
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXII, Number 2, 2017
DOI: 10.24193/subbi.2017.2.08

METRIC DENOTATIONAL SEMANTICS FOR REMOTE

PROCESS DESTRUCTION AND CLONING

ENEIA NICOLAE TODORAN

Abstract. We present a denotational semantics designed with continu-
ations for a concurrent language providing a mechanism for synchronous
communication, together with constructions for process creation, remote
process destruction and cloning. We accomplish the semantic investigation
in the mathematical framework of complete metric spaces.

1. Introduction

We study the semantics of a concurrent language Lpcsyn providing a mecha-
nism for synchronous communication, together with constructions for process
creation, remote process destruction and cloning. We design a denotational
semantics for Lpcsyn by using the continuation semantics for concurrency (CSC)
technique [16]. Following [4], we accomplish the semantic investigation in the
mathematical framework of complete metric spaces.

The central characteristic of the CSC technique is the modeling of continua-
tions as application-specific structures of computations, where by computation
we understand a partially evaluated denotation (meaning function). The CSC
technique was introduced and developed in a series of works [16, 7, 8]. A com-
parison between CSC and the classic direct approach to concurrency semantics
[4] is provided in [16, 7].

To illustrate how synchronous interactions can be modeled with CSC, in
Section 3 we start with a language Lsyn that is very simple but provides
a synchronization mechanism between concurrent components. In Section 3
we provide a denotational semantics designed with CSC for Lsyn. Lsyn is a
uniform language in the sense that its elementary statements are uninterpreted

Received by the editors: November 30, 2017.
2010 Mathematics Subject Classification. 68Q55, 68Q85, 68N15, 68M14.
1998 CR Categories and Descriptors. D.3.2 [Software]: Programming Languages –

Concurrent, distributed, and parallel languages; F.3.2 [Theory of Computation]: Logics
and Meanings of Programs – Denotational semantics.

Key words and phrases. metric semantics, continuation semantics for concurrency, re-
mote process destruction, remote process cloning.

93

94 ENEIA NICOLAE TODORAN

symbols taken from a given alphabet. Lpcsyn is a non-uniform language: in
general, in Lpcsyn the behavior of an elementary statement depends upon the
current state of a program. The terminology uniform vs non-uniform language
is also used, e.g., in [4, 18].

The language Lpcsyn is studied in Section 4. Lpcsyn provides CSP-like synchro-
nous communication [10]. Lpcsyn also provides constructions for process cre-
ation, process destruction and process cloning. In Lpcsyn a process can not only
commit suicide or clone itself, but it can also kill or clone any other process in
the system. Process creation is a well known control concept encountered both
at operation system level and in concurrent programming. Process destruc-
tion and process cloning are operations that can be encountered at operating
system level, in some coordination languages [11], or in distributed object ori-
ented and multi agent systems such as Obliq [5] and IBM Java Aglets [12, 19].
The former operation kills a parallel running process and is similar to the
”kill -9” system call in Unix. The latter operation creates an identical copy
of a (parallel) running process.

For the development of our ideas we have chosen the mathematical frame-
work of metric semantics [4], where the main mathematical tool is Banach’s
fixed point theorem. We need the theory developed in [2] for solving reflex-
ive domain equations as continuations in the CSC approach are elements of a
complete space which is the solution of a domain equation where the domain
variable occurs in the left-hand side of a function space construction.

1.1. Contribution. We present a denotational (mathematical) semantics for
a concurrent language Lpcsyn incorporating advanced control mechanisms for
remote process creation, destruction and cloning. The denotational semantics
is designed with metric spaces [4] and continuation semantics for concurrency
(CSC) [16], a technique providing sufficient flexibility for handling the ad-
vanced control concepts incorporated in Lpcsyn. Various semantic models for
languages with process creation are presented, e.g., in [1, 3, 4, 15]. However,
as far as we know, this is the first paper presenting a denotational (mathe-
matical) semantics for remote process destruction and cloning.

2. Preliminaries

The notation (x ∈)X introduces the set X with typical element x ranging
over X. For X a set we denote by Pπ(X) the collection of all subsets of X
which have property π. For example, Pfinite(X) is the set of all finite subsets
of X. If f : X → X and f(x) = x we call x a fixed point of f . When this fixed
point is unique (see 2.1) we write x = fix(f). The notions of partial order
and total or simple order are assumed to be known. We recall that, given a
partially ordered set (X,≤X), an element x ∈ X is said to be maximal if there

METRIC SEMANTICS FOR REMOTE PROCESS DESTRUCTION AND CLONING 95

are no elements strictly greater than x in X, that is if x ≤X y then y ≤X x in
which case x = y.

Let (x ∈)X, (y ∈)Y, (z ∈)Z, f ∈ X → Y and g ∈ X → Y → Z. The
functions (f | x 7→ y) : X → Y and (g | x, y 7→ z) : X → Y → Z are defined
as follows:

(f | x 7→ y)(x′) =

{
y if x′ = x
f(x′) if x′ 6= x

(g | x, y 7→ z) = (g | x 7→ (g(x) | y 7→ z))

(f | x 7→ y) is a variant of the function f which behaves like f almost
everywhere, except for point x where (f | x 7→ y) yields y. Instead of
((f | x1 7→ y1) · · · | xn 7→ yn) we write (f | x1 7→ y1 | · · · | xn 7→ yn).

Following [4] the study presented in this paper takes place in the mathemati-
cal framework of 1-bounded complete metric spaces. We assume known the no-
tions of metric and ultrametric space, isometry (distance preserving bijection
between metric spaces; we denote it by ’∼=’) and completeness of metric spaces.
If (X, dX), (Y, dY) are metric spaces we recall that a function f : X → Y
is a contraction if ∃c ∈ R, 0 ≤ c < 1: ∀x1, x2 ∈ X: dY (f(x1), f(x2)) ≤
c·dX(x1, x2). Also, f is called non-expansive if dY (f(x1), f(x2)) ≤ dX(x1, x2).
We denote the set of all c -contracting (nonexpansive) functions from X to Y

by X
c−→Y (X

1−→Y).

Theorem 2.1. (Banach) Let (X, dX) be a non-empty complete metric space.
Each contracting function f : X → X has a unique fixed point.

For any set (a, b ∈)A the so-called discrete metric dA is defined as follows:
dA(a, b) = if a = b then 0 else 1. (A, dA) is a complete ultrametric space.

Definition 2.1. Let (X, dX), (Y, dY) be (ultra) metric spaces. On (x ∈)X,
(f ∈)X → Y (the function space), ((x, y) ∈)X × Y (the cartesian product),
(u, v ∈)X tY (the disjoint union) and on (U, V ∈)P(X) (the power set of X)
we can define the following metrics:

(a) d 1
2
·X : X ×X → [0, 1], d 1

2
·X(x1, x2) = 1

2 · dX(x1, x2)

(b) dX→Y : (X→Y)× (X→Y)→[0, 1]
dX→Y (f1, f2) = supx∈XdY (f1(x), f2(x))

(c) dX×Y : (X × Y)× (X × Y)→[0, 1]
dX×Y ((x1, y1), (x2, y2)) = max{dX(x1, x2), dY (y1, y2)}

(d) dXtY : (X t Y)× (X t Y)→[0, 1]:
dXtY (u, v) =

if u, v ∈ X then dX(u, v) else if u, v ∈ Y then dY (u, v) else 1
(e) dH : P(X)× P(X)→[0, 1] is the Hausdorff distance defined by:

96 ENEIA NICOLAE TODORAN

dH(U, V) = max{supu∈Ud(u, V), supv∈V d(v, U)}
where d(u,W) = infw∈Wd(u,w) (by convention sup∅ = 0, inf∅ = 1).

Given a metric space (X, dX) a subset A of X is called compact whenever
each sequence in A has a convergent subsequence with limit in A. We will use
the abbreviations Pco(·) (Pnco(·)) to denote the power set of compact (non-
empty and compact) subsets of ’·’.
Remark 2.1. Let (X, dX), (Y, dY), d 1

2
·X , dX→Y , dX×Y , dXtY and dH be as in

definition 2.1. In case dX , dY are ultrametrics, so are d 1
2
·X , dX→Y , dX×Y ,

dXtY and dH . If in addition (X, dX), (Y, dY) are complete then (X, d 1
2
·X),

(X → Y, dX→Y), (X
1−→Y, dX→Y), (X×Y, dX×Y), (XtY, dXtY), (Pco(X), dH)

and (Pnco(X), dH) are also complete metric spaces. In the sequel we will often
suppress the metrics part in domain definitions. In particular we will write
1
2 ·X instead of (X, d 1

2
·X).

2.1. Structure of Continuations. In the CSC approach a continuation is an
application-specific structure of computations. Intuitively, a CSC-based model
is a semantic formalization of a process scheduler which repeatedly selects and
activates computations contained in a continuation [16]. Let (x ∈)X be a
complete metric space. Following [16, 7, 8] we define the domain of CSC
with the aid of a set (α ∈)Id of (process) identifiers and we use the following
notation:

{|X|} not.= Pfinite(Id)× (Id→ X)

We let π range over Pfinite(Id). Let (π, φ) ∈ {|X|}, where φ ranges over
Id→ X. We define id : {|X|} → Pfinite(Id), id(π, φ) = π. We use the follow-

ing abbreviations: (π, φ)(α)
not.
= φ(α), (π, φ) \ π′ not.= (π \ π′, φ), ((π, φ) | α 7→ x)

not.
= (π ∪ {α}, (φ | α 7→ x)). The operations id, (·)(α), (·) \ π and (· | α 7→ x)

are further explained in [7, 8].
We treat (π, φ) as a ’function’ with finite graph {(α, φ(α)) | α ∈ π}, thus

ignoring the behaviour of φ for any α /∈ π (π is the ’domain’ of the ’function’).
Essentially, a structure (π, φ) is a finite partially ordered bag (or multiset)1 of
computations.

We also use the following notation:

[X]
not.
= N× (N+ → X)

We let ι range over (ι ∈)N and ϕ range over (ϕ ∈)N → X. N is the set of
natural numbers, and N+ = N \ {0} (the set of positive natural numbers).

1A partially ordered multiset is a more refined structure; see, e.g., chapter 16 of [4].

METRIC SEMANTICS FOR REMOTE PROCESS DESTRUCTION AND CLONING 97

We use a structure (ι, ϕ) ∈ [X] to model a stack of elements of the type
X. We define [](·) : [X], empty(·) : [X] → Bool, (· : ·) : X × [X] → [X],
hd(·) : [X]→ (X ∪ {↑}) and tl(·) : [X]→ ([X] ∪ {↑}) as follows

[]x = (0, λι.x)

empty(ι, ϕ) = (ι = 0)

x : (ι, ϕ) = (ι+ 1, (ϕ | ι+ 1 7→ x))

hd(ι, ϕ) =

{
↑ if ι = 0
ϕ(ι) if ι > 0

tl(ι, ϕ) =

{
↑ if ι = 0
(ι− 1, ϕ) if ι > 0

Remarks 2.1.
(a) If we endow Id, Pfinite(Id) and N with discrete ultrametrics, then
{|X|} and [X] are also a complete ultrametric space. {|X|} and [X]
are composed spaces built up using the composite metrics of definition
2.1.

(b) We use the set (α ∈)Id (of process identifiers) together with a func-
tion ν : Pfinite(Id)→Id, defined such that ν(A) /∈ A, for every
A ∈ Pfinite(Id). A possible example of such a set Id and function ν
is Id = N and ν(A) = max(A) + 1, with ν(∅) = 0.

(c) Throughout this paper the symbol ↑ denotes an undefined value.
(d) []x is an empty stack, for any x ∈ X.

3. A simple uniform language with synchronization

In this section we apply the CSC technique in the definition of a denota-
tional semantics for a simple concurrent language Lsyn with synchronization.
Lsyn is essentially based on Milner’s CCS [14]. The language Lsyn provides
atomic actions, recursion, action prefixing (in the form a;s), nondeterministic
choice (s1+s2) and parallel composition (s1‖s2). We assume given two sets
(c ∈)Sync and (c ∈)Sync = {c | c ∈ Sync} of synchronization actions, and a
set (b ∈)IAct of internal actions. We define (a ∈)Act = IAct ∪ Sync ∪ Sync,
and let τ be a special symbol, τ /∈ Act. We also assume given a set (x ∈)PV ar
of procedure variables. Synchronization in Lsyn is achieved by the execution
of a pair c, c. First, the c-step is executed. It is followed immediately by the
corresponding c-step. There are no actions interspersed between c and c. The
order is important here: the c-step is always executed first. A c-step is an
abstract model of a send operation, while a c-step is an abstract model of a

98 ENEIA NICOLAE TODORAN

receive operation. The approach to recursion in Lsyn is based on declarations
and guarded statements [4].

Definition 3.1. (Syntax of Lsyn)

(a) (Statements) s(∈ Stat) ::= a | a;s | x | s+s | s‖s
(b) (Guarded statements) g(∈ GStat) ::= a | a;s | g+g | g‖g
(c) (Declarations) (D ∈)Decl = PV ar→GStat; following [4] we as-

sume a fixed declaration D !
(d) (Programs) (ρ ∈)Prog = Decl × Stat

The denotational semantics functionD is of the type (D ∈)SemD = Stat→D,
where D is defined by the following system of domain equation (isometry be-
tween complete metric spaces):

D ∼= (Id×Kont)
1−→Γ→ P

(γ ∈)Γ = {↑Γ} ∪ Sync

(κ ∈)Kont = {| 1
2
·D|}

(p ∈)P = Pnco((IAct ∪ {τ})∞)

The construction {| 12 · D|} was explained in Section 2.1. In the ’equations’

above, the sets Id, {↑Γ} ∪Sync and IAct∪ {τ} are endowed with the discrete
metric (which is an ultrametric). The elements γ of the set (γ ∈)({↑Γ} ∪ Sync)
contain synchronization information.

The space (IAct ∪ {τ})∞ contains all finite (possibly empty) and infinite
sequences over (IAct ∪ {τ}). (IAct ∪ {τ})∞ is an instance of the following:

Definition 3.2. Let (x ∈)X be a nonempty complete space. The space X∞

is defined by the equation X∞ ∼= {ε} t (X × 1
2 · X

∞). ε models the empty
sequence. The elements of X∞ are finite or infinite sequences over X. In-
stead of (x1, (x2, . . ., (xn, ε). . .)), and (x1, (x2, . . .)) we write x1x2. . .xn, and
x1x2. . ., respectively. We use the symbol ”·” as a concatenation operator over
sequences. In particular we write x·q = (x, q), for any x ∈ X and q ∈ X∞; we
also write x · p = {x · q | q ∈ p} for any x ∈ X and p ∈ Pnco(X∞).

Definition 3.3. We let q range over Q = (IAct ∪ {τ})∞. We define +,⊕ :
P×P→ P as follows:

p1 + p2 = {q | q ∈ p1 ∪ p2, q 6= τ} ∪ {τ | τ ∈ (p1 ∩ p2)}
p1 ⊕ p2 = {q | q ∈ p1 ∪ p2, q 6= ε} ∪ {ε | ε ∈ (p1 ∩ p2)}

For any γ ∈ ({↑Γ} ∪ Sync) we also define ⊕γ : P×P→ P by:

p1 ⊕γ p2 = if γ =↑Γ then p1 + p2 else p1 ⊕ p2

METRIC SEMANTICS FOR REMOTE PROCESS DESTRUCTION AND CLONING 99

Definition 3.4. (Denotational semantics for Lsyn) Let C+ : Kont→ P and

C⊕ : Kont→ (Sync× Id)→ P be given by:

C+(κ) = if (id(κ) = ∅) then {ε} else +α∈id(κ) κ(α)(α, κ \ {α})(↑Γ)
C⊕(κ)(c, α) = if (id(κ) \ {α} = ∅) then {ε}

else ⊕α∈(id(κ)\{α}) κ(α)(α, κ \ {α}, c)
We define the denotational semantics function D : Stat→ D as follows:

D(b)(α, κ)(γ) = if γ =↑Γ then τ ·b·C+(κ) else {ε}
D(b;s)(α, κ)(γ) = if γ =↑Γ then τ ·b·C+(κ | α 7→ D(s)) else {ε}
D(c)(α, κ)(γ) = if γ =↑Γ then τ ·C⊕(κ)(c, α) else {ε}
D(c; s)(α, κ)(γ) = if γ =↑Γ then τ ·C⊕(κ | α 7→ D(s))(c, α) else {ε}
D(c)(α, κ)(γ) = if γ =↑Γ then {τ}

else if γ = c then τ ·C+(κ) else {ε}
D(c; s)(α, κ)(γ) = if γ =↑Γ then {τ}

else if γ = c then τ ·C+(κ | α 7→ D(s)) else {ε}
D(x)(α, κ)(γ) = D(D(x))(α, κ)(γ)

D(s1 + s2)(α, κ)(γ) = D(s1)(α, κ)(γ) ⊕γ D(s2)(α, κ)(γ)
D(s1 ‖ s2)(α, κ)(γ) = D(s1)(α1, (κ | α2 7→ D(s2)))(γ) ⊕γ

D(s2)(α2, (κ | α1 7→ D(s1)))(γ)

where in the last clause α1 = ν(id(κ)), α2 = ν(id(κ) ∪ {α1}).
Let b0 ∈ IAct be a distinguished internal action. Let κ0 = (∅, λα.D(b0)) and

α0 = ν(∅). We define D[[·]] : Stat→P by

D[[s]] = D(s)(α0, κ0)(↑Γ)

Following [16], we use the term process to denote a computation (partially
evaluated denotation) contained in a continuation. Synchronization is modeled
as in [16]. Some explanations may help.

• In the yield of D successful synchronization is modeled by two con-
secutive τ -steps (ττ), which correspond to some pair c, c of synchro-
nization actions. Single τ steps are used to model deadlock. They
can only be produced by unsuccessful synchronization attempts and
they are removed from the yield of D as long as there are alterna-
tive computations. This is expressed in the definition of the operator
+. The operator ⊕ describes the behavior of the system in those
states where a synchronization attempt occurred. Thus a τ -step has
been produced and its pair is expected. No other action is possible.
If some process produces a τ step then the computation continues.
The computation stops only if all processes are unable to produce
the expected τ -step. This is marked by the empty sequence ε in the
yield of D. In those states where synchronization succeeds by the

100 ENEIA NICOLAE TODORAN

contribution of some concurrent process, ⊕ removes the eventual ε’s
from the final yield of D. It is easy to check that the operators +,⊕
and ⊕γ (for any γ ∈ ({↑Γ}∪Sync)) are well-defined, nonexpansive,
associative, commutative and idempotent [4].
• Note that the execution of an internal action b ∈ IAct is also preceded

by a τ -step. In the CSC approach this is necessary only if we want
to obtain a denotational model which is correct with respect to a
corresponding operational model; further explanations are provided
in [16].
• A process can not synchronize with itself. The function C⊕ receives

as parameter the process identifier of the current process, and chooses
some other process for synchronization.

Remark 3.1. D can be formally defined as fixed point of an appropriate higher
order contraction. In Section 4 we give the details of such a proof for a more
complex language. For Lsyn, the proof can proceed by induction on the follow-
ing complexity measure: c : Stat→N, c(a) = c(a;s) = 1, c(x) = 1 + c(D(x)),
c(s1 + s2) = c(s1‖s2) = 1 +max{c(s1), c(s2)}; the mapping c is well-defined
due to our restriction to guarded recursion [4].

Examples 3.1.
• D[[c ‖ c]] = D(c ‖ c)(α0, κ0)(↑Γ)

= D(c)(α1, (κ0 | α2 7→ D(c)))(↑Γ)⊕↑Γ D(c)(α2, (κ0 | α1 7→ D(c)))(↑Γ)
= τ · C⊕(κ0 | α2 7→ D(c))(c, α1) + {τ}
= τ · D(c)(α2, κ

′
0)(c) + {τ} = τ · τ · C+(κ′0) + {τ} [id(κ′0) = ∅]

= {ττ}+ {τ} = {ττ}
where α0 ∈ Id and κ0 ∈ Kont are as in Definition 3.4, α1 =
ν(id(κ0)), α2 = ν(id(κ0) ∪ {α1}), and κ′0 = (κ0 | α2 7→ D(c)) \ {α2}.
• D[[b1 + b2]] = {τb1, τb2}
• D[[(c+ b) ‖ c]] = {ττ, τbτ}

4. Remote Process Destruction and Cloning

The CSC technique can be used to design denotational (compositional) se-
mantics for various advanced control concepts, including: synchronous and
asynchronous communication [16], multiparty interactions [17, 8], maximal
parallelism [6, 9] and systems with dynamic hierarchical structure [9]. In
this work we use CSC to design a denotational semantics for an imperative
concurrent language Lpcsyn providing synchronous CSP-like synchronous com-
munication [10] together with constructions for process creation, and remote
process destruction and cloning.

We assume given a class of variables (v ∈)V ar, a set (e ∈)Exp of expressions,
and a set (x ∈)PV ar of procedure variables. We also assume given a class

METRIC SEMANTICS FOR REMOTE PROCESS DESTRUCTION AND CLONING 101

(c ∈)Chan of communication channels. We assume that the evaluation of
an expression (e ∈ Exp) always terminates and delivers a value in some set
(α ∈)V al. The set V al of values is assumed to be countably infinite.

Remark 4.1. The constructs for process control (new, kill, clone) operate
with process identifiers, which are elements of the given countably infinite set
(α ∈)Id introduced in Section 2.1. For simplicity (and without loss of gener-
ality), in the rest of this section we assume that the class (α ∈)Id of process
identifiers coincides with the class V al of vales: Id = V al.2

Definition 4.1. We define the syntax of Lpcsyn by the following components:

(a) (Statements) s(∈ Stat) ::= a | x | s+ s | s;s
(b) (Guarded statements) g(∈ GStat) ::= a | g + g | g;s
(c) (Declarations) (D ∈)Decl = PV ar → GStat
(d) (Programs) (ρ ∈)Prog = Decl × Stat

where a(∈ AStat) is given by:

a ::= skip | v := e | c!e | c?v | v := new(s) | kill(e) | v := clone(e)

We assume an approach to recursion based on declarations and guarded state-
ments (as in the previous section). Without loss of generality [4], in the rest
of this section we assume a fixed declaration D ∈ Decl and in all contexts we
refer to this fixed D. In Lpcsyn we have assignment (v := e), recursion, sequen-
tial composition (s; s), nondeterministic choice (s+ s), CSP-like synchronous
communication (given by the statements c!e and c?v) and constructions for
process creation (v := new(s)), remote process destruction (kill(e)) and re-
mote process cloning (v:= clone(e)). The net effect of a construct v := new(s)
is to create a new process with body s that runs in parallel with all other
processes in the system. A new process identifier is automatically generated
and assigned to v. In a kill(e) or v:= clone(e) statement, the expression e is
evaluated to some value α, which is interpreted as a process identifier.3 The
execution of a statement kill(e) kills the parallel runing process with identifier
α. When a v:= clone(e) statement is executed, a new process - identical to
the one with identifier α - is created and its identifier is assigned to v. The
constructs c!e and c?v are as in Occam [13]. Synchronized execution of two
actions c!e and c?v occurring in two parallel processes, results in the transmis-
sion of the current value of e along the channel c from the process executing

2For example, we could put Id = V al = N (N is the set of natural numbers) in which
case Exp would be a class of numeric expressions. However, it is straightforward to extend
the semantic model by using different support sets for the class of values and the class of
process identifiers.

3The statements kill(e) and v:= clone(e) are inoperative if the value of the expression e
(in the current state) is not a valid process identifier.

102 ENEIA NICOLAE TODORAN

the c!e (send) statement to the process executing the c?v (receive) statement.
The latter assigns the received value to the variable v.

4.1. Denotational Semantics. In the definition of the denotational seman-
tics for Lpcsyn we use the set (α ∈)Id of process identifiers and the constructions
{| · |} and [·] introduced in Section 2.1. In Lpcsyn each process has its own lo-
cal data. Values can be communicated between processes but there is no
shared memory area. We define a class (σ ∈)State = Id → V ar → V al of
(distributed) states. The meaning of (the local) variables of a process with
identifier α is given by σ(α). The evaluation of expressions in Lpcsyn is modeled
by a given valuation V : Exp→ (V ar → V al)→ V al. We recall that we take
V al = Id.

We design a denotational semantics function D for Lpcsyn. The type of D is
D : SemD = Stat→ D, where:

(ψ ∈)D ∼= (Id×Kont)
1−→(Ω× State)→ PD

(κ ∈)Kont = {| [
1

2
·D] |}

(ω ∈)Ω = {↑Ω} ∪ (Chan× V al)

(q ∈)Q = ({τ} ∪ State)∞

(p ∈)PD = Pnco(Q)

The construction ({τ} ∪ State)∞ was introduced in Definition 3.2. We assume
that τ /∈ State. For easier readability, we denote typical elements (c, α) of
Chan× V al(⊆ Ω) by c!α.

Remark 4.2. In the definition of the domain of continuatins Kont we use
the constructions {| · |} and [·] introduced in Section 2.1. A continuation of
type Kont = {| [12 ·D] |} is essentially a bag (multiset) of stacks of computa-

tions. An element of the type [12 ·D] is a stack of computations (denotations).
In this section we use the term process when referring to an element of the
type [12 ·D]. A stack of computations of the type [12 ·D] represents a process
(an execution thread with a local state) executed in parallel with all the other
processes contained in a continuation.

The domain of computations (denotations) D is given by a recursive do-
main equation. In the domain equations given above, the sets Id, Ω, and State
(and {τ}∪State) are endowed with discrete metrics (which are ultrametrics).

METRIC SEMANTICS FOR REMOTE PROCESS DESTRUCTION AND CLONING 103

According to [2] the solutions for D and Kont are obtained as complete ul-
trametric spaces.

The denotational semantics function is defined below as the fixed point of an
appropriate higher-order mapping. In Definition 4.2 the operators presented
in Definition 3.3 are adapted to Lpcsyn.

Definition 4.2. 4.2.1 Definition +,⊕ : PD ×PD→PD are defined by:

p1 + p2 = {q | q ∈ p1 ∪ p2, q 6= τ} ∪ {τ | τ ∈ (p1 ∩ p2)}
p1 ⊕ p2 = {q | q ∈ p1 ∪ p2, q 6= ε} ∪ {ε | ε ∈ (p1 ∩ p2)}

For any ω ∈ Ω we also define ⊕ω : P×P→ P by:

p1 ⊕ω p2 = if ω =↑Ω then p1 + p2 else p1 ⊕ p2

The operators +, ⊕ and ⊕ω are well-defined, nonexpansive, associative, com-
mutative and idempotent [4].

Definition 4.3. (Denotational semantics D for Lpcsyn) We define C+ : Kont→
State→ PD and C⊕ : Kont→ (Ω× Id× State)→ PD as follows:

C+(κ)(σ) =
let κ = κ \ {α′ | empty(κ(α′))} in
if id(κ) = ∅ then {ε}
else +

α∈id(κ)
hd(κ(α)) (α, (κ | α 7→ tl(κ(α))))(↑Ω , σ)

C⊕(κ)(ω, α, σ) =
let κ = κ \ {α′ | empty(κ(α′))} in
if id(κ) \ {α} = ∅ then {ε}
else ⊕

α∈(id(κ)\{α}) hd(κ(α)) (α, (κ | α 7→ tl(κ(α))))(ω, σ)

Let u ∈ UStat be given by:

u ::= skip | v := e | c!e | v := new(s) | kill(e) | v := clone(e)

The statements of the subclass UStat ⊆ AStat can not be executed in those
states where a communication attempt occurred.

Let α∗ be some distinguished value (α∗ ∈)V al. Let ψ∗ be some distinguished
computation ψ∗ ∈ D.

104 ENEIA NICOLAE TODORAN

We define Ψ ∈ SemD → SemD for S ∈ SemD(= Stat→ D) by:

Ψ(S)(u)(α, κ)(c!α, σ) = {ε} for any u ∈ UStat
Ψ(S)(skip)(α, κ)(↑Ω , σ) = τ ·σ·C+(κ)(σ)

Ψ(S)(v := e)(α, κ)(↑Ω , σ) = τ ·σassign·C+(κ)(σassign)
Ψ(S)(c!e)(α, κ)(↑Ω , σ) = τ ·C⊕(κ)(c!V (e)(σ(α)), α, σ)

Ψ(S)(c?v)(α, κ)(ω, σ) =

{τ} if ω =↑Ω

σrcv·C+(κ)(σrcv) if ω = c!α′

{ε} if ω = c′!α′

c′ 6= c
Ψ(S)(v := new(s))(α, κ)(↑Ω , σ) = τ ·σnew·C+(κ | αν 7→ S(s) : []ψ∗)(σnew)

where αν = ν(id(κ))
Ψ(S)(kill(e))(α, κ)(↑Ω , σ) = τ ·σ·C+(κ \ {α})(σ)

where α = V (e)(σ(α))
Ψ(S)(v := clone(e))(α, κ)(↑Ω , σ) = τ ·σclone·C+(κ | αν 7→ κ(α))(σclone)

where αν = ν(id(κ))
α = V (e)(σ(α))

Ψ(S)(x)(α, κ)(ω, σ) = Ψ(S)(D(x))(α, κ)(ω, σ)
Ψ(S)(s1 + s2)(α, κ)(ω, σ) = Ψ(S)(s1)(α, κ)(ω, σ) ⊕ω

Ψ(S)(s2)(α, κ)(ω, σ)
Ψ(S)(s1; s2)(α, κ)(ω, σ) = Ψ(S)(s1)(α, (κ | α 7→ S(s2) :κ(α)))(ω, σ)

where σassign = (σ | α, v 7→ V (e)(σ(α))) in the semantic equation for v := e,
σrcv = (σ | α, v 7→ α′) in the (second) semantic equation for c?v, σnew = ((σ |
α, v 7→ αν) | αν 7→ λv′.α∗) in the semantic equation for v := new(s), and
σclone = ((σ | α, v 7→ αν) | αν 7→ σ(α)) in the equation for v := clone(e).

We recall that ψ∗ is a distinguished computation ψ∗ ∈ D. The notation []ψ∗
was introduced in Section 2.1 as a mean to construct an empty stack.

We put D = fix(Ψ). Let α0 = ν(∅) and κ0 = ({α0}, λα.[]ψ∗). We define
D[[·]] : Stat→ State→ PD by

D[[s]](σ) = D(s)(α0, κ0)(↑Ω , σ)

The technique used to model synchronous interactions was introduced in [16]
and was already illustrated in this paper in Section 3. In the semantic equation
for process creation v := new(s) a new process executing the computation
D(s) is started in parallel with all processes contained in the continuation.
Process destruction is handled in the sematic equation for kill(e) by removing
the process with identifier α = V (e)(σ(α)), where α is the identifier of the
process which executes the statement kill(e) in the current state σ. Process
cloning is handled in the sematic equation for v := clone(e) by starting a clone
of the process with identifier α = V (e)(σ(α)), where α is the identifier of the

METRIC SEMANTICS FOR REMOTE PROCESS DESTRUCTION AND CLONING 105

process which executes the statement v := clone(e) and σ is the current state
of the distributed system.

The denotational semantics D is defined as the (unique) fixed point of the
higher-order mapping Ψ. Definition 4.3 is justified by Lemma 4.1, Lemma
4.2 and Banach’s fixed point theorem 2.1. Similar lemmas are given in [16].
We omit the proof of 4.1. To illustrate a proof technique specific of met-
ric semantics we present the proof of Lemma 4.2(c) by using and inductive
argument. For inductive reasonings, in the case of the language Lpcsyn one
can use the following complexity measure cs : Stat → N cs(a) = 1, for any
a ∈ AStat, cs(x) = 1 + cs(D(x)), cs(s1; s2) = 1 + cs(s1) and cs(s1 + s2) =
1 +max{cs(s1), cs(s2)}. The mapping cs is well defined due to our restriction
to guarded recursion [4].

Lemma 4.1. The mappings C+ and C⊕ (as introduced in Definition 4.3) are
well-defined. Also, for any κ1, κ2 ∈ Kont we have:

(a) d(C+(κ1,)C+(κ2)) ≤ 2·d(κ1, κ2) and
(b) d(C⊕(κ1), C⊕(κ2)) ≤ 2·d(κ1, κ2).

Lemma 4.2. For any S∈SemD, s∈Stat, α∈Id, κ∈Kont, ω∈Ω, σ∈State:
(a) Ψ(S)(s)(α, κ)(ω, σ) ∈ PD (it is well-defined),
(b) Ψ(S)(s) is nonexpansive (in κ) and
(c) Ψ is 1

2 -contractive in S.

Proof We only prove Lemma 4.2(c). It suffices to show that

d(Ψ(S1)(s)(α, κ)(ω, σ),Ψ(S2)(s)(α, κ)(ω, σ)) ≤ 1
2 · d(S1, S2).

We proceed by induction on cs(s). Two subcases.

Case s = (v := clone(e))
d(Ψ(S1)(v := clone(e))(α, κ)(ω, σ),

Ψ(S2)(v := clone(e))(α, κ)(ω, σ))
= 0 ≤ 1

2 · d(S1, S2)
Case s = x
d(Ψ(S1)(x))(α, κ)(ω, σ),Ψ(S2)(x)(α, κ)(ω, σ))
= d(Ψ(S1)(D(x)))(α, κ)(ω, σ),

Ψ(S2)(D(x))(α, κ)(ω, σ))
[cs(D(x)) < cs(x), ind. hypothesis]

≤ 1
2 · d(S1, S2)

�

Remark 4.3. When the CSC technique is employed in the semantic design,
(groups of) computations contained in a continuations can be manipulated as
data. By expoiting this facility in this paper we offer a denotational (compo-
sitional) semantics for remote process destruction and cloning. Our attempts

106 ENEIA NICOLAE TODORAN

to model such remote control operations by using only classic compositional
techniques have failed. In the classic direct approach to concurrency [4] the
semantic designer defines the various operators for parallel composition as
functions that manipulate final semantic values belonging to some power do-
main construction. The meaning of a process appears in the final yield of a
denotational mapping interleaved with the meanings of other parallel processes.
The problem with this approach is that the remote control operations consid-
ered in this paper may be executed long after the creation of the process. It it
does not seem possible to extract somehow the meaning of a process from an
element of a power domain, in order to remove (kill) it or to clone it. On the
contrary, in the CSC approach the semantic designer operates with partially
evaluated meaning functions (contained in continuations) which can easily be
manipulated to model such remote control operations.

Example 4.1. In this example we assume that Exp is a class of numeric
expressions and put V al = N. Consider the Lpcsyn program statement s(∈ Stat)

s = vnew := new(c!1); ((vclone := clone(vnew); kill(vnew); c?v) + v := 2)

Let σ ∈ Σ, αnewν = ν(id(κ0)) = ν({α0}) and αcloneν = ν({α0, α
new
ν }), where

κ0 ∈ Kont and α0 ∈ Id are as in Definition 4.3. Let σnew = ((σ | α0, vnew 7→
αnewν) | αnewν 7→ λv′.α∗), σ

clone
= ((σnew | α0, vclone 7→ αcloneν) | αcloneν 7→

σnew(αnewν)), σ
kill

= σ
clone

, σrcv = (σ
kill
| α0, v 7→ 1), σassign = (σnew | α0, v 7→

2). It is easy to check that:

D[[s]](σ) = D(s)(α0, κ0)(↑Ω , σ) = τ · σnew · D(s1)(α0, κ1)(↑Ω , σnew)

where s1 = (vclone := clone(vnew); kill(vnew); c?v) + v := 2, and κ1 = (κ0 |
α0 7→ []ψ∗ | αnewν 7→ D(c!1) : []ψ∗). We have:

D(s1)(α0, κ1)(↑Ω , σnew)

= D(vclone := clone(vnew); kill(vnew); c?v)(α0, κ1)(↑Ω , σnew)⊕↑Ω
D(v := 2)(α0, κ1)(↑Ω , σnew)

= D(vclone := clone(vnew))(α0, κ2)(↑Ω , σnew) + {τσassignτ}
where κ2 = (κ0 | α0 7→ D(kill(vnew); c?v) : []ψ∗ | αnewν 7→ D(c!1) : []ψ∗). Note
that a deadlock is detected after the execution of the assignment statement
v := 2 because (when v := 2 is selected for execution) the computation D(c!1)
contained in the continuation has no synchronization counterpart .

The execution of the statement vclone := clone(vnew) creates an copy of the
process with identifier αnewν which will run in parallel with the other processes.

D(vclone := clone(vnew))(α0, κ2)(↑Ω , σnew) = τ ·σ
clone
·C+(κ3)(σclone)

where κ3 = (κ0 | α0 7→ D(kill(vnew); c?v) : []ψ∗ | αnewν 7→ D(c!1) : []ψ∗ |
αcloneν 7→ D(c!1) : []ψ∗).

METRIC SEMANTICS FOR REMOTE PROCESS DESTRUCTION AND CLONING 107

After the cloning operation, the execution of the statement kill(vnew) re-
moves the process with identifier αnewν from the continuation. Next, after a
synchronization step the computation terminates. In the end we obtain:

D[[s]](σ) = {τσnewτσcloneτσkillτσrcv , τσnewτσassignτ}
where s = vnew := new(c!1); ((vclone := clone(vnew); kill(vnew); c?v) + v := 2).

5. Conclusion

The CSC technique can be used to design denotational (compositional) se-
mantics for various advanced control concepts, including: synchronous and
asynchronous communication [16, 7], maximal parallelism [6, 9], and multi-
party interactions [17, 8]. In this work we present a denotational semantics
designed with metric spaces and continuations for a concurrent language pro-
viding constructions for CSP-like synchronous communication in combination
with constructions for process creation, and remote process control (remote
process destruction and cloning). Various denotational models for process
creation have been developed [1, 15, 3, 4]. However, we are not aware of
any paper reporting a denotational model for remote process destruction and
process cloning.

The use of continuation semantics for concurrency (CSC) technique [16, 7]
proved to be fruitful. In the CSC approach the semantics of remote process
destruction and cloning can easily be modeled by appropriate manipulations
of the computations contained in continuations. We think that the CSC tech-
nique could be used to model remote process control operations in combina-
tion with various interaction mechanisms, including remote procedure call and
ADA-like rendezvous. The rendezvous programming concept was studied by
using techniques from metric semantics in several papers [15, 3, 4]. In the near
future we intend to study the formal relationship between the denotational and
the operational semantics of remote process destruction and cloning also by
using techniques from metric semantics [4].

References

[1] P. America and J.W. de Bakker, Designing Equivalent Semantic Models for Process
Creation, Theoretical Computer Science, vol. 60, 1988, pp. 109–176.

[2] P. America and J.J.M.M. Rutten, Solving Reflexive Domain Equations in a Category
of Complete Metric Spaces, Journal of Computer and System Sciences, vol. 39, 1989,
pp. 343–375.

[3] J.W. de Bakker and E.P. de Vink, Rendez-vous with Metric Semantics, New Generation
Computing, vol. 12, 1993, pp. 53–90.

[4] J.W. de Bakker and E.P. de Vink, Control Flow Semantics, MIT Press, 1996.

108 ENEIA NICOLAE TODORAN

[5] L. Cardelli, A Language with Distributed Scope, Proceedings of the 22nd Annual ACM
Symposium on Principles of Programming Languages, pp. 286–297, ACM Press, 1995.

[6] G Ciobanu and EN Todoran, Relating Two Metric Semantics for Parallel Rewriting
of Multisets, Proceedings of 14th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC 2012), pp. 273–280, IEEE Computer
Press, 2012.

[7] G. Ciobanu and E.N. Todoran, Continuation Semantics for Asynchronous Concurrency,
Fundamenta Informaticae, vol. 131(3–4), 2014, pp. 373–388.

[8] G Ciobanu and EN Todoran, Continuation Semantics for Concurrency with Multiple
Channels Communication, Formal Methods and Software Engineering - Proceedings of
17th International Conference on Formal Engineering Methods (ICFEM 2015), Lecture
Notes in Computer Science, vol. 9407, 2015, pp. 400–416.

[9] G Ciobanu and EN Todoran, Continuation Semantics for Dynamic Hierarchical Sys-
tems, Proceedings of 17th International Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing (SYNASC 2015), pp. 281–288, IEEE Computer Press,
2015.

[10] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.
[11] A.A. Holzbacher, A Software Environment for Concurrent Coordinated Programming,

Proc. 1st Int. Conference on Coordination Languages and Systems, Lecture Notes in
Computer Science, vol. 1061, 1996, pp. 249–267.

[12] D.B. Lange and M. Oshima, Programming and Deploying Java Mobile Agents with
Aglets, Addison Wesley, 1998.

[13] INMOS Ltd, Occam Programming Manual, Prentice-Hall, 1984.
[14] R. Milner, Communication and Concurrency, Prentice-Hall, 1989.
[15] J.J.M.M. Rutten, Semantic Correctnes for a Parallel Object-Oriented Language, SIAM

Journal of Computing, vol. 19, 1990, pp. 341–383.
[16] E.N. Todoran, Metric Semantics for Synchronous and Asynchronous Communication:

a Continuation-based Approach, Electronic Notes in Theoretical Computer Science,
vol. 28, 2000, pp. 101–127.

[17] E.N. Todoran and N. Papaspyrou, Experiments with Continuation Semantics for DNA
Computing, Proceedings of the IEEE 9th International Conference on Intelligent Com-
puter Communication and Processing (ICCP 2013), pp. 251–258, 2013.

[18] E.P. de Vink, Designing Stream Based Semantics for Uniform Concurrency and Logic
Programming, Ph.D thesis, Vrije Universiteit Amsterdam, 1990.

[19] Aglets portal site, 2004, http://aglets.sourceforge.net/

Computer Science Department, Technical University, Cluj-Napoca, Romania
E-mail address: eneia.todoran@cs.utcluj.ro

