
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIII, Number 1, 2018
DOI: 10.24193/subbi.2018.1.05

TOWARDS GREEN COMPUTING IN ERLANG

ÁRON ATTILA MÉSZÁROS, GERGELY NAGY, ISTVÁN BOZÓ,

AND MELINDA TÓTH

Abstract. Energy efficiency in computing was identified as low energy
usage of the hardware for a while. However, nowadays, we can talk about
energy efficiency in terms of software as well. Therefore, we have to in-
vestigate how the different design decisions and programming language
constructs affect the energy consumption. The green computing is a rela-
tively new research area, guidelines are required for the software developers
in terms of energy efficiency. In our research we are focusing on the func-
tional programming language Erlang. We have investigated the effect of
different language constructs (such as higher order functions), parallelism,
data structures and styles of programming on energy usage. Additionally
we present a tool to measure and visualise the consumed energy.

1. Introduction

Environment friendly tools and devices are needed in every area of manu-
facturing, thus it is crucial to have computing devices with energy usage as
low as possible. Therefore, we have to take into account the amount of energy
used by a certain devices (i.e. a PC) when running a software.

In the field of green computing we are investigating the energy usage of a
software, this means the amount of energy used by the hardware when running
the software.

Researches have been already presented on energy efficient computing (see
Section 2), however most of them are focusing on mainstream languages. The
goal of our research is to investigate the energy usage of Erlang [1] programs.

Received by the editors: March 31, 2018.
2010 Mathematics Subject Classification. 68N18.
1998 CR Categories and Descriptors. F.2.m [ANALYSIS OF ALGORITHMS

AND PROBLEM COMPLEXITY]: Miscellaneous – Energy usage; F.3.22
[SOFTWARE ENGINEERING]: Miscellaneous – Green computing .

Key words and phrases. green computing, energy efficiency, Erlang, RAPL.
This paper was presented at the 12th Joint Conference on Mathematics and Computer

Science, Cluj-Napoca, June 14-–17, 2018.
The project has been supported by the European Union, co-financed by the European

Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

64

TOWARDS GREEN COMPUTING IN ERLANG 65

Erlang is a widely used functional programming language, designed for build-
ing concurrent/distributed soft-real time applications. Since Erlang is func-
tional language and the main building blocks of the language are the functions,
we have created a tool (see in Section 3) to measure and visualise the energy
consumption of Erlang functions. The tool is based on the Intel provided
RAPL [2] tool and the Rapl-read [3] program.

In this paper we present the measurements on some key elements of the
language, such as the usage of lists, higher order functions and parallelisation
as well (in Section 4). We demonstrate our finding on different algorithms.

The ultimate goal of our research is to extend the static source code analysis
and transformation framework RefactorErl [4, 5]. We would like to define
static analyses to find those source code fragments that are presumably more
energy-intensive than other equivalent solutions. We also want to define a set
of refactorings that can be applied, either automatically or semi-automatically,
to reduce the energy used by the Erlang programs.

In this paper we are presenting our first findings on the energy usage on
Erlang programs, and the latter mentioned goal is the target of our future
work.

2. Related work

In recent years there have been lots of studies on the topic of energy-
efficiency. Many of these works studied the energy consumption of imperative
languages, for example in Java 6.2% energy savings have been obtained [6] and
thread management constructs also have been studied [7]. There also have
been studies regarding the power consumption of CMOS digital circuits [8],
power analysis of embedded software [9], how code obfuscation affects energy
usage [10] and finally the impact of commonly used refactorings have also been
studied [11].

Large amount of researches were carried out for imperative languages, but
green computing is just as important in the area of functional languages. Lima
et al. [12] analysed the energy behaviour of Haskell. They presented tools for
testing the energy footprint of a program and also showed that some con-
structs can be beneficial in some situations, while in others they may not be
a good choice. They collected energy consumption data using Running Av-
erage Power Limit (RAPL [2]) and accessing the data through model-specific
registers (MSRs).

In the case of Erlang only a few research has been done regarding green
computing. Ortiz [13] wrote her MSc thesis on the topic of green comput-
ing in Erlang and showed how some steps of refactoring and different data
structures affect energy consumption in the case of Fibonacci and Karatsuba

66 ÁRON ATTILA MÉSZÁROS, GERGELY NAGY, ISTVÁN BOZÓ, AND MELINDA TÓTH

algorithms. Varjão [14] gave a talk on the Erlang Factory SF conference in
March 2017, where he presented a tool for measuring the energy consumed
by Erlang functions. His tool is based on RAPL, but it has not been made
publicly available yet, therefore we could not use it.

3. Measuring and visualising energy usage

In this section we present the tools used to measure the energy usage of
Erlang functions. We provide an overview of the workflow of all our different
program components working together in order to make measuring energy
consumption more convenient.

3.1. RAPL. Running Average Power Limit (RAPL) is a tool created by Intel,
as part of their power-capping interface. It is available under Linux operating
system, on CPUs that have at least Sandy Bridge or newer architecture. The
onboard power meter have been introduced in the Sandy Bridge microarchi-
tecture. This provides information on power meters and power limits of the
CPU, and exports power information through a set of Model-specific Registers
(MSRs).

RAPL provides counters to get energy and power consumption informa-
tion. RAPL is not an analog power meter, but an accurate software power
model, that estimates usage by using hardware performance counters and I/O
models [2].

In RAPL, platforms are divided into domains, in order to get more detailed
information on the energy consumption. The domains are:

• PKG - The entire package
◦ PP0 - Only the cores
◦ PP1 - The uncore part of the package

• DRAM - Main memory

Among the listed domains the following inequality always holds: PP0 + PP1
≤ PKG and DRAM is independent of the other three [15].

3.2. Rapl read. There are three methods to extract power and energy con-
sumption data from RAPL.

• sysfs - Reads files from /sys/class/powercap/intel-rapl/intel-rapl:0
using the powercap interface. Requires at least Linux 3.13 with no
special permissions.
• perf event - Uses the perf event interface. Requires at least Linux

3.14, and root access or the /proc/sys/kernel/perf event paranoid
value to be less than 1.
• msr - Reads data directly from the MSRs under /dev/msr, and re-

quires root privileges.

TOWARDS GREEN COMPUTING IN ERLANG 67

It is important to note that all methods provide readings for an entire CPU
socket, there is no way to get readings for individual cores and processes this
way.

We used a program written in C called rapl-read [3], that provides an inter-
face for all three methods. We had to slightly modify it to support multiple
sockets and to send and receive signals to and from our Erlang program. We
also had to split all measuring functions to a pre and post versions, so that
we can read the data before and after running an Erlang function, and thus
obtaining the energy consumption.

3.3. Erlang server. It is important for the accuracy of measurement to get
the readings as close to the beginning and end of a function as possible. Be-
cause of this, we needed the Erlang program (energy consumption.erl) and
the rapl-read.c program to communicate. This is accomplished using ports
in Erlang and using the read() and write() functions in C. The process of
communication can be seen on Figure 1.

energy consumption.erl rapl-read.c

spawn

ready to start

gather before values

done

run function

gather after values

measured values

Figure 1. Sequence diagram of energy consumption.erll
and rapl-read.c communicating throughout one measure-
ment

When the measured values have been received by the Erlang component
from rapl-read.c, it saves it using a dets (disk-based term storage) table.

68 ÁRON ATTILA MÉSZÁROS, GERGELY NAGY, ISTVÁN BOZÓ, AND MELINDA TÓTH

The results are stored as tuples in the following format:

{{{Module, Function, InputSize},Method,Domain}, V alue}

where V alue is the measured value, Method is one of the three modes to access
RAPL, and Domain is one of the four available RAPL domains. Module and
Function are the module and name of the measured function, while InputSize
is a value provided by the user describing the size of the test arguments. If
no such value is provided we take the head of the argument list and use it as
InputSize. This is useful when the argument is a single number.

We used the following methodology to measure the energy consumption.
Each time all three methods and all available domains are measured and sent
to the Erlang program. In addition to this we also measure the run-time of
the function and store it with the energy usage values.

This process is repeated N times, where N is a parameter given by the
user. After this the Erlang program reads back all the data and for each
method-domain pair calculates the average energy consumption, disregarding
the lowest and highest values. This average is then inserted to the dets table
and also printed to a text file, thus we can easily plot the data.

To make measurement processing easier we created a function that performs
all of the above described functionalities. This function takes six arguments,
that in addition to the ones mentioned above, are the executable file compiled
from rapl-read.c, and the names of the output files:

1 measure(Program , {Module , Function , Attributes , InputSize},

2 N, ResultOutput , AvgOutput , LogFile)

3 %InputSize is optional

3.4. Visualisation. As we have mentioned earlier, the measured results were
exported to text files. These files contain one result in each line in the following
structure:

Module Function InputSize Method Domain V alue
Above the arguments the output contains the method used in measurement,

the referenced domain and the measured value.
We use the same framework for measuring the run-time of the functions.

The output in this case includes the same fields, but when measuring the
execution time, the method and domain are irrelevant, thus to preserve the
same structure, these fields are containing the measured time as well.

To visualise the measured data, it would had taken a lot of time to analyse
manually these data files (for example in a spreadsheet). We decided to process
the raw data with a Python script.

The script that processes the raw data has the following stages:

TOWARDS GREEN COMPUTING IN ERLANG 69

(1) Grouping the measured values by the functions. A function can be
uniquely identified by the name of the module and the name of the
function.

(2) Extracting the values separately by the different methods and do-
mains.

(3) Draw the figures using matplotlib [16]: the Y-axis shows the energy
consumption in Joule and the X-axis shows the different input size
values.

(4) Optionally, there is a feature for export the required values to another
data file and generate a latex file from it that contains only the
diagram.

The steps are fully customisable to help analyse the data more precisely. We
used command line arguments to give the exact specification of the diagrams.
The following flags are available:

• –files: The script can take multiple files, all the contained data is
processed. This gives flexibility to visualise different functions. For
example, we stored all the different functions in distinct files, so we
could compare them as we wanted.
• –methods: Specify which methods to display. It can take the three

methods and time, and also several methods at once. In this case all
of them will be drawn.
• –domains: Specify which domain to display.
• –output: Optional: the name of the output data file and .tex file.
• –logscale: This flag changes the Y-axis to a logarithmic scale.

Figure 2. Process from measurement to visualisation

70 ÁRON ATTILA MÉSZÁROS, GERGELY NAGY, ISTVÁN BOZÓ, AND MELINDA TÓTH

4. Energy usage in Erlang

We used two different problems and many implementations for them to
gain information on the energy consumption. We used different language
constructs and data structures in the implementations. The main aspects for
our implementations were the following:

• Using different data structures:
◦ Lists
◦ Extendible arrays
◦ Fix-sized arrays

• Using or avoiding higher order functions (HOFs)
• Parallel or sequential implementations

We also paid attention to the run-time of each implementation, in order to
gain a better understanding of the effects of language constructs on energy con-
sumption. The measurements were made on a system with Intel(R) Core(TM)
i5-6200U CPU @ 2.30GHz and 8 GB of DDR3 RAM @ 1600MHz, using
Ubuntu 16.04 LTS. All plotted data was measured using MSR method and
PKG + DRAM domains.

4.1. Goals. Our goal was to find any relation between language constructs,
different data structures and energy usage. We intended to find out if ex-
tendible arrays, fix-sized arrays or lists are more efficient. We also wanted to,
among other things, gain information on the effects of higher-order functions
on energy consumption. Another thing we wanted to find out was the effect
of parallelising on energy consumption. In the followings we are demonstrat-
ing different implementations of two well-known algorithms (placing queens
on a chessboard and sparse matrix multiplication) and the energy used when
evaluating the different implementations.

4.2. N-queens.
Problem. Place N queens on an N×N chessboard, so that no two queens attack
each other.
Solutions. For this problem we measured the following five implementations:
Lists with HOFs (queens lists): This version uses the higher-order functions
lists:flatmap/2 and lists:all/2 to get the results.

1 attacks({RowA , ColA}, {RowB , ColB}) ->

2 RowA == RowB orelse ColA == ColB

3 orelse abs(RowA - RowB) == abs(ColA - ColB).

4 legal_list(Queen , Queens) ->

5 lists:all(fun(Q) -> not (attacks(Queen , Q)) end , Queens).

6 solve_list(N, Row , Queens) when Row > N -> [Queens];

7 solve_list(N, Row , Queens) ->

TOWARDS GREEN COMPUTING IN ERLANG 71

8 lists:flatmap(

9 fun(Qs) -> solve_list(N,Row+1,Qs) end ,

10 [[{Col ,Row} | Queens] ||

11 Col <- lists:seq(1,N),legal_list({Col ,Row},Queens)]

12).

13 queens_list(N) when N > 0 -> solve_list(N,1,[]).

Lists without HOFs (queens nohof): The same as the previous one, but in-
stead of lists:flatmap/2 and lists:all/2 it uses a custom implementation
for these functionalities. These functions do not need function parameters, be-
cause we have hardcoded this information into them.

1 all_nohof(_,[]) -> true;

2 all_nohof(Queen ,[Q|Queens]) ->

3 G = attacks(Queen ,Q),

4 if G -> false;

5 true -> all_nohof(Queen ,Queens) end.

6 flatmap_nohof([],R,_,_) -> R;

7 flatmap_nohof([H|T],R,N,Row) ->

8 L = solve_nohof(N,Row+1,H),

9 P = concat_to(L,R),

10 flatmap_nohof(T,P,N,Row).

11 concat_to([],R) -> R;

12 concat_to([H|T],R) -> concat_to(T,[H|R]).

Extendible arrays (queens array): This version uses the same algorithm as
the one using lists, but instead uses arrays created with array:new(). No
HOFs are used in this implementation.
Fix-sized arrays (queens array fix): This is the same as the one with ex-
tendible arrays, but instead of array:new(), we create fix-sized arrays with
array:new(Size).
Parallel version (queens par): This version uses a parallel map (par map/2)
instead of map. The underlying data structure is a list.

1 par_map(F, Xs) ->

2 Me = self(),

3 [spawn(fun() -> Me ! F(X) end) || X<-Xs],

4 [receive Res -> Res end || _ <- Xs].

Each implementation was measured for inputs from 6 through 12.
Results. The energy consumption and run-time of these implementations can
be seen on Figure 3. We can see that in the case of the sequential versions, the
slower program consumes more energy, as expected. In the parallel case, even
though the parallel version is not always the slowest, it clearly consumes the
most energy. The reason for this may be that this parallel version just replaced
map/2 with par map/2, not paying attention to the underlying data structure,

72 ÁRON ATTILA MÉSZÁROS, GERGELY NAGY, ISTVÁN BOZÓ, AND MELINDA TÓTH

but in the case of Erlang all data sent between processes is copied [17]. Because
the items mapped are lists, lots of data is copied each time par map/2 is called,
which is slow, and thus consumes lots of energy.

Both implementations with arrays performed the same for smaller inputs,
but for larger inputs the fix-sized array version consumed more energy.

It is clear that the most efficient versions were the ones using lists. It seems
like eliminating the higher order functions from the implementation improved
energy consumption, and also made the program faster.

In conclusion, we saw that eliminating HOFs, such as map can improve
energy consumption. We also saw, that parallelising can be dangerous, we
have to pay attention to what data is sent. Arrays seem to be performing
worse than lists, but are still more efficient than our naive parallel algorithm.

6 8 10 12

10−2

10−1

100

101

102

N Values

C
on

su
m

p
ti

on
(J

)

nohof
par

array
list

array-fix

6 8 10 12

10−3

10−2

10−1

100

101

N Values

T
im

e
(s

)

nohof
par

array
list

array-fix

Figure 3. Energy consumption and run-time of all N-queens
implementations.

4.3. Sparse matrix multiplication.
Problem. Multiply two matrices, whose elements are mostly zeros.
Solutions. All implementations solve the problem by reducing it to a series
of matrix-vector multiplication, and then to vector-vector multiplication. For
this problem we measured the following implementations:
Lists (mxm lists): One of the matrices is represented as list of tuples, whose
first element is the row number, the second element is also a list of tuples,

TOWARDS GREEN COMPUTING IN ERLANG 73

whose first element is the column number and the second is the value of the
matrix element: [{Row, [{Col, V alue}]}]. The other matrix is represented
the same way, but with row and column values swapped, in order to make
multiplying them easy.

1 vxv_list(Row ,Col) -> vxv_acc_list(Row ,Col ,0).

2 vxv_acc_list([],_,Acc) -> Acc;

3 vxv_acc_list(_,[],Acc) -> Acc;

4 vxv_acc_list([{I,R}|Row],[{I,C}|Col],Acc) ->

5 vxv_acc_list(Row ,Col ,Acc+R*C);

6 vxv_acc_list([{I,R}|Row],[{J,C}|Col],Acc) ->

7 if I < J -> vxv_acc_list(Row ,[{J,C}|Col],Acc);

8 true -> vxv_acc_list([{I,R}|Row],Col ,Acc)

9 end.

10 mxv_list(Rows , Col) ->

11 Product = [{I,vxv_list(Row ,Col)} || {I,Row} <- Rows],

12 filter(fun({_,V}) -> V /= 0 end , Product).

13 mxm_list(Rows , Cols) ->

14 Product = [{I,mxv_list(Rows ,Col)} || {I,Col} <- Cols],

15 filter(fun({_,V}) -> V /= [] end , Product).

Lists without HOFs (mxm nohof): In this version we replaced all occurrences
of the filter function with our own implementation, that does not need a
function as its argument. For example the one in mxv list was replaced by
filter zeros:

1 filter_zeros([],R) -> lists:reverse(R);

2 filter_zeros([{_,0}|P],R) -> filter_zeros(P,R);

3 filter_zeros([H|P],R) -> filter_zeros(P,[H|R]).

Parallel (mxm par): The representation of the matrices is the same as in the
version with lists, but the matrix-vector and vector-vector multiplications are
executed in parallel, using spawn in the list comprehension. Receiving the
data sent back by the processes is done in another list comprehension, with
each process sending back its ID too, in order to find the proper place for the
result in the matrix.
Parallel with process pools: We also implemented a parallel version with a
parallel ordered map implementation, that uses process pools to limit the
number of processes spawned. First, we replaced both instances of the list
comprehensions in the parallel code, but this way if we limit the process pool
to 20 processes, then because of the recursion in our code 202 = 400 pro-
cesses were spawned. An easy way to fix this was to only parallelise the
outer matrix-vector multiplications and use the sequential program for solv-
ing vector-vector multiplications. These versions were named, respectively,
mxm ppool and mxm parseq.

74 ÁRON ATTILA MÉSZÁROS, GERGELY NAGY, ISTVÁN BOZÓ, AND MELINDA TÓTH

Array (mxm array): In this version the matrices are represented as arrays of
arrays, where for one matrix the first index determines the row and the sec-
ond the column, and for the other matrix it is the other way around. Zero
elements of the matrix are left undefined. We used array:sparse map/2 and
array:sparse foldr/3 to replace the list comprehensions and recursion on
lists, so for example the vector-vector multiplication became the following
code:

1 vxv_array(Row ,Col) ->

2 A = array:sparse_foldr(fun(_,Val ,Acc)->Acc + Val end ,

3 0, array:sparse_map(fun(Index ,Elem) ->

4 C = array:get(Index ,Col),

5 if C == undefined -> undefined;

6 true -> Elem*C

7 end

8 end ,Row)),

9 if A == 0 -> undefined;

10 true -> A

11 end.

The implementation does not depend on whether we use extendible or fix-sized
arrays, so no separate versions were made for these, but when measuring we
used both types of arrays.
Array without HOFs (mxm array nohof): The same way we eliminated higher
order functions from the list version, we also eliminated HOFs (sparse map

and sparse foldr) in the version using arrays. The sparse map of the previ-
ous vxv array function became the following non higher order function:

1 vxv_array_map(Index ,Size ,_,Row) when Index == Size -> Row;

2 vxv_array_map(Index ,Size ,Col ,Row) ->

3 ElemR = array:get(Index ,Row),

4 ElemC = array:get(Index ,Col),

5 if ElemR == undefined -> vxv_array_map(Index+1,Size ,Col ,Row);

6 ElemC == undefined -> vxv_array_map(Index+1,Size ,Col ,

7 array:set(Index , undefined , Row));

8 true -> vxv_array_map(Index+1,Size ,Col ,

9 array:set(Index , ElemC*ElemR , Row))

10 end.

Results. Even though our implementations can handle non-square matrices,
for ease of distinguishing between the sizes of test cases we only used square
matrices. Test matrices were generated randomly, in sizes from 10×10 up to
400×400. For each size we generated three test cases with different ratio of
non-zero elements. These ratios were 1%, 10% and 30%.

The array implementations were tested with both extendible and fix-sized
arrays. The measured energy consumption values and run-times are shown on

TOWARDS GREEN COMPUTING IN ERLANG 75

Figure 4. Fix-sized array versions are not shown as they were not different
from extendible array values in any meaningful way.

0 200 400

10−3

10−2

10−1

100

101

102

103

N Values

C
o
n

su
m

p
ti

on
(J

)

nohof
list
par

array-nohof
array

0 200 400

10−4

10−3

10−2

10−1

100

101

102

N Values

T
im

e
(s

)
nohof
list
par

array-nohof
array

Figure 4. Energy consumption and run-time of sparse matrix
multiplication implementations.

In all cases we see correlation between run-time and energy consumption, as
expected. We can see that the versions using lists performed almost the same.
The one without HOFs is in almost all cases slightly better than the one using
filter as can be seen in Table 1. It can also be seen that all implementations
using arrays performed worse than lists. One reason for that might be that in
the case of arrays, the matrices were stored directly in the array, not as pairs
of indices and values (as in the case of lists), thus resulting in lots of undefined
elements in the arrays and increasing the size of stored data. Contrary to the
versions using lists, in the case of arrays the one containing HOFs performed
better than the one without HOFs. The reason for this might be that we do
not know how arrays are implemented, and thus we cannot implement the non
higher order versions of sparse map and sparse foldr as efficiently.

The parallel version performed worse than the sequential ones, probably
because of the same reasons as mentioned before in the case of the N-queens
problem. The effect of using process pools can be seen on Figure 5. We can see
that spawning too many processes is really bad for power consumption. The
basic parallel version and the process pool version with the number of processes
limited to 4 and 20 processes (thus only creating 16 and 400 processes at a

76 ÁRON ATTILA MÉSZÁROS, GERGELY NAGY, ISTVÁN BOZÓ, AND MELINDA TÓTH

50 100 150 200 250 300 350 400
mxm nohof 0.043 0.287 0.909 2.277 4.278 7.599 12.374 19.120
mxm list 0.047 0.309 0.930 2.300 4.340 7.711 12.556 19.315

Table 1. Energy consumption of the given functions for dif-
ferent input sizes, measured in Joules, with 30% non-zero ele-
ments

time) perform almost the same. The reason for this might be that even though
the process pool version uses fewer processes, it also sends more messages. The
most effective parallel version was the half parallel, half sequential process pool
version, limited to 20 processes. This shows that it can be worth it to limit the
number of processes. These results require further analysis in order to find
the true connection between the number of processes, messages and energy
consumption.

0 50 100 150 200 250 300 350 400

0

100

200

N Values

C
on

su
m

p
ti

on
(J

) par ppool 20 parseq 20
ppool 4 ppool 2000 parseq 2000

Figure 5. Energy consumption of different parallel implemen-
tations of sparse matrix multiplication. The numbers after the
function names denote the number of processes in the process
pool (note that in the case of pool, this number has to be
squared to get the actual number of processes). These mea-
surements were made using 12 cores on a system with Intel(R)
Core(TM) i7-8700K CPU and 16 GB of DDR4 RAM, using
Ubuntu 17.04.

On all figures for this problem the inputs with 30% non-zero elements are
plotted.

5. Evaluation

In both cases we have found that naively parallelising made the algorithm
consume more energy. This is probably because we did not use any special

TOWARDS GREEN COMPUTING IN ERLANG 77

strategy to parallelise the algorithms, we simply replaced map with parallel
map and list comprehension with list comprehensions that spawn processes.
Even though spawning processes has a relatively low cost, since we spawned
so many of them, in the case of N-queens sometimes more than 500 000, it
may have increased energy consumption and run-time. Another problem may
have been, that in Erlang data sent to a process is copied [17], so our program
made a copy of large lists each time a process was spawned.

We have seen that using process pools to reduce the number of processes
can be beneficial, but we have to choose the maximum number of processes
wisely, because it greatly affected energy consumption.

We also observed, that in most cases eliminating higher-order functions
improves energy consumption. This is most visible in the case of the N-queens
problem. It can also be seen in the case of the sparse matrix multiplication
problem, but to a lesser extent. In that algorithm the HOF filter does not
take up that much part of the whole solution, so it contributes less to overall
energy consumption. While in the N-queens algorithm map is used as the base
of the algorithm, so it contributes much more to the energy consumed. An
outlier to this rule is the array version of sparse matrix multiplication, where
eliminating HOFs made the algorithm much worse. This might be because
in the version using HOFs we did not use the traditional map and foldr, but
instead the sparse version of them, which may be implemented much more
efficiently than our own implementations.

The third thing we noticed was that in both cases arrays performed worse
than lists. That may be because in the case of N-queens our algorithm was
first developed for lists and then adapted to arrays. In the case of the matrix
multiplication the reason may be that we stored data in a completely different
way in arrays than in lists. From the results it seems like the array version
is not efficient in storing sparse matrices. Even though our observation was
that arrays are not as efficient as lists, there are cases, for example calculating
Fibonacci numbers, where they may perform better [13].

6. Conclusion and future work

We wanted to measure the energy consumption of Erlang programs and
discover patterns and relations between language constructs and power con-
sumption. We used RAPL to measure energy consumption, and created an
framework to measure and store energy consumption values.

After measuring several implementations of the N-queens problem and the
sparse matrix multiplication we found that eliminating higher order functions
may make the program more efficient. In our cases we also found that using
arrays instead of lists was not a good idea. Parallelising the solutions can

78 ÁRON ATTILA MÉSZÁROS, GERGELY NAGY, ISTVÁN BOZÓ, AND MELINDA TÓTH

make energy usage worse, because it spawns lots of processes, but this could
be solved using process pools.

In the future we would like to investigate different parallelisation techniques
and we would like to further examine the effect of limiting the number of
processes and messages sent on energy consumption. We also would like to
measure the effect of the number of cores used when running the parallel
program. Additionally, we would like to confirm our current findings using
different algorithms, such as the N-body problem.

Finally, we would like to create a tool as part of RefactorErl, that automates
the process of finding patterns that could be refactored into more energy ef-
ficient version and then helps transform the code into a more energy aware
version.

References

[1] Joe Armstrong. Programming Erlang. The Pragmatic Bookshelf, 2nd
edition, October 2013. ISBN 978-1-93778-553-6.

[2] Srinivas Pandruvada. Running Average Power Limit - RAPL.
https://01.org/blogs/2014/running-average-power-limit---rapl. [Ac-
cessed: 03.10.2018.].

[3] Vincent M. Weaver. Reading RAPL energy measurements from
Linux. http://web.eece.maine.edu/˜vweaver/projects/rapl/. [Accessed:
03.10.2018.].

[4] István Bozó, Dániel Horpácsi, Zoltán Horváth, Róbert Kitlei, Judit
Kőszegi, Máté Tejfel, and Melinda Tóth. RefactorErl, Source Code Anal-
ysis and Refactoring in Erlang. In Proceeding of the 12th Symposium on
Programming Languages and Software Tools, Tallin, Estonia, 2011.

[5] Zoltán Horváth, László Lövei, Tamás Kozsik, Róbert Kitlei,
Anikó Nagyné Vı́g, Tamás Nagy, Melinda Tóth, and Roland Király. Mod-
eling Semantic Knowledge in Erlang for Refactoring. In Proceedings of
the International Conference on Knowledge Engineering, Principles and
Techniques, KEPT 2009, volume 54(2009) Sp. Issue of Studia Universi-
tatis Babeş-Bolyai, Series Informatica, pages 7–16, Cluj-Napoca, Roma-
nia, July 2009.

[6] Rui Pereira, Marco Couto, Jácome Cunha, João Paulo Fernandes, and
João Saraiva. The Influence of the Java Collection Framework on
Overall Energy Consumption. CoRR, abs/1602.00984, 2016. URL
http://arxiv.org/abs/1602.00984.

[7] Gustavo Pinto, Fernando Castor, and Yu David Liu. Understand-
ing Energy Behaviors of Thread Management Constructs. SIG-
PLAN Not., 49(10):345–360, October 2014. ISSN 0362-1340. doi:

TOWARDS GREEN COMPUTING IN ERLANG 79

10.1145/2714064.2660235.
[8] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen. Low-power CMOS

digital design. IEEE Journal of Solid-State Circuits, 27(4):473–484, Apr
1992. ISSN 0018-9200. doi: 10.1109/4.126534.

[9] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded software:
a first step towards software power minimization. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 2(4):437–445, Dec 1994.
ISSN 1063-8210. doi: 10.1109/92.335012.

[10] C. Sahin, P. Tornquist, R. Mckenna, Z. Pearson, and J. Clause. How Does
Code Obfuscation Impact Energy Usage? In 2014 IEEE International
Conference on Software Maintenance and Evolution, pages 131–140, Sept
2014. doi: 10.1109/ICSME.2014.35.

[11] Cagri Sahin, Lori Pollock, and James Clause. How Do Code Refactorings
Affect Energy Usage? In Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ESEM
’14, pages 36:1–36:10, New York, NY, USA, 2014. ACM. ISBN 978-1-
4503-2774-9. doi: 10.1145/2652524.2652538.

[12] L. G. Lima, F. Soares-Neto, P. Lieuthier, F. Castor, G. Melfe, and J. P.
Fernandes. Haskell in Green Land: Analyzing the Energy Behavior of a
Purely Functional Language. In 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), volume 1,
pages 517–528, March 2016. doi: 10.1109/SANER.2016.85.

[13] Jessica Tatiana Carrasco Ortiz. Green computing in Erlang, 2017.
[14] Filipe Varjão. Measuring Erlang energy consumption, and why this mat-

ters. http://www.erlang-factory.com/sfbay2017/filipe-varjao.html. [Ac-
cessed: 03.10.2018.].

[15] Wander Lairson Costa. Power profiling overview.
https://developer.mozilla.org/en-US/docs/Mozilla/Performance/Po-
wer profiling overview, [Accessed: 03.10.2018.].

[16] J. D. Hunter. Matplotlib: A 2D graphics environment. Computing In
Science & Engineering, 9(3):90–95, 2007. doi: 10.1109/MCSE.2007.55.

[17] Ericsson. Erlang Efficiency Guide, Processes.
http://erlang.org/doc/efficiency guide/processes.html. [Accessed:
03.10.2018.].

ELTE, Eötvös Loránd University, Pázmány Péter sétany 1/C, Budapest, Hun-
gary, 1117

Email address: {archy, nagygeri97, bozoistvan, tothmelinda}@caesar.elte.hu

