing how their performance evolves between versions can
offer meaningful knowledge.

This paper presents a performance benchmarking study which involves two
of the most popular NoSQL database management systems, MongoDB (ver-
sion 4.4.2) and Apache Cassandra (version 3.11.9). The benchmarking ex-
periments were performed with YCSB, a free and open source benchmarking
framework, which was also used to generate the data sets involved in the
experiments.

2. Background

2.1. NoSQL Data Models. The NoSQL data models considered for this
case study are column-family and document, which are two of the four main
NoSQL data models. The remaining NoSQL data models are key-value and
graph.

The key-value model is the least complex model, and NoSQL database
management systems that use it have a very limited query language, but
very fast operations. Both column-family and document model derive from
the key-value model.

The graph model is the most complex NoSQL data model, and while it’s a
good fit for highly interconnected data, it has some drawbacks regarding hor-
izontal scalability. NoSQL database management systems that use the graph
data model have expressive query languages and constant read performance.

The document data model has much more in common with the column-
family data model than it has with the other two main NoSQL data mod-
els. Both document and column-family data models support high availability,
horizontal scalability, flexible schema and reasonable expressive query lan-
guages. Yet document NoSQL database management systems tend to offer
more schema flexibility and richer query languages than column-family NoSQL
database management systems. Also, column-family NoSQL database man-
agement systems tend to support faster write operations, even at scale.

2.2. NoSQL database management systems. MongoDB[8] and Cassandra[2]
are two open source NoSQL database management systems. MongoDB is



PERFORMANCE BENCHMARKING FOR NOSQL DATABASE MANAGEMENT SYSTEMS25

based on the document data model and Cassandra is based on the column-
family data model. MongoDB has a flexible schema, that can be easily modi-
fied, as the application’s requirements evolve. It is more difficult to adapt the
database schema in Cassandra, where data modeling is query driven (the ap-
plication’s queries must be known from the start). When designing database
schema in Cassandra, the structure of the tables must optimize the appli-
cation’s queries. It’s not uncommon to have several versions of a table, with
minor structure changes in order to optimize different queries on the same data
(data duplication is common in NoSQL databases). From the query language
perspective, MongoDB is by far superior to Cassandra. While Cassandra has
a query language somehow similar to SQL (but far more limited), MongoDB’s
query language is JavaScript based, rich and expressive. Also, MongoDB has
support for many types of secondary indexes (text, geospatial, hidden, etc.),
that are not available in Cassandra. High availability and horizontal scala-
bility are well supported in MongoDB and Cassandra, but the distribution
models are different.

2.3. NoSQL performance benchmarking. Performance benchmarking is
quite handy when working with NoSQL databases. There are benchmark-
ing tools that can be used only for a specific database management sys-
tem (DBMS), like cassandra-stress[11] for Cassandra or cbc-pillowfight [10] for
Couchbase. These types of tools are useful to test a given NoSQL DBMS
in certain scenarios, but they don’t help much when a comparison between
several NoSQL DBMSs is the goal of the benchmarking experiment. For a
fair comparison between several NoSQL DBMSs, a benchmarking tool which
has support for all options considered is necessary. Unfortunately, there are
not many benchmarking tools of this kind available in the open source sec-
tion. YCSB [4] is an open source benchmarking framework aimed at cloud
systems and NoSQL DBMSs. YCSB is a popular benchmarking framework,
relatively easy to understand and use. It supports many NoSQL DBMSs and
can be used on both Windows and Linux operating systems. Also, YCSB
can be used to generate both the data set involved in testing and the data-
base requests according to the chosen workload type. YCSB was also used by
MongoDB Inc. for performance testing of MongoDB, see [12]. Other organi-
zations and researchers used YCSB as well, for benchmarking NoSQL DBMSs.
All NoSQL benchmarking experiments presented in [3], [5], [6] and [7] used
YCSB as benchmarking tool. Other NoSQL benchmarking tools emerge, like
NoSQLBench[9] (used by DataStax), but are still in early stages of develop-
ment.



26 CAMELIA-FLORINA ANDOR

3. Case study

The case study presented in [1] analyzes the database performance metric
called throughput, measured in number of operations/second. Other important
and useful database performance metrics are latency (measured in number
of microseconds/operation) and total runtime (the time necessary to run a
certain number of database operations). The case study presented in this
paper also analyzes the throughput. As NoSQL DBMSs evolve fast and change
a lot from one version to another, it is important to see how those changes
affect performance.

3.1. Experimental setting. I reproduced the experimental study presented
in [1] using newer versions of database management systems and operating sys-
tem without changing the hardware configuration. That experimental study
involved three physical servers with the same hardware configuration. Win-
dows 7 Professional 64-bit was the operating system installed on all servers.
YCSB version 0.12.0, MongoDB version 3.4.4 and Apache Cassandra 3.11.0
were each installed on its dedicated server. I followed the same benchmark-
ing methodology and I performed all benchmarking tests in the same order
and under the same conditions as those performed in the experimental study
presented in [1]. The YCSB, MongoDB and Cassandra versions used in my
experimental study were newer. MongoDB version 4.4.2 was installed with de-
fault settings and the default storage engine, Wired Tiger. Apache Cassandra
version 3.11.9 was installed with default settings and the settings necessary to
avoid write timeouts:

• counter write request timeout in ms set to 100000
• write request timeout in ms set to 100000
• read request timeout in ms set to 50000
• range request timeout in ms set to 100000.

YCSB version 0.17.0 was used to generate the data set and the database
requests involved in tests.
Each application involved (Cassandra, MongoDB and YCSB) ran on its own
server. The server configuration is as follows:

• OS: Windows 10 Professional 64-bit
• RAM: 16 GB
• CPU: Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz, 4 cores, 8 logical

processors
• HDD: 500 GB.

I used the YCSB client to generate a data set having the same size and
schema as the one used in the experimental study I reproduced (4 million
records, each record made of 10 fields, each field contains a 100 byte string



PERFORMANCE BENCHMARKING FOR NOSQL DATABASE MANAGEMENT SYSTEMS27

value that was randomly generated). The same predefined YCSB workloads,
Workload A (50% read operations, 50% update operations) and Workload B
(95% read operations, 5% update operations) were involved, and the asynchro-
nous version of Java Driver was used for both DBMSs. When a benchmarking
test is run using YCSB, the workload type, the total number of operations
to be executed and the number of client threads must be specified. After the
test run, YCSB outputs a file that contains the measured results. For each
workload considered (Workload A and Workload B), the number of operations
parameter was set to 1000, 10000, 100000 and 1000000. For each workload
and number of operations considered, the number of client threads parameter
was set to 1, 2, 4, 8, 16, 32, 64, 128, 256 and 512. Each test having a certain
combination of values for DBMS, workload, number of operations and number
of client threads was repeated three times. I will consider a set of tests all tests
run for a combination of DBMS, workload and number of operations. Before
and after the execution of each set of tests, database server information was
captured. The database server was restarted before the execution of every set
of tests. When all tests for the first workload were executed, the data set was
deleted and a new data set with the same characteristics (schema and number
of records) corresponding to the second workload was generated and loaded
into the database.

3.2. Results. Each test was repeated three times for every combination of
DBMS, workload, number of operations and number of client threads. As a
consequence, a throughput average was computed for every combination of
DBMS, workload, number of operations and number of client threads. This
throughput average was used to create the following charts. A comparison be-
tween Cassandra and MongoDB for each combination of number of operations
and workload is displayed in the first eight charts (Figures 1 to 8).
In case of Workload A (50% update operations, 50% read operations), Figures
1 and 2 show that MongoDB outperforms Cassandra by far, when the number
of operations is relatively small (1000, 10000). When the number of operations
is set to 100000, Cassandra’s performance is almost as good as MongoDB’s,
as shown in Figure 3. However, Figure 4 shows that when the number of
operations is set to 1000000, Cassandra outperforms MongoDB by far when
the number of client threads is greater than or equal to 64.
In case of Workload B (5% update operations, 95% read operations), Figures
5, 6 and 7 show that MongoDB outperforms Cassandra by far when the num-
ber of operations is set to 1000, 10000 and 100000 operations. Figure 8 shows
that Cassandra outperforms MongoDB only when the number of operations
is set to 1000000 and the number of client threads is greater than or equal to
64.



28 CAMELIA-FLORINA ANDOR

Figure 1. 4 Million Records Workload A 1000 Operations - Throughput

When compared to the results presented in [1], it can be observed that in the
case of Workload A and number of operations set to 1000000, Cassandra out-
performed MongoDB when the number of client threads was greater than or
equal to 32, but the throughput does not exceed 45000 operations/second. My
experimental study shows that, for the same scenario, while Cassandra out-
perfomes MongoDB only when the number of client threads is greater than or
equal to 64, the throughput is significantly higher, with the maximum value
around 76000 operations/second.
In the case of Workload B (5% update operations, 95% read operations), the
results presented in [1] show that MongoDB outperformed Cassandra in all
scenarios, and achieved high throughput values (between 68000 and 80000 op-
erations/second) when the number of operations was high (100000 and 1000000
operations). My experimental study shows that, in case of Workload B and
number of operations set to 1000000, Cassandra outperformes MongoDB when
the number of client threads is greater than or equal to 64. Also, Cassandra
presents a maximum throughput value around 62000 operations/second. Com-
pared to MongoDB’s throughput values presented in [1], MongoDB’s through-
put values observed in my study do not exceed 40000 operations/second.

The last four charts (Figures 9 to 12) display the individual performance of
each DBMS, for each workload. Figure 9 presents the evolution of through-
put on Workload A for Cassandra. When the number of operations is low



PERFORMANCE BENCHMARKING FOR NOSQL DATABASE MANAGEMENT SYSTEMS29

Figure 2. 4 Million Records Workload A 10000 Operations - Throughput

Figure 3. 4 Million Records Workload A 100000 Operations - Throughput



30 CAMELIA-FLORINA ANDOR

Figure 4. 4 Million Records Workload A 1000000 Operations
- Throughput

Figure 5. 4 Million Records Workload B 1000 Operations - Throughput



PERFORMANCE BENCHMARKING FOR NOSQL DATABASE MANAGEMENT SYSTEMS31

Figure 6. 4 Million Records Workload B 10000 Operations - Throughput

Figure 7. 4 Million Records Workload B 100000 Operations - Throughput



32 CAMELIA-FLORINA ANDOR

Figure 8. 4 Million Records Workload B 1000000 Operations
- Throughput

(1000, 10000 operations), Cassandra’s maximum throughput value does not
exceed 3100 operations/second. When the number of operations grows at
100000, we can observe a significant increase of throughput (up to 22000 oper-
ations/second), especially as the number of client threads grows. The highest
throughput values (up to 76000 operations/second) can be observed when the
number of operations is set to 1000000, with a slightly decrease when the
number of threads is set to 512.

In Figure 10, the evolution of throughput on Workload A for MongoDB is
displayed. As the number of operations increases, the MongoDB throughput
values increase as well, but remain almost constant when the number of op-
erations is greater than or equal to 100000. The maximum throughput value
does not exceed 23500 operations/second.

Figure 11 presents the evolution of throughput on Workload B for Cassan-
dra. Cassandra’s throughput patterns observed for Workload A are preserved,
but the throughput values observed when the number of operations is set to
1000000 are lower and do not exceed 63000 operations/second.

Figure 12 displays the evolution of throughput on Workload B for Mon-
goDB. The throughput remains the same as observed for Workload A, when
the number of operations is set to 1000, but increases when the number of op-
erations is greater than or equal to 10000. When the number of operations is



PERFORMANCE BENCHMARKING FOR NOSQL DATABASE MANAGEMENT SYSTEMS33

Figure 9. 4 Million Records Workload A Cassandra - Throughput

set to 100000, throughput values rise significantly (compared to those observed
for number of operations set to 10000). Throughput values observed when the
number of operations is increased at 1000000 are slightly higher than those
observed for number of operations set to 100000, but do not exceed 45000
operations/second.

Cassandra version 3.11.9 presents great throughput improvements for both
workloads, especially when the number of operations and number of client
threads are high. MongoDB version 4.4.2 presents significantly lower through-
put values for Workload B, a read intensive workload.

4. Conclusions and future work

NoSQL database management systems have a fast evolution, with signifi-
cant changes between versions. Database performance benchmarking offers a
good overview of how these changes impact application workloads. The ex-
perimental study presented in this paper reveals that the newer Cassandra
version has important throughput improvements, especially when the number
of operations and degree of parallelism are high, for both read and update
operations. This is significant, as Cassandra is generally known to offer fast
write operations, but not as fast read operations. Also, the newer MongoDB
version presents decreased throughput values when the number of operations



34 CAMELIA-FLORINA ANDOR

Figure 10. 4 Million Records Workload A MongoDB - Throughput

Figure 11. 4 Million Records Workload B Cassandra - Throughput



PERFORMANCE BENCHMARKING FOR NOSQL DATABASE MANAGEMENT SYSTEMS35

Figure 12. 4 Million Records Workload B MongoDB - Throughput

and degree of parallelism are high in case of Workload B (95% read operations,
5% update operations). In this case, we can observe that the newer MongoDB
version does not handle a high number of operations with a high degree of
parallelism as well as the newer version of Cassandra does. Also, surprisingly,
the older MongoDB version (3.4.4) performed better than the newer version
(4.4.2) in case of Workload B, under the same experimental conditions. Gen-
erally, one would expect performance improvements from newer versions, but
it is not always the case. This further shows that monitoring the evolution of
performance between versions is important and worth doing.

In the future, I intend to replicate other database performance experimental
studies and to analyze other database performance metrics as well. I plan to
focus on analyzing the latency performance metric, which comes in several
variants: average latency, maximum latency, minimum latency, 95th percentile
latency and 99th percentile latency. As latency reveals how much time is
needed to execute a database operation, it certainly is a performance metric
worth analyzing for all application use cases that require very short response
times.



36 CAMELIA-FLORINA ANDOR

Acknowledgments

Parts of this work were supported through the MADECIP project Dis-
aster Management Research Infrastructure Based on HPC. This project was
granted to Babeş-Bolyai University, its funding being provided by the Sec-
toral Operational Programme Increase of Economic Competitiveness, Priority
Axis 2, co-financed by the European Union through the European Regional
Development Fund Investments in Your Future (POSCEE COD SMIS CSNR
488061862).

References

[1] C.-F. Andor and B. Pârv. NoSQL Database Performance Benchmarking - A Case Study.
Studia Informatica, LXIII(1):80–93, 2018.

[2] Apache Cassandra. http://cassandra.apache.org/. Accessed: 2021-02-14.
[3] Performance Analysis: Benchmarking a NoSQL Database on Bare-Metal and Virtu-

alized Public Cloud - Aerospike NoSQL Database on Internap Bare Metal, Amazon
EC2 and Rackspace Cloud. http://pages.aerospike.com/rs/229-XUE-318/images/

Internap_CloudSpectatorAerospike.pdf. Accessed: 2021-03-24.
[4] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking

Cloud Serving Systems with YCSB. Proceedings of the 1st ACM symposium on Cloud
computing, pages 143–154, 2010.

[5] Fixstars. GridDB and Cassandra Performance and Scalability. A YCSB Performance
Comparison on Microsoft Azure. Technical report, Fixstars Solutions, 2016.

[6] A. Gandini, M. Gribaudo, W. J. Knottenbelt, R. Osman, and P. Piazzolla. Performance
Evaluation of NoSQL Databases. EPEW 2014: Computer Performance Engineering,
Lecture Notes in Computer Science, 8721:16–29, 2014.

[7] J. Klein, I. Gorton, N. Ernst, P. Donohoe, K. Pham, and C. Matser. Performance
Evaluation of NoSQL Databases: A Case Study. Proceedings of the 1st Workshop on
Performance Analysis of Big Data Systems, pages 5–10, 2015.

[8] MongoDB. https://www.mongodb.com/. Accessed: 2021-02-14.
[9] NoSQLBench. https://github.com/nosqlbench/nosqlbench. Accessed: 2021-03-24.

[10] Stress Test for Couchbase Client and Cluster. https://docs.couchbase.com/sdk-api/
couchbase-c-client/md_doc_cbc-pillowfight.html. Accessed: 2021-03-21.

[11] The cassandra-stress tool. https://docs.datastax.com/en/dse/5.1/dse-admin/

datastax_enterprise/tools/toolsCStress.html. Accessed: 2021-03-21.
[12] YCSB MongoDB Performance Testing. https://www.mongodb.com/blog/post/

performance-testing-mongodb-30-part-1-throughput-improvements-measured-ycsb.
Accessed: 2021-03-24.

Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-
Napoca, Romania

Email address: camelia.andor@ubbcluj.ro


