
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIV, Number 1, 2019
DOI: 10.24193/subbi.2019.1.07

RUNTIME PERFORMANCE BENCHMARKING FOR NOSQL

DATABASES

CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

Abstract. An experimental study regarding the performance of NoSQL
database management systems is presented in this paper. In this study,
two NoSQL database management systems (MongoDB and Cassandra)
were compared, and the following factors were considered: degree of par-
allelism and workload. Two distinct workloads (mostly read and update
heavy) were used, and various numbers of client threads. The measured
results refer to total runtime and they confirm that MongoDB outperforms
Cassandra in almost all tests considered.

1. Introduction

The relational model was considered for a long time the default data model
to use, as it is very well known and extensively used by many database profes-
sionals and companies worldwide. As the necessities of software applications
evolve, the quantity of data to be stored grows and the diversity of data for-
mats increases, which makes it harder to store and manage all that data in
a relational system. The need for horizontal scalability and high availability
of newer software applications were the main reasons that led to the emer-
gence of NoSQL models, as the relational model was not a good fit in these
cases. The main NoSQL data models are: key-value, column-family, docu-
ment and graph. While plenty of NoSQL database management systems are
offered by different providers, it is quite difficult to make a choice. Besides
the fact that NoSQL database management systems are very different from
one another regarding data models, query languages and distribution models,
they are also highly configurable and very flexible. Therefore, a fair compar-
ison between NoSQL database management systems is not a trivial task, as

Received by the editors: February 6, 2019.
2010 Mathematics Subject Classification. 68P15, 68P99.
1998 CR Categories and Descriptors. H.2.1 [Database Management]: Logical design

– Data models; H.2.4 [Database Management]: Systems – Distributed databases, Parallel
databases.

Key words and phrases. NoSQL database, performance benchmarking, MongoDB,
Cassandra.

77

78 CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

it requires in-depth knowledge about each one of them. In order to choose an
appropriate NoSQL database management system for an application, the de-
signer of the application must study thoroughly the technical documentations
of several NoSQL products. Even after reading and understanding properly
every aspect of each NoSQL database management system considered, it can
be quite hard to make a fair comparison and take the right decision. Perfor-
mance benchmarks are a good way to overcome the lack of comparison criteria
between NoSQL database management systems. These benchmarks help ap-
plication designers see the candidate database management system in action,
allowing them to choose the appropriate hardware and software configuration.
The current paper refers to total runtime metric and it is the third in a se-
ries evaluating performance metrics of two NoSQL implementations: Mon-
goDB and Cassandra. All benchmarking tests were executed using Yahoo!

Cloud Serving Benchmark with different combinations of number of opera-
tions, number of client threads and workload on every database server.

2. Background

2.1. NoSQL data models. Huge volumes of data that are generated with
a high velocity, also known as big data, cannot be handled effectively with
relational databases. As a response to this problem, companies that work
with big data have created new data storage systems which are more flexible,
non relational, distributed and highly available. Inspired by Amazon’s and
Google’s non relational database systems, more and more companies built
their own non relational implementations, specialized on their needs. These
new non relational database systems are known today as NoSQL database
systems, and the data models they are based on are known as NoSQL data
models. These data models offer a flexible schema and the ability to store
related data in a single unit with a complex structure, thus removing the need
for join operations and increasing performance. The most important NoSQL
data models are the graph model, the key-value model, the document model
and the column-family model.

The graph model is the best fit for highly interconnected data. In this model,
data are stored as nodes and relationships between nodes. Each node and
relationship has a type and multiple properties, similar to a property graph.
Graph queries can be very expressive and fast, but the highly interconnected
nature of this model limits the horizontal scalability.

The key-value model can be considered the simplest NoSQL data model,
because it stores data as key-value pairs. Key-value pairs can be grouped into
containers called buckets, as stated in [19]. The key is the unique identifier

RUNTIME PERFORMANCE BENCHMARKING FOR NOSQL DATABASES 79

of the value part that stores the actual data. The value can have a com-
plex structure, but it is invisible at database level, therefore queries based on
value are not supported. While query capabilities are quite limited, horizontal
scalability is very well supported and database operations are fast.

The document model is somehow similar to the key-value model, because
a document can be considered a key-value pair. Each document has a unique
identifier and a value with a complex structure that is visible at the database
level. Documents are organized in collections. Queries can be very expressive
and horizontal scalability is easily supported, as there are no relationships
defined between documents. In a document, objects or arrays are allowed
to be stored as values for fields. Unlike the relational model, which imposes
that all records stored in a table must have the same structure, the document
model allows documents that have different structures to be stored in the same
collection. One of the most used document formats is JSON[13], followed by
XML[23] and YAML[24]. Related data can be grouped and stored in a single
document that is similar to the object representation used at the application
level, therefore the problem known as impedance mismatch[19] is removed and
the application development process is significantly improved.

The model known as column-family organizes data as rows that belong to
column families. There are some similarities between a relational table and
a column family, but the latter allows arrays, lists or objects to be stored as
values for columns and rows with different columns can be part of the same
column family. A column is in fact a key-value pair stored together with a
timestamp, and the name of the column represents the key part of the pair.
Join operations are usually not supported by this model, and denormalization
is common. Write operations are quite fast. A disadvantage of this model
is that query capabilities are somehow limited and the most common queries
must be taken into consideration in the design phase. Otherwise, horizontal
scalability and high availability are easily supported.

2.2. NoSQL tools. The data models chosen for our benchmarking study are
column-family and document. For each data model we chose a representa-
tive implementation: Apache Cassandra[1] as the column-family implementa-
tion, and MongoDB[16] as the document implementation. The column-family
model is also implemented by HBase[11], Bigtable[3] and Hypertable[12]. For
the document model, alternative implementations are: BaseX[2], CouchDB[6]
and Couchbase[5].

Apache Cassandra is an open source column-family DBMS that was origi-
nally developed at Facebook[15]. Its data and distribution models are based
on those used by Bigtable[3] and Dynamo[7]. Cassandra was designed to
run in a distributed environment and has its own query language, called

80 CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

CQL(Cassandra Query Language). The main features offered by Cassandra
are automatic sharding, high availability, tunable consistency and data repli-
cation, including data replication across multiple data centers. In a Cassandra
cluster, all nodes are equal and each one of them can accept both read and
write operations. New nodes can be added to a cluster without downtime, and
the cluster capacity for both read and write operations scales linearly. The
version used in our study was Apache Cassandra 3.11.0.

MongoDB is an open source document DBMS developed by MongoDB Inc.
MongoDB stores data as JSON-like documents and does not require a prede-
fined schema. It has a rich query language based on JavaScript and ad hoc
queries are well supported. The main features of MongoDB are automatic
sharding, high availability, data replication (including multiple data center
replication), tunable consistency and schema flexibility. MongoDB was de-
signed to run in a distributed environment. In a MongoDB cluster, there are
three types of nodes: shards, query routers and configuration servers. Shards
store the actual data, while the cluster metadata is stored on the configuration
servers. Query routers use cluster metadata stored on configuration servers to
route queries to the corresponding shards. The version used in our study was
MongoDB 3.4.4.

2.3. NoSQL benchmarking. When many NoSQL database management
systems are available on the market, it can be hard to choose the right prod-
uct that offers the best performance for a particular application use case on
a specific hardware configuration. Benchmarking is a good approach in this
case, as it measures the actual performance of a NoSQL implementation on
a given hardware configuration. But the benchmarking process also requires
software tools, and there are not so many open source options available.

A benchmarking tool has two main features: workload generation and per-
formance measurement. A batch that contains all requests sent by an appli-
cation to a database server during a working session represents the applica-
tion’s workload. The main metrics in database performance benchmarking are
throughput, total runtime and latency. The number of operations completed
in a time unit is known as throughput. The amount of time needed for a single
operation to be completed is known as latency. The amount of time needed
to complete a given number of operations is known as total runtime (RT).
Throughput is measured in operations per second, while latency is measured
in microseconds per operation. Higher throughput values are better from the
performance viewpoint. Total runtime is measured in milliseconds and it rep-
resents the duration of a benchmarking test. Regarding performance, lower
total runtime and lower latency values are better. This paper refers to total
runtime.

RUNTIME PERFORMANCE BENCHMARKING FOR NOSQL DATABASES 81

Two types of NoSQL database benchmarking tools can be used: database-
independent and database-specific. From the database-specific type we can
remark cbc-pillowfight[20] for Couchbase and cassandra-stress tool[21]
for Cassandra. Our study aims to compare two different NoSQL database
servers by applying the same workload, so database-specific tools cannot be
used. From the database-independent type we mention BigBench[10] and
YCSB[4]. While BigBench runs only on Linux, YCSB runs on Linux and Win-
dows. Our case study involves servers that have Windows operating system
installed, which implies that BigBench cannot be utilized as benchmarking
framework. Also, the resemblance between BigBench and TPC-DS[17] makes
it less flexible and more oriented on traditional workloads instead of NoSQL
workloads. On the other hand, YCSB focuses on big data and NoSQL work-
loads and offers a lot of flexibility in both workload definition and workload
configuration. The fact that YCSB can be used to test many NoSQL DBMSs,
including Cassandra and MongoDB, is another important aspect that makes
it suitable for our study.

Yahoo! Cloud Serving Benchmark[4] (YCSB) appeared as a response to
the necessity of a benchmarking tool that is suitable for cloud or NoSQL sys-
tems. It is an open source project developed initially at Yahoo! and written in
Java which has two base components that are extensible. The first component
is the workload generator known as the YCSB client. The second component,
known as the Core workloads, consists of a set of workload scenarios that have
to be executed by the YCSB client, as stated in [25]. Each workload used in
YCSB has two main parts: a data set and a transaction set. The total num-
ber of records that need to be loaded into the database before any test is
performed represents the data set. The mix of write and read operations to
be performed in a test represents the transaction set. The main parameters
of the transaction set are: the total number of operations to be applied in a
test execution, the number of client threads and the ratio between write and
read operations. If the workloads contained in the Core workloads set are not
suitable for the needs of the user, new custom workloads can be created. In
our benchmarking study, we used YCSB version 0.12.0.

YCSB is also used in other benchmarking studies that are discussed in the
literature: [14], [9] and [8]. These benchmarking studies use a cloud-based
infrastructure, while our benchmarking study uses physical machines and it is
not cloud-based. The DBMS versions used in our study are newer than those
used in [14], [8] and [9]. Also, the operating system installed on our servers
is Windows. Other significant differences refer to the data sets used and
their size, hardware configuration and workload types. Paper [14] presents a
benchmarking study that involves custom workloads and a proprietary data set

82 CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

belonging to a healthcare organization. The benchmarking studies presented
in [9] and [8] use data sets generated by the YCSB client. In [9], the size of
the data sets is not clearly stated, while the study discussed in [8] does not
include MongoDB, even if it specifies the actual size of the data sets used.

3. Case study

Our benchmarking experiment involved three servers with the same hard-
ware configuration. A different application ran on each server: YCSB client
on the first server, Cassandra on the second server and MongoDB on the last
server. The server configuration is as follows:

• CPU: Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz, 4 cores, 8 logical
processors

• HDD: 500 GB
• RAM: 16 GB
• OS: Windows 7 Professional 64-bit.

The data set utilized in our experiment was generated by the YCSB client. It
contains 4 million records and it was used with all workloads. Each record con-
tains 10 fields and every field holds a 100 byte string value generated randomly.
The data set could fit in the internal memory due to its size. Two predefined
YCSB workloads were chosen: Workload A (50% reads, 50% updates), which
is considered an update-heavy workload[22], and Workload B (95% reads, 5%
updates), that is considered a read-mostly workload[22]. An example of ap-
plication for Workload A could be a session store that records recent actions,
while photo tagging could be a corresponding example for Workload B, as
stated in [22]. Both workloads were tested with the following number of op-
erations: 1000, 10000, 100000 and 1000000. For each number of operations,
tests were executed using 1, 2, 4, 8, 16, 32, 64, 128, 256 and 512 client threads.
Each test with a certain combination of workload, number of operations and
number of client threads was repeated three times.
We installed MongoDB with default settings. The default storage engine for
MongoDB version 3.4.4 is Wired Tiger. We also installed Apache Cassandra
with default settings, but in order to avoid timeouts, we followed the setting
recommendation mentioned in [8]:

• write request timeout in ms was set to 100000
• read request timeout in ms was set to 50000
• range request timeout in ms was set to 100000
• counter write request timeout in ms was set to 100000.

The asynchronous variant of Java driver was used for both database servers.
A batch of tests includes all tests having the same workload, number of op-
erations, and database server, but different number of client threads. We

RUNTIME PERFORMANCE BENCHMARKING FOR NOSQL DATABASES 83

Table 1. Runtime Results for
1000 Operations Workload A

NT Cassandra MongoDB
1 6085.666667 1232.666667
2 3702.333333 468
4 3088.666667 249.6666667
8 2959 182
16 2938.333333 166.6666667
32 2880.666667 156
64 2896.333333 157.6666667
128 2855 156
256 2865 174
512 2906.666667 209.3333333

Table 2. Runtime Results for
10000 Operations Workload A

NT Cassandra MongoDB
1 34757 7124
2 16884.33333 2792
4 6708 1477
8 4279.666667 811.3333333
16 3535.666667 634.3333333
32 3364.333333 623.6666667
64 3161.333333 478.6666667
128 3187.333333 519.6666667
256 3276 494
512 3229.333333 546.3333333

restarted the database server before each batch of tests was executed, and we
captured database server status information before and after each execution
of a batch of tests. When the execution of all combinations of tests for the
first workload was finished, the data set corresponding to that workload was
dropped. After that, the data set characterized by the same parameters that
corresponds to the second workload was loaded.

3.1. Results. Every test was repeated three times for each combination of
workload, database, number of operations and number of client threads. A
total runtime (RT) average was calculated for each combination of workload,
database, number of operations and number of threads (NT) in order to create
the following charts. Figures 1 to 8 show a comparison of RT performance be-
tween Cassandra and MongoDB for each combination of workload and number
of operations. It is worth to mention here that the cases NT = 1 and NT = 2
are not shown in figures because they produce by far greater RT values than
the other cases considered. The runtime results are also presented in tables 1,
2, 3, 4, 5, 6, 7 and 8, including the cases NT = 1 and NT = 2.

Figures 1, 2, 5 and 6 show that in the case of a small number of operations
(1000 and 10000, respectively), MongoDB outperforms Cassandra for both
workloads used and all NT levels considered.

Figure 3 shows that the performance of Cassandra closes to MongoDB’s in
the case of an update-heavy workload A and for NT ≥ 64, when the number
of operations is set to 100000. For the same number of operations, MongoDB
produces better results than Cassandra when we use a read-heavy workload
B, as shown in Figure 7.

When the number of operations is 1000000, the results differ: Cassandra
outperforms MongoDB (as in Figure 4) when workload is update-heavy and
NT ≥ 32, while MongoDB’s performance is better for a read-heavy workload,
as shown in Figure 8.

84 CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

Figure 1. 4 Million Records 1000 Operations Workload A - Runtime

Figure 2. 4 Million Records 10000 Operations Workload A - Runtime

Table 3. Runtime Results for
100000 Operations Workload A

NT Cassandra MongoDB
1 303900 62698.66667
2 144909 25791.66667
4 50164.33333 12912
8 16301.66667 6557.333333
16 9344.333333 4950.666667
32 5954 4435.666667
64 5194.666667 4591.666667
128 4950.333333 4415
256 5033.666667 4477
512 5064.666667 4441

Table 4. Runtime Results for
1000000 Operations Workload A

NT Cassandra MongoDB
1 2995324.667 629249
2 1454355 259615.6667
4 501797 131332.6667
8 137265.3333 64933
16 67153.33333 48817.66667
32 30202 46567
64 24820 45854
128 23609 46166.33333
256 23431.66667 46108.66667
512 23197.66667 46254.66667

RUNTIME PERFORMANCE BENCHMARKING FOR NOSQL DATABASES 85

Figure 3. 4 Million Records 100000 Operations Workload A - Runtime

Figure 4. 4 Million Records 1000000 Operations Workload A - Runtime

Table 5. Runtime Results for
1000 Operations Workload B

NT Cassandra MongoDB
1 6635 1014
2 3832.333333 415.6666667
4 3104.333333 228.6666667
8 2943 171.3333333
16 2906.666667 156
32 2870.333333 151.3333333
64 2865 140.6666667
128 2875.333333 156
256 2875.666667 171.6666667
512 2922.333333 203

Table 6. Runtime Results for
10000 Operations Workload B

NT Cassandra MongoDB
1 35765.66667 6391
2 13884 2870.333333
4 6541.666667 1227.666667
8 4186.333333 546.3333333
16 3567 369.6666667
32 3317.666667 322.6666667
64 3219 317
128 3224 317.3333333
256 3224.333333 317.3333333
512 3244.666667 327.6666667

86 CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

Figure 5. 4 Million Records 1000 Operations Workload B - Runtime

Figure 6. 4 Million Records 10000 Operations Workload B - Runtime

Table 7. Runtime Results for
100000 Operations Workload B

NT Cassandra MongoDB
1 309530.3333 57995.66667
2 134706.3333 26020.66667
4 52171.66667 11117.33333
8 19978.33333 3957.333333
16 9651.333333 2085
32 7051.333333 1632.666667
64 6354.333333 1528.666667
128 6188.333333 1518.333333
256 5964.333333 1523
512 5974.666667 1476.666667

Table 8. Runtime Results for
1000000 Operations Workload B

NT Cassandra MongoDB
1 3001223 614303
2 1306186 269886
4 500798.3333 105114
8 227412.3333 37201
16 68801 19208.66667
32 43238.66667 14154.33333
64 36936.33333 13645
128 36754 13645
256 32880 13509.66667
512 32579 13338.33333

RUNTIME PERFORMANCE BENCHMARKING FOR NOSQL DATABASES 87

Figure 7. 4 Million Records 100000 Operations Workload B - Runtime

Figure 8. 4 Million Records 1000000 Operations Workload B - Runtime

3.2. Statistical analysis. Experimental data given in tables 1 thru 8 were
processed using two-way ANOVA (Analysis of Variance) procedure from R Sta-
tistics Package[18]. Table 9 displays a synthesis of the results. The two factors
considered for each experiment are: database (DB, with two levels: Cassandra
and MongoDB), and the number of threads (NT, with ten levels: 1, 2, 4, 8,
16, 32, 64, 128, 256, and 512). The interactions between DB and NT were also
studied. The column named ”Sgf” (abbreviation for statistical significance)
refers to the P-value, denoting the level of significance, 0.1%, 1%, 5%, and 10%,
following the usual conventions: 0 ∗ ∗ ∗ 0.001 ∗ ∗ 0.01 ∗ 0.05 . 0.1 (blank) 1.
In other words, if a P-value is ≤ 0.1% (that is, ∗ ∗ ∗ according to the legend),
it means that the differences between means of the factors considered have the

88 CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

Table 9. Analysis of variance - Runtime Results

Wrk No Database No of threads DB:NT
ld ops F-value Pr(>F) Sgf F-value Pr(>F) Sgf F-value Pr(>F) Sgf
A 1000 269.6848 <2e-16 *** 3.8486 0.05476 . 1.1328 0.29174
A 10000 14.3015 0.0003805 *** 4.7928 0.0327625 * 2.0936 0.1534923
A 100000 6.1596 0.01610 * 5.1321 0.02737 * 2.4626 0.12222
A 1000000 5.5011 0.02257 * 5.2303 0.02600 * 2.5335 0.11708
B 1000 218.2569 <2e-16 *** 3.1952 0.07927 . 1.4045 0.24098
B 10000 14.1485 0.0004059 *** 4.2981 0.0427683 * 1.8757 0.1762899
B 100000 7.1493 0.009809 ** 5.1082 0.027720 * 2.3786 0.128642
B 1000000 6.4783 0.01370 * 5.3822 0.02401 * 2.4108 0.12614

strongest statistical significance. The other end of spectrum, when a a P-value
is greater than 10% (a blank space) shows that the differences between the
means of the factors considered are within the range of experimental error.

When comparing RT averages for DB factor, Table 9 shows that there
are several degrees of statistical significance between them in all combina-
tions (workload, number of operations) considered. The same table shows less
stronger statistical significance when comparing RT averages for NT factor,
and even poorer one in the case of 1000 operations. The interactions DB:NT
have no statistical impact on the RT.

4. Conclusion

In our benchmarking study, the performance of the two NoSQL database
management systems was measured for two workloads: read-mostly (Workload
B) and update-heavy (Workload A). The performance indicator was total run-
time (RT). MongoDB outperforms Cassandra in all studies involving Workload
B. For Workload A, the situation is the same, with some exceptions: the cases
where the number of operations is equal to 1000000 and the number of client
threads is greater than or equal to 32.

As further work, we plan to perform other experimental studies using data
sets with different number of fields on single server and cluster configurations.
Also, we intend to test other workload configurations with data sets that
exceed the internal memory. Another direction in our experimental work will
deal with database server replication and SSDs as disk storage, in order to
measure the performance impact of these configurations. Lastly, the operating
system will be another variable in our future case studies.

Acknowledgments

Parts of this work were supported through the MADECIP project Dis-
aster Management Research Infrastructure Based on HPC. This project was
granted to Babeş-Bolyai University, its funding being provided by the Sec-
toral Operational Programme Increase of Economic Competitiveness, Priority

RUNTIME PERFORMANCE BENCHMARKING FOR NOSQL DATABASES 89

Axis 2, co-financed by the European Union through the European Regional
Development Fund Investments in Your Future (POSCEE COD SMIS CSNR
488061862).

References

[1] Apache Cassandra. http://cassandra.apache.org/. Accessed: 2017-09-25.
[2] BaseX. http://basex.org/. Accessed: 2018-11-27.
[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chan-

dra, A. Fikes, and R. E. Gruber. Bigtable: A Distributed Storage System for Structured
Data. OSDI ’06 Proceedings of the 7th USENIX Symposium on Operating Systems De-
sign and Implementation, 7, 2006.

[4] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking
Cloud Serving Systems with YCSB. Proceedings of the 1st ACM Symposium on Cloud
Computing, pages 143–154, 2010.

[5] Couchbase. https://www.couchbase.com/. Accessed: 2019-01-22.
[6] CouchDB. http://couchdb.apache.org/. Accessed: 2017-09-25.
[7] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s Highly Available
Key-value Store. Proceedings of 21st ACM SIGOPS Symposium on Operating Systems
Principles, oct 2007.

[8] Fixstars. GridDB and Cassandra Performance and Scalability. A YCSB Performance
Comparison on Microsoft Azure. Technical report, Fixstars Solutions, 2016.

[9] A. Gandini, M. Gribaudo, W. J. Knottenbelt, R. Osman, and P. Piazzolla. Performance
Evaluation of NoSQL Databases. EPEW 2014: Computer Performance Engineering,
Lecture Notes in Computer Science, 8721:16–29, 2014.

[10] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H.-A. Jacobsen. Big-
Bench: Towards an Industry Standard Benchmark for Big Data Analytics. Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data, pages
1197–1208, 2013.

[11] HBase. https://hbase.apache.org/. Accessed: 2017-09-25.
[12] Hypertable. http://www.hypertable.org/. Accessed: 2018-11-27.
[13] JSON. https://www.json.org/. Accessed: 2018-03-16.
[14] J. Klein, I. Gorton, N. Ernst, P. Donohoe, K. Pham, and C. Matser. Performance

Evaluation of NoSQL Databases: A Case Study. Proceedings of the 1st Workshop on
Performance Analysis of Big Data Systems, pages 5–10, 2015.

[15] A. Lakshman and P. Malik. Cassandra: A Decentralized Structured Storage System.
ACM SIGOPS Operating Systems Review, 44:35–40, 2010.

[16] MongoDB. https://www.mongodb.com/. Accessed: 2017-09-25.
[17] R. O. Nambiar and M. Poess. The Making of TPC-DS. VLDB ’06 Proceedings of the

32nd International Conference on Very Large Data Bases, pages 1049–1058, 2006.
[18] R Statistics Package. https://www.r-project.org/. Accessed: 2017-09-25.
[19] P. J. Sadalage and M. Fowler. NoSQL distilled : a brief guide to the emerging world of

polyglot persistence. Addison-Wesley Professional, 2012.
[20] Stress Test for Couchbase Client and Cluster. http://docs.couchbase.com/sdk-api/

couchbase-c-client-2.4.8/md_doc_cbc-pillowfight.html. Accessed: 2019-01-03.
[21] The cassandra-stress tool. https://docs.datastax.com/en/cassandra/3.0/

cassandra/tools/toolsCStress.html. Accessed: 2019-01-03.

90 CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

[22] The YCSB Core Workloads. https://github.com/brianfrankcooper/YCSB/wiki/

Core-Workloads. Accessed: 2017-09-25.
[23] XML. https://www.w3.org/TR/2008/REC-xml-20081126/. Accessed: 2018-03-16.
[24] YAML. http://yaml.org/. Accessed: 2018-03-16.
[25] YCSB Github Wiki. https://github.com/brianfrankcooper/YCSB/wiki. Accessed:

2017-09-25.

Department of Computer Science, Faculty of Mathematics and Computer Sci-
ence, Babeş-Bolyai University, 1 Kogălniceanu, Cluj-Napoca, 400084, Romania

Email address: {andorcamelia, bparv}@cs.ubbcluj.ro

