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MEDICAL IMAGE ANALYSIS WITH SEMANTIC

SEGMENTATION AND ACTIVE LEARNING

CHARLES ISAH SAIDU1,∗ AND LEHEL CSATÓ2

Abstract. We address object detection using semantic segmentation and
apply it for prostate detection in an MRI data-set. Our detection pipeline
uses first a segmentation step followed by a classifier with a convolutional
neural network (CNN). Since the segmentation provides a set of unbalanced
data-sets – where a high accuracy is difficult to obtain – we leverage the
prospect of improving detection accuracy using a Bayesian treatment of
deep networks and the possibility of better exploiting the data using active
learning. The resulting algorithm is both adaptive and data-efficient: by
assuming that from a large pool of data only a few are segmented, the
active learning module of the algorithm finds the image that improves
most detection accuracy. We test our algorithm on a prostate medical
image data-set and show that the active learning-based algorithm performs
well in the prostate detection class. The resulting system is invariant to
translations within the image and the results show improvements when
using the pipeline that includes active learning and CNNs.

1. Introduction

Semantic segmentation is the task of annotating an image: which region
in an image belongs to a defined class [14, 31]. Since images are pixels, in
practice we have to classify every pixel – a difficult task since class informa-
tion is not local to single pixels; consequently semantic refers to the global
character of the segmentation task. In this work we focus on a mixed seg-
mentation approach that involves both “traditional” image processing [28] as
well as adaptive neural-network-based classification modules [3]. The image
processing modules are used to segment the images into superpixels [2] that
are subsequently fed into a neural network-based classifier that classifies the
superpixel as belonging to the region of interest or not. Superpixels, the result
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Figure 1. Axial scan of prostate gland region. The high-
lighted areas are similar to the prostate gland – in the centre
– and difficult to discriminate, leading to classification errors.

of the semantic segmentation, are the classification atoms in this work, this
simplifies the classification task and helps to better segment the image.

1.1. Problem statement. We aim for a good classifier that is able to “select”
– or label – the regions of interest (ROI) in an image – an example is provided
in Fig. 1. The learning is classification-based and we use a set of labelled
images for training. We do not aim for a pixel-level classification and consider
the existence of a pre-processing step that identifies the superpixels.

We aim to build a superpixel classification procedure that leads to an effi-
cient labelling of the entire image. Our goal is to have a classifier that is:

• adaptive – it is able to learn from labelled data;
• efficient – it is able to learn from a small set;
• generic – the recognition is location-invariant – exploiting thus the

higher-order invariants within the ROI, as illustrated in Fig. 1.
We focus on automated medical image segmentation: identification of the

region of interest (ROI) within an image [see for example 19]. We use the
prostate data-set from the I2CVB initiative,1 one image is in Fig 1. This is a
natural data-set and is considered as difficult to handle due to low contrast,
speckle, micro-calcification in MRI images, as well as the presence of imaging
artefacts [10].

1.2. The suggested solution. We focus on the classifier in the processing
pipeline in Fig. 2 and use a deep convolutional neural network [3, 13] for
classification and we optimise the learning procedure by using active learning.
Active learning – also called “query learning” – is important since it allows us

1The database is available at http://i2cvb.github.io/
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Figure 2. The processing pipeline starts with classical image
processing, is followed by an adaptive classifier, a convolutional
network. The annotated image is built from the labelled units.

to train the system using less data [7, 25]. Active learning is also important
since the resulting superpixel classification problem is unbalanced [3]: out of
≈ 60 superpixels only a few are positive. Class imbalance leads to problems for
the classifier: classifying all superpixels negative is a strong local optimum, and
the learning might stop at this state. We use active learning and re-sampling
techniques [4] to counter the class imbalance.

1.3. Structure of the paper. First, in Sec. 2 we list the related literature,
then we discuss our proposed solution in Sec. 3. We test the proposed algo-
rithm in Sec. 4, discuss our findings and further research directions in Sec. 5.

2. Related work

In this section we present two categories of research for medical image seg-
mentation: graph-based segmentation and pixel-level classification based on
deep networks.

2.1. Graph-based semantic segmentation. These methods build graphs
where the nodes are superpixels and the weighted connections are computed
using similarity measures between superpixels [7, 30, 31]. It is worth noting
that the main motivation is to minimize annotation efforts by labelling groups
of pixels – known as superpixels – instead of single pixels.

Vezhnevets et al. [31] used pairwise – label- and “connectedness” – con-
ditional random fields (CRFs) over superpixels. The goal was to learn the
parameters of this joint model using an energy function that captures both
the ability to classify superpixels (unary potential) and the connectedness of
superpixels to its neighbouring superpixels. Vezhnevets et al. [31] also ap-
plied active learning by designing a query scoring function that attempts to
maximize the expected model change on the appearance model parameters.
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Fathi et al. [7] focused on semantic video segmentation by building a graph
of superpixels connected via a similarity metric. Here an incremental self-
training approach was proposed that iteratively first labels the least uncertain
frame, followed by the update of similarity metrics based on the extended set
of labels.

2.2. Semantic segmentation with deep networks. Several techniques
that are based on neural networks have been proposed for semantic segmen-
tation and object detection. By far not exhaustive, we mention the work of
Ciresan et al. [5] using deep networks, the fully convolutional network by Shel-
hamer et al. [27], U-NET semantic segmentation by Ronneberger et al. [22],
R-CNN and “Fast R-CNN” for object detection [11, 12], “Faster R-CNN” by
Ren et al. [21] and Masked R-CNN by He et al. [15].

Ciresan et al. [5]2 used sliding windows approach. Each sliding window/image
patch was labelled and subsequently used as input to a deep neural network.
The method was difficult to train: there were a lot of overlapping patches for
each image; making it computationally expensive. The patch size induced a
trade-off between localization accuracy and patch size: larger patches require
more layers and their size reduces localization [see e.g. 22].

Shelhamer et al. [27] extracted individual patterns from the image and clas-
sified patches independently. They use multiply connected convolution layers
and no fully connected layers. Each convolution layer preserves the size of the
input image – the output size is the same size as the input size. Each pixel in
the output is annotated and the training was done using uses the cross-entropy
likelihood.

Ronneberger et al. [22] proposed U-Net, an extension in architecture of Shel-
hamer et al. [27]. In their work, only a few training samples are required and
the labelled data were in turn augmented. They used up-sampling operators
in the decoding part of the network and applied the algorithm successfully to
biomedical image segmentation.3

Girshick et al. [12] developed the “R-CNN” model for object detection. In
contrast to the sliding window approach of [5], they used a selective search
for sub-regions, and the ROI was determined using these regions only. The
R-CNN model was later extended by the same team under the name “Faster
R-CNN” [11]. We also mention “Mask R-CNN” [15] that is an extension of
the original R-CNN [12] for object instance segmentation. This latter model
uses a “simple model” for image class detection and one for segmentation.

2The work has won the electron-microscopy image segmentation challenge in 2012.
3The work has won the ISBI cell tracking challenge in 2015, emb.citengine.com/event/

isbi-2015/details, result presented at the ISBI conference (accessed 02.10.2018).
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3. Active Learning using Deep Networks

In what follows, we concentrate on the classification task – the Deep Net
classifier – DNN – from Fig. 2. The inputs to the DNN are the superpixels
and we know – see Sec. 1.2 – that the set of labels is extremely unbalanced:
often we have 60 negative examples and a single positive one. To counter the
negative effect of unbalanced data, a guided data selection – the active learning
framework [25] – is used, in combination with gradient descent for neural
networks and the probabilistic output – necessary for the scoring functions
– is provided by the dropout mechanism [8]. We present first the neural
network architecture, then the active learning framework, followed by a general
overview of the algorithm.

In what follows Xu = {x1, x2, . . . , xn} denotes the set of re-scaled superpix-
els. Since labelling is assumed to be difficult, we only have a small labelled
data-set D` = {(x1, y1), (x2, y2), . . . , (xl, yl)}, with l � n and Xu = X \X` is
the pool of unlabelled superpixels.

3.1. Deep networks with dropout and probabilistic outputs. For each
image, we pre-segment the image using watershed algorithm, hence generating
patches of images which we call superpixels - this is opposed to using the
sliding-windows approach. These superpixels formed input to the deep neural
network. Since each image produces many superpixels set and the task is
to identify a region as prostate and not prostate, labelling all superpixels
within an image would be laborious.So we endowed the deep neural network
with a Bayesian treatment and the started by training only a small sample.
The resulting sub-optimal classifier is then used together with active learning
technique as a probe for searching the remaining unlabelled superpixels for
ONLY informative superpixels that will improve accuracy and generalization.
Hence, we use a “deep neural network” with both a convolution part and a fully
connected part. We use 4× 4 convolution matrices, yielding 32 filters – since
we aimed to capture pattern diversity. Each of the two convolution layer is
followed by a relu non-linearity layer. After the last convolution level we have
a dropout layer with dropout mean probability of 0.5. The fully connected
part contains 3 dense layers each followed by a relu and a dropout 0.5 layers.
The last layer is a softmax layer; the network error function is cross-entropy,
and the training was done using the gradient descent with ADAM learning
[18]. For network – i.e. classifier – optimisation we use gradient descent with
the tensorflow package [1] and the optimisation uses only the dataset D`.

Dropout – originally introduced to prevent model over-fitting [29] – uses a
“blocking mechanism”: if a binary gate is open, the neuron output is calculated
normally, if the gate is closed, the output of the respective neuron is zero.
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Aside from its stabilising role, dropout can also be used to calculate predictive
uncertainties [8, 9]: we sample the dropout gates and this leads to different
weight vectors ωt – with some of the weights set to zero, providing in turn a
predictive distribution given as:

(1) P (y|x) ≈ 1

T

∑
T
t=1 P (y|x, ωt)

with ωt = ω⊗ gt where gt is a configuration of the dropout gates. We mention
that the above scheme is valid only if training was made using dropout. We be-
lieve that dropout is important: Gal et al. [9] has shown that dropout is equiv-
alent to performing an approximate Bayesian inference, therefore the samples
are approximations of the “true posterior” distribution. The a-posteriori dis-
tribution is used to decide which superpixel will be included into the training
set: it is based on scoring the super-pixels, the different query scores are de-
fined in Sec. 3.2.

3.2. Querying Technique. The querying technique or acquisition function
[26] defines a score for superpixels. Based on this score the unlabelled super-
pixels will be selected and labelled. The scoring is done such that it brings
the most “information” conditioned on the already labelled data. We explored
the following scoring functions:

(1) Maximum entropy chooses the superpixels that maximize the predic-
tive entropy [20]:

x∗ = arg max
x∈Du

H[y|x,Du]

(2) BALD (Bayesian Active Learning By Disagreement) looks for the su-
perpixel x that maximizes the decrease in conditional entropy caused
by the posterior [9, 16]:

x∗ = arg max
x∈Du

H[y|x,Du]− Ep(ω|Du)H[y|x,Du]

(3) Random acquisition: randomly chooses a subset of unlabelled super-
pixels from the pool.

We compare the acquisition functions in the Results Section 4.3.

3.3. Oversampling the data. We found that – in spite of the results of
Ertekin et al. [6] showing that active learning provides a natural way to handle
imbalanced data – using active learning alone does not eliminate label imbal-
ance. Instead, when running the full pipeline, we found that over-sampling of
positive data and under-sampling negative data is useful.

Oversampling is a technique used to adjust class distribution of a dataset:
the synthetic minority oversampling technique, or SMOTE, replicates samples
based on the k-nearest neighbours of the under-sampled items [4]. Aside from
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Figure 3. Superpixel visualisation – using kernel PCA – with
(a) uninformed sampling and (b) informed SMOTE oversam-
pling – image best viewed in colour.

the improved performance, the oversampling method was motivated from a
visualization of the superpixel dataset from Fig. 3. In the visualisation we
looked at the “topology” in the superpixel space: we wanted to assess the
separability of the superpixels as defined by the classification problem. We
used the kernel PCA method [24] – a non-linear projection methods that
takes into account the distribution of the superpixels – and coloured the ROI
superpixels as red, the negative data as black. We see that the oversampling
makes the two classes more separable in the latent space.4

3.4. The full algorithm. We detail the adaptive “Deep CNN classifier” –
shown in Algorithm 1 – the part of the image segmentation pipeline from Fig. 2.
The input to the algorithm is the collection of resized and cropped superpixels.

To mimic real situation, we consider that superpixel labelling is done on-
demand: when required, one can ask an expert to label an image, leading to
a labelling of a superpixel set.

The training starts by labelling a small randomly selected set of superpixels
– this was set to 50 to mimic the acquisition of superpixels from a single image.

After the initial labelling the algorithm proceeds by using the active learning
technique described in sec. 3.2: we select from a pool of unlabelled superpixels
Du to add to the training set D`, then we re-train the model.

The iteration follows as long as a stop-condition is not met or all data has
been labelled, i.e. Xu = ∅. In our experiments we use a fixed number of
iterations as stop-condition, this number resulted from testing the algorithm
and finding that going over 30 iterations makes no difference in performance.

4Since the classification is not performed by a kernel machine [23], the plots provide
only hints about the difficulty of the classification task.
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Algorithm 1 The Active Segmentation Algorithm

1: procedure Training(Xu)
2: Select Xinit; Xu = Xu \Xinit . superpixels from a single image
3: D` ← oracle(Xinit) . labelling
4: trainedModel← deepConvNet(D`) . initial training
5: repeat
6: Xsub ⊂ Du

7: Ssub ← scoreSuperpixel(trainedModel, Xsub)
8: k ← arg max{si | si ∈ Ssub} . index of the “best” s.pixel
9: yk ← oracle(xk) . labelling the selected superpixel

10: . if oversampling, then
11: Xk ← {(xk, yk)} . Xk ← oversample ( (xk, yk) )
12: D` = D` ∪Xk

13: Xu = Xu \ {xk}
14: trainedModel ← deepConvNet(D`) . re-training
15: until stopCondition ∨Xu = ∅
16: return trainedModel

4. Experiments and results

The experiments used the pipeline from Fig. 2: we first perform a Gaussian
smoothing, followed by a Sobel filtering [28], before using watershed to gener-
ate the superpixels. These patches – after labelling – will be combined into a
segmented image as a result of the processing pipeline.

We use MRI axial scans from a total of 30 patients. Each patient’s data-
base consists on average of 20 axial slices of the prostate region at different
levels. For each image slice, we perform over-segmentation of the regions
within the image and generate an average of 60 superpixels per slice, making
an approximate total of 36, 000 superpixels that can potentially be used for
training.

4.1. No-oversampling Experiment. To handle location-invariance, we crop
out each superpixel/patch and resize to a standard size of 40×40 pixels before
feeding into the convolutional network. This process further constrains and
makes ROI detection a bit more difficult for this data-set. In particular – as in
Fig. 1 – it is obvious that there are huge similarities in feature space between
highlighted regions thus making it a lot more difficult for the classifier to learn
which of these regions is prostate and which is not. In addition, our approach
creates a hugely imbalanced data-set shown in Fig. 3.b, where we show a
kernel PCA projection of the data-set. Consequently, we observed that active
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Figure 4. Area Under the ROC Curve (AUC) for (a) non-
oversampled and (b) oversampled data-set.

learning alone did not deal implicitly with the issue of class imbalance as re-
ported by [6] - A case that needs further investigation. However, after actively
overssampling during each training step, considerable performance gains were
observed as depicted in 4.3.

4.2. Oversampling Experiment. In order to evaluate the effect of feature
space similarities in superpixels and class imbalance in the task of detection
and agglomeration of the prostate region, we set up the experiment with a
slight modification to the algorithm. This is prompted by the kernel PCA
visualization of the data as a result of oversampling as shown in Fig. 3. In
the modification, we oversampled only after each batch acquisition from the
data-set. Algorithm 1 captures the idea if the oversampling flag set to True.

4.3. Results. Fig. 4 shows the results of successive Area Under the Receiver
Operating Characteristic curve (AUC-ROC). From the figure, it would be
misleading to think that performance improves as more superpixels are added
to the training set. However, to the contrary, we obtained zero precision and
zero recall when increasing the data-set size. Recall from Sec. 1.1 and the
illustration in Fig. 1 that there is really very marginal distinction between
regions of the prostate and non-regions of the prostate especially when the
images are cropped, coupled with the fact that the imbalance ratio between
negative and positive class is 60 to 1.

Consequently, we decided to over-sample the most informative superpixels
after acquisition so as to give the algorithm more representation of what the
actual prostate superpixels look like. This led to Fig. 4.b and Fig. 5 in which
Fig. 5 shows improvement in precision of the prostate region after the 15-th
acquisition.
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Figure 5. Precision (left) and recall (right) for oversampled data.

5. Conclusions and Future Research

We presented a semantic segmentation pipeline using active learning, pro-
viding a non-pixel-based adaptive segmentation; applied to medical images.
Within the active learning, to achieve better segmentation results, we had to
over-sample the positive class of superpixels, improving considerably the ac-
curacy of the system, measured through the AUC curve. We also obtained a
higher precision and recall compared to randomly selecting superpixels to be
used for training the neural network. Overall, we observed that active learn-
ing technique could be complemented with oversampling techniques for better
results.

In what follows, we plan to explore means of integrating active learning in
the U-NET-style of semantic segmentation. Researchers measured the capa-
bility of the detection pipelines [22] using a pixel-wise matching of the desired
and the true ROI. Applying the intersection over union (IoU) metric [22] means
that the whole processing pipeline is evaluated, therefore one might want to
optimise all other parameters also. An interesting prospect would be the use
of 3D kernels for segmentation: given that there are several data-sets where
the successive nature of the images can be exploited and the exploitation of
this extra information is a promising research direction.5
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