
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXV, Number 2, 2020
DOI: 10.24193/subbi.2020.2.04

OVERVIEW OF RECENT DEEP LEARNING METHODS

APPLIED IN FRUIT COUNTING FOR YIELD ESTIMATION

H. B. MUREŞAN, A. D. CĂLIN, AND A. M. COROIU

Abstract. This paper is an overview of the latest advancements of image
recognition for fruit counting and yield estimation. Considering this do-
main is developing rapidly, we have considered the cutting-edge literature
in the field, for the last 5 years, focused on the task of yield estimation
by detecting and counting fruit in the tree canopy. This is a much more
complex task than the classification of fruit post-harvesting, which has
been more widely reviewed. Moreover, we identify the major challenges
and propose the next steps for advancing this research field.

1. Introduction

This paper presents state of the art models and methods based on artificial
intelligence for detecting fruits in orchards and on plantations. A system that
can accurately and automatically detect and count fruit before harvest gives
agricultural enterprises the ability to optimize and streamline their harvest
process. Through a better understanding of the variability of yield across their
farmlands, growers can make more informed and cost-effective decisions for
labor allotment, storage, packaging, and transportation. While this process is
performed manually, it involves a very high labour cost, which can be reduced
using automated fruit counting computer vision systems.

Therefore, we analysed several papers tackling this issue using deep learning
techniques. We selected papers of the latest 5 years of research in the field
of fruit counting in tree canopies for yield estimation. We have searched
for precision and digital agriculture publications using ACM digital library,
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Science direct, IEEE and Google Scholar platforms, and used keywords such
as ”fruit counting”, ”deep learning”, and ”yield estimation”.

(a) (b) (c)

(a) (b) (c)

Figure 1. Grapes, apricots and tomatoes in different lighting
conditions, backgrounds and occlusions

We have identified review papers focused on agri-tech that present a very
broad overview of applications of deep learning in various fields of agriculture
[4]. Other papers present the methods overview for the specific domain of fruit
or image classification [6]. However, most papers deal with post-harvesting
classification of fruits for packaging or similar purposes. In this review, we
aim to narrow the focus specifically on the task of pre-harvest yield estima-
tion of fruit in an orchard, which is a problem of localising and counting fruit
in the tree canopy, with different backgrounds, occlusions and lighting condi-
tions. This enables farmers to estimate their yield and plan resources required
for harvesting, storage, processing/packaging accordingly. Furthermore, with
accurate computer vision technology, the harvesting could be performed by
robots, with increased efficiency.

The main goals of the reviewed papers presented here are:

• accurately predicting the number of fruits in an image under various
illumination conditions and different levels of fruit occlusion in the
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tree canopy (this is to optimise and streamline the harvesting process
and the fruit distribution for commercialisation or processing)
• reducing the labor costs required to perform yield estimation or har-

vest (representing 50-70% of the total costs [22])
• correctly estimating the size of the fruits from images
• adapting existing classification techniques for automatic robot har-

vesting or low-power devices (mobile phone).

The paper is structured as follows: firstly, we will present the methods iden-
tified in the papers, then we will discuss the datasets particularities used for
training and testing performance. Next, we present results and the conclu-
sions, as well as the challenges that remain in this research area and possible
steps that can be taken to address them.

2. State of the art

2.1. Methods. The main methods we have analysed can be split into three
main categories:

• Deep learning with simple pre-processing [13] - These methods
involve the use of convolutional neural networks (CNNs) for the task
of object detection (fruits in this case). They apply basic image
pre-processing, such as rotations, vertical/horizontal flips, random
zoom level, image cropping and colorspace conversion to augment
the training dataset. Typically such methods require a large number
of images to train the model.
• Deep learning with complex pre-processing [11, 2, 1, 5] - In

addition to the previous category, complex image pre-processing, in-
volving filtering features (such as background), colorspace changing
and colorband isolation, or applying other intelligent algorithms for
feature selection, is applied to enhance the training dataset before
running a CNN on it.
• Transfer learning [21, 3, 23] - This method uses existing trained

models and replaces the top layers to retrain them on a particular
dataset. As opposed to previous methods, it can yield good results
with reduced input data.

A novel approach for counting the number of tomato fruits is presented by
Rahnemoonfar [13]. The authors proposed an approach based on a convolu-
tional neural network (CNN) for object counting (different scales and occlu-
sions) rather than area calculation (average pixel coverage), incorporating a
modified Inception-ResNet-A module and a scaling module (17× 17 to 8× 8).
The latter involves calculating the total pixel coverage of the target fruit and
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then divide it to an average pixel coverage of a single fruit. The former typ-
ically requires a detection step, but it is not influenced by image scale and
occlusion. Furthermore, as the proposed goal was only to provide a fruit
count per image, rather than the actual location of fruits, the bounding box
proposal was skipped, decreasing the inference time. The proposed model was
a CNN which incorporated modified Inception-ResNet-A modules [18] and a
17× 17 to 8× 8 reduction module. The authors also use convolutional layers
with large kernels towards the top of the network, to extract large scale fea-
tures. The output of the network is given by a fully connected layer with a
single output, the number of predicted fruits.

The model presented was compared with an area-based method, in terms
of accuracy and speed. The accuracy for predicting the number of fruits in an
image was defined as follows:

(1)

(
1− |predicted count− actual count|

actual count

)
× 100

In paper Mao [11], the authors presented a novel approach for detecting
cucumbers. On top of the common difficulties of object detection, cucumbers
easily blend in with the background due to their green color, further com-
plicating the task. In order to compensate for this, the authors devised a
four-component system that aimed to improve the accuracy of the detection,
containing:

(1) Color component selection: From a total of 15 color components
from 5 color spaces (RGB, HSI, YCbCr, Lab, YIQ), this extracts the
top 3 that make it the easiest to differentiate the cucumber from the
background. For this, the I-RELIEF [17] algorithm was used, which
calculates weights for given features. The most relevant color bands
selected were red and green from RGB color space and the intensity
from the HSI color-space.

(2) Background pre-processing: The green component (from the RGB
representation) was smoothed using a 3×3 median filter. Afterwards,
the OTSU [20] method was applied to obtain a filtered background,
and, finally, the Maximally Stable Extremal Regions [12] were used
to eliminate the leaves from the background.

(3) Deep learning-based feature extraction: The authors segmented
the original input image into small areas, applied pixel interpolation,
and used LeNet5 [9] model, which support input data size 32 × 32.
Each color component was passed through a separate instance of
LeNet5 and fused, creating a multipath CNN. For this step, the au-
thors elected to segment the original input image into small areas
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and apply pixel interpolation on the image. The result of the in-
terpolation is a collection of 32 × 32 areas. As noted in the paper,
using the VGG [16] or AlexNet [7] models would require resizing
the areas with a factor of 20, which could produce image distortion.
Thus, the LeNet5 [9] model was used, which has a 32 × 32 input
size, so no resizing is necessary. To fully make use of the selected
color components, each one was passed through a separate instance
of LeNet5, fusing the output of the last layers of the models, creating
a multipath convolutional neural network (MPCNN).

(4) Cucumber region detection: The feature maps produced by the
convolutional neural networks were merged and a Principal Com-
ponent Analysis [8] algorithm was applied to reduce their dimen-
sionality. The classification was done by a Support Vector Machine
approach.

A fruit yield estimation pipeline that can map fruit counts from an input
image is created in Chen [2]. The pipeline includes:

(1) Data labeling: makes use of a crowd-sourcing web platform for data
labeling. Images for labeling are subdivided into several windows,
each window annotated by 3 different users.

(2) Blob extraction: trains a fully convolutional network to extract
candidate regions (blobs). Input is an image h × w × 3 and the
output a score tensor h × w × n where n is the object class (the
probability that the pixel may contain a fruit or not, using a softmax
function).

(3) Fruit counting: uses a second CNN algorithm trained for counting
fruit in each region. For each blob, the output is a number repre-
senting the fruit count. The fine-tuning process involves running the
blob detection network on the training images to obtain segmented
images and bounding boxes, which are resized to 128 × 128. Next,
ground truth counts are associated with the count network.

(4) Count mapping: maps a linear regression model between fruit
count estimates and final fruit count. This trains a linear regres-
sion to intermediate count estimates with human-generated labels as
ground truth, minimising the loss function between the count net-
work and the blob network.

This pipeline is evaluated using two datasets (oranges in day and apples at
night) and human-generated count and labeling for ground truth. For each
image xi, we have the actual number of fruit zi and the human ground truth
z̃i. If f(xi) is the algorithm generated count, the problem is to minimise the
l2 error:



DEEP LEARNING METHODS FOR FRUIT YIELD ESTIMATION 55

(2) l2 =

√√√√ n∑
i=1

(f(xi)− z̃i)2

Paper Bargoti [1] is focused on developing an image processing framework
for fruit detection and counting using orchard image data. They use a general-
purpose image segmentation approach, including two feature learning algo-
rithms: multiscale multilayered perceptrons (MLP) and convolutional neural
networks (CNN). These networks were extended by including metadata which
correlates with appearance variations and/or class distributions. Further, the
authors utilised watershed segmentation (WS) and circular Hough transform
(CHT) algorithms to process image pixels, and then detect and count fruits.
Finally, the counts from each row in the orchard were summed up and com-
pared with the total post-harvest counts (done by a grading and counting
machine).

In paper Kang [5], authors developed a real-time apple detector based on the
LedNet architecture. The presented model uses the Feature Pyramid Network
(FPN) [10] and Atrous Spatial Pyramid Pooling (ASPP) algorithms. The
one-stage model was chosen by the authors as it offers the same, or superior
performance to two-stage detectors, but with fewer network parameters. The
FPN used in LedNet fuses feature maps at three levels of downsampling (1/8,
1/16, 1/32) to increase the model’s capability of detecting objects at various
ranges. The ASPP technique was employed to process multi-scale features.
The custom ResNet backbone was a light-weight version of a typical ResNet
architecture to reduce the inference time on an embedded system, such as an
autonomous robot.

One study, Xiang [21], presents fruit image classification using a lightweight
neural network MobileNetV2 [15] (pretrained using ImageNet dataset, for fea-
ture extraction). Here, the top layer was replaced with a conventional convo-
lution layer (conv2d) and a Softmax classifier (for feature classification into 5
classes of fruits) [21]. They also applied dropout to the new-added conv2d at
the same time to reduce overfitting. The new model was trained and fine-tuned
in two stages, using Adam optimizer of different learning rate, and batch size
of 64. TensorFlow 1.14 stable was used for performance evaluation. Compared
to others, this method can be deployed in low-power and limited-computing
devices such as mobile phones.

Another study uses machine vision to accurately identify and localise grapes
and apples, Fourie [3]. With the advantage of less time need for training and
good performance with limited training data, transfer learning was used, based
on deep convolutional neural network (DCNN). The authors pre-trained the
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InceptionV3 model [19] on the ImageNet database, as a generic image feature
extractor. Next, their classifiers were added to separate fruit and background
features. Further, a final layer was replaced with one trained on a custom
dataset of apple trees and vines, acting as a classification head, specialising
the network with custom images training separately. For the last step of
localising and counting fruit new layers were added. The output of the last
convolution and the remaining spatial correlated outputs are pooled into a
single high-dimensional feature vector, linked to the classification head. The
localizer outputs a grid of confidence scores that indicate the fruit localisation
in the image.

A more advanced study, focuses on detecting six different types of fruits:
lime, lemon, apple, mandarin, tomato and orange in orchard settings, Yu [23].
The algorithms used are color based - Faster R-CNN (Convolutional Neural
Networks, two stage region-based model) and SSD ( Single Shot Detector,
which is a region free method) applying transfer learning for fruit detection
and counting.

2.2. Datasets. The studies we present make use of public datasets with fruits,
where available (for example, ImageNet, COCO or dataset in [14]). Others
have either collected their own datasets of specific images in orchards under
various lighting conditions or used unspecific images from the web, retrieved
with a web crawler.

In Rahnemoonfar [13], the lack of available public datasets with annotated
images of tomatoes was handled using an interesting approach. They created
their own, consisting of fully synthetic images. Their images were created
as follows: firstly, they added green and brown circles for background, then
applied a Gaussian filter to blur them, and finally, added red circles to simulate
the tomato fruits. The authors also took into consideration variations in fruit
size, scale, illumination and overlap, generating 24000 images for training and
2400 for validation, and using 100 real images for testing.

For study Mao [11], 225 images were collected from a cucumber planting
base, in Shouguang, China, Shandong. The images were taken between 7
am to 10 am and from 3 pm to 6 pm to reduce the impact of illumination
conditions. The images were resized from 4032 × 3016 to 1024 × 768.

The experiments in Chen [2] used two datasets that differ from the per-
spective of lighting conditions, occlusion levels, resolution and camera type.
The first dataset contains orange images of size 1280× 960 and was collected
during the day, using a steady camera carried by a human operator at walking
speed. The orange trees were in a nontrellis arrangement. There were 5000
images, labeled by 22 users. The second one, an apple dataset, collected at
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night using an external flash, with images of size 1920 × 1200, from a utility
vehicle at the speed of 1m/s, with trees in a trellis arrangement.

In Bargoti [1], the dataset was collected in a commercial orchard of Kanzi
and Pink Lady apple varieties, over a 0.5ha block of v-trellis arrangement of
17 rows, using a teleoperated vehicle, in daylight. The set contains more than
8,000 images of size 1232 ×1616. For experiments, random sub-sampling was
used, dividing each image into 32 parts of size 308 × 202, manually annotated
to binary fruit and non-fruit classes.

In Kang [5], 800 apple images were collected from an orchard in Qingdao,
China, using a Kinect-v2, from a distance between 0.5 - 1.5 meters. An addi-
tional set of 300 images of apples in different scenes were collected to diversify
the dataset. Due to the distance at which the images were taken, the ap-
ples would be represented largely in the small scale features. To avoid this
imbalance, the authors applied a crop-and-resize algorithm. The labelling pro-
cess was done with the help of a clustering region-based neural network. The
model would extract multi-scale features, proposing potential regions of inter-
est (ROI). The pixels of the ROIs were segmented using pixel-connection into
independent candidate patches and bounding box coordinates were assigned
to it. With the help of this model, the labelling of training data was done in
only two days.

In Xiang [21] the ImageNet dataset was used, a large dataset of 1.4M im-
ages [14], and 1000 classes of web images having complex backgrounds: 3,670
images of 5 fruits collected from the Internet, including apples (633), bananas
(898), carambola (641), guava (699) and kiwi (799). For the experiment, these
were split into two subsets, 3,213 images for training and 457 images for vali-
dation. Images were adjusted to size 224×224 as required by the MobileNetV2
model.

In Fourie [3], authors used the ImageNet dataset, and collected their own
datasets from an apple orchard and a vineyard. The apple set contaied 21
images (2000× 3000 px), with various light conditions and view angles. Images
were normalised to the same mean RGB intensity. 442 areas of interest were
extracted for training and augmented through random transformations. 20%
of the data was used for testing. The vineyard set was also split into a training
set (95 images), and a testing set (52 images). Testing images were captured
under different light conditions than those in the training set.

In Yu [23] authors used a Python Web Crawler to create a 2000 dataset
of images. They augmented the set by rotations and RGB adjustments with
different brightness and saturation, obtaining 2995 images (tomato 124, man-
darin 301, orange 377, apple 680, lemon 605, lime 909).
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2.3. Results. The models are often evaluated using testing data, measuring
especially accuracy and processing time, but also loss, F1 score, Recall, True
Positives, False Positives, and other specific measures defined by the authors.

As seen in Table 1, the proposed method by Rahnemoonfar [13] is signifi-
cantly better in terms of accuracy than an area-based counting method. From
a processing time perspective, the proposed method and the area-based are
both much faster than manual counting.

Method
Avg
accuracy

Stdev
Avg
time/image

CNN based 91.03% 2.5 0.006
Area based 66.16% 7.9 0.05
Manual count - - 6.5

Table 1. Average accuracy and time over 100 test images of
the methods studied in Rahnemoonfar [13]

The proposed method in Mao [11] was compared with one that uses an
MPCNN with the red, green, blue channels and another that uses a single
CNN for an RGB image. The best results were obtained by the model that
was using the color bands selected by the color selection component (red,
green, intensity), presented in Table 2. The metrics depicted are:

• correct recognition rate (CRR) - ratio between the number of true
positive(TP) pixels and the total number of pixels in an image
• false recognition rate (FRR) - ratio between the number of false

positive(FP) pixels and the total number of pixels in an image
• correct tot false ratio (CFR) - ratio between the CRR and FRR

Another observation was that the multi-path convolutional neural network
performed strictly better than the regular convolutional network. This showed
that applying late fusion instead of early fusion on multiple color components
yields better results.

The results of Chen [2] in terms of reducing the l2 error were obtained for
the combination of blob + count + regression, values obtained are shown in

Methods TP FP TP + FP CRR FRR CFR
RGB + CNN + softmax 76,954 25,431 102,385 92.77% 24.84% 3.73
RGB + CNN + SVM 77,436 17,627 95,063 93.36% 18.54% 5.04
RGB + MPCNN + SVM 78,688 15,884 94,572 94.87% 16.80% 5.65
RGI + MPCNN + SVM 80,670 10,571 91,241 97.25% 11.59% 8.39

Table 2. The performance of the methods proposed in paper
Mao [11]
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Table 3. To evaluate pixel-wise accuracy, Intersection over Union and ROC
curves were used. There were in total 7200 oranges in 71 images and 1749
apples in 21 images in the testing sets.

Model l2 error Ratio
Counted

Std
Dev

Orange blob 16.9 0.935 15.6
Orange blob+regression 15.9 0.999 15.9
Orange blob+count 19.2 0.851 12.7
Orange blob+count+regression 13.8 0.968 13.5
Apple blob 46.5 1.475 24.9
Apple blob+regression 20.4 1.025 20.3
Apple blob+count 20.9 0.767 8.4
Apple blob+count+regression 10.5 0.913 7.7

Table 3. Count accuracy of the CNN proposed in Chen [2]
for orange and apple set.

The metrics used for evaluating the proposed model in paper Kang [5] were
the inference time, the number of parameters, F1-score, precision, recall, in-
tersection over union (IoU), area under the curve - which was denoted as
APm (where m is the threshold for IoU used to accept or reject proposed re-
gions of interest). A comparison between the crop-and-resize augmentation
process with the regular data augmentation method is presented in Table 4.
As anticipated, the model performs poorly on medium and large fruits when
augmenting images with rotates and color/brightness alteration due to the
size imbalance. It can be noted that the model trained on data augmented
with the crop-and-resize operation performed well regardless of the object size.
Several popular architectures were compared with the proposed model (Table
5). The LedNet with the light-weight backbone performed just as well as the
other much larger networks, while having the fastest inference time.

The results in the MLP network in Bargoti [1] improved after including
the metadata, which can be observed in Table 6. Extending this with CNNs,
the best pixel-wise F1-score of 0.791 was achieved, while the WS produced

Method AP50 APsmall APmed APlarge IoU
Crop and Resize 0.826 0.832 0.817 0.763 86.7%
Standard 0.797 0.818 0.778 0.652 78.3%

Table 4. The impact of the two augmentation methods
utilised in Kang [5] on the performance of the LedNet model.
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Method AP50 F1 Recall Acc IoU Time Params
LedNet(LW-Net) 0.826 0.834 0.821 0.853 86.3% 28 ms 7.4 M
LedNet (ResNet-101) 0.843 0.849 0.841 0.864 87.2% 46 ms 188 M
YOLOv3 0.803 0.803 0.801 0.82 84.2% 45 ms 248 M
YOLOv3 (Tiny) 0.782 0.783 0.776 0.796 82.4% 30 ms 35.4 M
Faster-RCNN (VGG) 0.814 0.818 0.814 0.835 86.3% 145 ms 533 M

Table 5. Evaluation the 5 different backbones used for the
detector in Kang [5] .

the best results, with a detection F1-score of 0.861. Comparing the count
estimates using CNN and WS with the base counting the squared correlation
coefficient obtained r2 = 0.826.

Both ms-MLP CNN Neither
ms-MLP 0.834 0.860 0.739 0.709
CNN 0.921 0.843 0.849 0.731

Table 6. Comparing ms-MLP and CNN approaches for fruit
detection with image segmentation output and WS detection
algorithm in Bargoti [1]

In Xiang [21], the classification accuracy obtained for the 5 fruits was
85.12%. To demonstrate its effectiveness on source-limited platforms, the
models were deployed also on an Android smartphone (Honor 10 by Huawei).
Through transfer learning, the new model was able to accelerate and optimise
the learning process (MobileNetV2 as the best running time, as described in
Table 7).

Apple classification accuracy was 98% (deciding if an area of interest con-
tained an apple or background) in Fourie [3]. For the vine set, the network
could correctly classify 99% of the testing areas of interest if they contain grape
bunches. Next step would be to correlate counting and yield estimation.

Model
Training Validation Run

Loss Acc Loss Acc (sec)
MobileNetV2 0.0109 0.9984 0.4719 0.8512 327
MobileNetV1 0.0335 0.9960 1.3527 0.7352 1618
InceptionV3 0.0071 0.9994 0.6322 0.8578 670
DenseNet121 0.0036 0.9994 0.3695 0.8906 7965

Table 7. Loss and Accuracy on the training and validation
sets for the proposed models in Xiang [21].
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The results for Yu [23] show that the accuracy of the model trained by
Faster R-CNN was higher (at 89%) that for the model trained by SSD (at
82%). The average speed per image in seconds 8.21 (Faster-RCNN) and 6.70
(SSD) respectively (see Table 8).

Fruit Orange Mandarin Lemon Apple Tomato
SSD 0.86 0.85 0.81 0.81 0.77
Faster
R-CNN

0.91 0.90 0.89 0.89 0.87

Table 8. Accuracy comparison between the Faster R-CNN
and SSD models on 5 different fruit classes, as described by Yu
[23]

3. Discussion

3.1. Results analysis. Figure 2 presents the accuracy values of each reviewed
model against the size of the dataset and number of classes. All but one of the
studied papers (Bargoti [1], Mao [11], Rahnemoonfar [13], Kang [5], Fourie
[3], Chen [2] and Yu [23]) implement deep learning detectors. These networks
have the advantage of providing both class prediction as well as coordinates
to locate the object in the image, making them better for fruit counting and
yield estimation. The downside is that they also must be trained using data
containing the same information, data which is scarce, they are more complex
than classifiers and thus require more training resources.

The model in Xiang [21] is a classifier, which is simpler to train and deploy,
compared to a detector, however it provides only class predictions. Despite
this, the model was outclassed by all other works. The reason behind this is
very likely to be the dataset obtained by scraping images from the Internet,
which would contain a high degree of variance and potentially too few samples
per variant.

The average accuracy across these works is 91.98%. The datasets of images
used by authors range in size (from 168 to 24000), depending on the method
used, and high accuracy has been obtained for low and high number of testing
images, in association with the proper model.

One observation is that models that were trained to classify or detect 5
or more classes of fruits have not achieved an accuracy over 90% (89% and
85.10%, respectively).

3.2. Challenges imposed by datasets. Although popular datasets (Ima-
geNet, COCO) are often used for transfer learning, they do not contain real
field image data of occluded fruits and various lighting conditions throughout
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Figure 2. Accuracy in relation with the Number of Classes
and Dataset Size: Chart that helps visualize the best perform-
ing models from each of the studied papers. We took into
account the accuracy, number of classes and images that the
model was trained on.

the day. As such, a big disadvantage is that every research group focused on
fruit detection needs to create their own dataset to suit their needs. Creating
such a dataset is both a difficult and time cosuming process for the following
reasons:

• The collected images must contain samples in each lighting conditions
under which the model is expected to perform (e.g. sunny, rain,
cloudy, early morning, late evening)
• The images should capture as many variations of the targeted fruit

classes as possible (each fruit class contains different amounts of vari-
ations in shape, size and colour, and in some cases manifest visual
deformations or defects)
• The background of the images must be relevant to the desired appli-

cation (e.g. if the model should detect ripe fruits on trees in orchards,
the background should include tree branches and leaves)
• The dataset must be annotated with the class name for classification,

to which bounding box annotations must be added for detection, an
overall time consuming process if done manually



DEEP LEARNING METHODS FOR FRUIT YIELD ESTIMATION 63

A publicly available dataset with such images would be advantageous to achieve
shorter research times. Alternatively, it has been shown that synthetic images
do not degrade the performance of trained models and are much easier to cre-
ate than real images. Perhaps a combination of a synthetic image generation
algorithm together with a small dataset of real images for fine-tuning can serve
as a starting point.

Another subject of research is the impact of illumination conditions on
images due to the position on the globe. Specifically, if the images are taken
in an area close to the Ecuador during the daytime, they will be differently
lit than images taken during the daytime in areas closer to the poles. Thus,
the goal is to investigate whether a model trained on images from one of these
areas performs equally well on images from the other area.

3.3. Model optimisation. One more possible direction is increasing of the
accuracy of models with a new approach based on the collected methods al-
ready existed in literature. It was proven that convolutional neural networks
achieve better performance than the alternative methods in tasks of fruit de-
tection. However, there are tasks that are still challenging for this class of
algorithms, detecting partially occluded fruits or correctly counting grouped
fruits being among the more frequent ones.

Since the majority of reviewed papers proposed models that use images
or frames extracted from videos, the area of video analysis remains largely
unexplored. The LSTM architecture is well suited to process time series, and
videos can be seen as a series of frames. This approach could further address
the aforementioned issues as the video could cover trees/plants from multiple
angles.

4. Conclusions and next steps

In this paper, we presented an overview of the latest research involving
deep learning for fruit yield estimation using orchard images. Some very
good results (up to 97% accuracy) were obtained using simple or complex
pre-processing techniques and large data for CNN training Mao [11]. Some
successful attempts have used transfer learning for limited training data, prov-
ing that there is good potential even for low-resource platforms to be used
Fourie [3], Xiang [21]. Some studies focus on mapping and adjusting, based
on the manual count, the algorithm generated count Bargoti [1], Rahnemoon-
far [13], with specific applications in an orchard (results of up 96.8% accuracy
in counting Chen [2]).

We have also highlighted the limitations of these studies and possible di-
rections of research, derived from challenges posed by the need to use real
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field data with various fruits, and the need improve the models by increasing
accuracy of detection for a larger variety of fruits.

Overall, the results show a very good potential for further research and
improvement up to the use in practical settings for pre-harvest yield estimation
and designing harvesting robots.

This paper is a very useful initial step for a more elaborate project, the
role of the current paper is to set a ground from we can develop particular
approaches.
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