
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXII, Number 2, 2017
DOI: 10.24193/subbi.2017.2.07

ROBBY: A NEUROROBOTICS CONTROL FRAMEWORK

USING SPIKING NEURAL NETWORKS

CĂTĂLIN V. RUSU, TIBERIU BAN, AND HOREA ADRIAN GREBLĂ

Abstract. The variety of neural models and robotic hardware has made
simulation writing time-consuming and error prone, forcing thus scientists
to spend a substantial amount of time on the implementation of their
models. We developed a framework called “Robby” that allows the quick
simulation of large-scale neural networks designed for robotic control by
spiking neural networks. It provides both mechanism for robotic communi-
cation and tools for building and simulating neural controllers. We present
the basic building blocks of “Robby” and a simple experiment to show its
practical value.

1. Introduction

As hardware becomes more diverse and affordable the need for controlling
different hardware platforms within similar contexts becomes more prominent.
The difficulty lies in the fact that each robot has a different underlying physical
layout with different programming interfaces. Thus, similar control programs
would have different implementations depending on the robotic platform. In
this context neural simulators, that are able to simulate large-scale neural
networks efficiently, and robotic frameworks, that allow them to interact with
robotic devices, are highly desirable. Such frameworks: (i) allow the facile
control of physical cognitive agents; (ii) enable scientist to spend less time on
programming details and more on detailing experiments; (iii) provide a basis to
easily explore theoretical principles in the context of real computational tasks
involving physical autonomous agents; (iv) help increase our understanding of
how large neural networks mediate cognitive functions. Popular frameworks
either provide a collection of software and algorithms focused on robot com-
munication, sensing and navigation while leaving the development of control

Received by the editors: October 20, 2017.
2010 Mathematics Subject Classification. 68T40.
1998 CR Categories and Descriptors. I.2.9 [Artificial Intelligence]: Robotics – Op-

erator interfaces.
Key words and phrases. neural simulators, robotic frameworks, cognitive robotics, spik-

ing neural networks.

83



84 CĂTĂLIN V. RUSU, TIBERIU BAN, AND HOREA ADRIAN GREBLĂ

programs (neural networks) to the user, like “Player/Stage” [1] (biased to-
wards wheeled robots) or “YARP” [2] (biased towards humanoid robotics),
or either provide limited support like “Pyro” [3] or “Orocos” [4]. Thus, it
would be of interest to have a system that provides both the abstraction layer
for robot communication and the logic to support the development of neural
controllers. We introduce “Robby”, a flexible and distributed framework for
robotic control with spiking neural networks, ideal for large-scale simulations.
It enables the control of robotic platforms occupying different physical loca-
tions by multiple types of neural networks. In the framework, controllers are
primarily neural networks, but in principle they can be any user-defined con-
troller. Additional support for joystick controllers is provided to allow direct
manipulation of devices. While this setup might seem restrictive it is sufficient
for common simulations in neurobotics while keeping the architecture of the
system simple. Since “Robby” makes easy to simulate and explore spiking
neural networks with different architectures and properties with the aim of
training autonomous robots it could be of interest to the scientific community
interested in cognitive robotics. In the following we present the basic principles
behind “Robby” and provide several future development directions together
with a simple evaluation to show its use.

2. Architecture and implementation details

Low level programming is tedious because it requires a deep understanding
of the underlying hardware platform and knowledge of complex languages
and programming interfaces. As complex behavior generally requires complex
hardware, a large amount of time is spent on writing even the most basic
simulations. Essentially, “Robby” is a fast and lightweight platform aimed at
simulating spiking neural networks and facilitating the control of various types
of robotic devices. From a software development point of view it is written
to promote reusability, extensibility and flexibility. The time spent writing
code is thus minimized and scientists are able to spent more time modeling
rather than setting up complex environments and debugging. The framework
is written in C++ and adheres to the POSIX standards. Even if C++ is
considered to be a high level language, it offers the means to interact at low
level with the hardware in an efficient and portable way.

The architecture of “Robby” is modular. It consists of a control structure
(the server), a behavioral component (the client) and a commons component
(Fig. 1). The server is in strict relation with devices through an instantiation
of corresponding drivers. It forwards commands received from clients, and
awaits and reads replies from devices. Besides providing the communication
functionality it also provides an interface to plot the raw sensory data received



ROBBY: A NEUROROBOTICS CONTROL FRAMEWORK 85

Server

ClientHandler

SensorHandler

RobotCommunication

Common

NeuralSimulator

NeuralRecorder

RobotDriver

ImageProcessing

SensorInterface

Logging
Client

TCPWriterInterface

TCPReaderInterface

ControllerInterface

NeuralController

JoystickController

Threading

SimpleController

World

Simulator

Figure 1. ”Robby” architecture.

from the devices together with basic communication cycle parameters. The
client reads data from the controller and maps it into robot commands which
are later sent to the server where they are processed and forwarded. After it
sends them to the server it awaits a reply before notifying the controller that
the communication cycle is over. A controller implements the ControllerIn-
terface and runs in a separate thread. Currently the available controller types
are: a NeuralController which is a spiking neural network and a JoystickCon-
troller which is useful for direct manipulation of devices. To allow flexibility,
other user-defined controller types can be added with the restriction that they
must implement the ControllerInterface. The common component contains
the neural simulator which facilitates the creation and simulation of spiking
neural networks [5], device drivers and various image processing algorithms like
Laplacian of Gaussian and log-polar filters [6, 7] used to process device video
data. Other sensorial controllers can be added provided that they implement
the ControllerInterface.

This server/client strategy acts as proxy between the client controller and
server driver entities to increase flexibility in control and allow the controller
and robot to be in different locations with server and client communication
mediated through Ethernet. Besides this obvious geographical benefit, such
a separation allows the decoupling between the computationally inexpensive
communication process and the highly time consuming simulations performed
by the controller. What is actually transmitted through the TCP channel are



86 CĂTĂLIN V. RUSU, TIBERIU BAN, AND HOREA ADRIAN GREBLĂ

robotic commands embedded into packets. Their aim is to keep communica-
tion uniform and enable a seamless control of many types of robots. Each
package contains the command together with parameters and optional sensor
values. Thus, as long as a physical connection between the server and the
robotic device can be initiated multiple controllers and devices can co-exist.
“Robby” makes no assumption about the connection medium between the
server and the robotic devices, but, as stated previously, a driver needs to be
supplied. Efforts are made to increase the number of supported connection
types, but currently only drivers for devices with serial connections are pro-
vided. Fig. 2 depicts the communication processes inside “Robby”. The client
and server communicate by using TCP sockets. At the server side, communi-
cation between devices and the server could be achieved via bluetooth, wireless
or serial depending on the device capabilities. At the client side, communi-
cation between the client and the controller is achieved by using a common
memory buffer guarded by a critical section. This setup allows the existence of
multiple controllers at the same time. Any of the controllers can be replaced
by other controllers if they comply with the ControllerInterface.

TCP/IPRobot ControllerClientServer

Shared
Memory

Bluetooth/Serial/
Wifi

Figure 2. ”Robby” Communication. Communication be-
tween the server and client is implemented using the TCP/IP
protocol.



ROBBY: A NEUROROBOTICS CONTROL FRAMEWORK 87

While the speed of the simulation itself arguably is not important for de-
tailed modeling of complex biophysical entities and small simulations, in the
case of large-scale simulations for the purpose of robotic control it still remains
an important constraint. Such simulations of large neural systems consisting
of thousands of neurons are heavily time consuming because of the amount of
interaction in the network which needs to be evaluated. As memory becomes
an inexpensive commodity the trade-off between memory usage and simula-
tion speed needs to be carefully investigated. Recent computing optimization
techniques [8, 9] propose the usage of lookup tables to avoid the repeated com-
putation of a value. Thus the runtime computation of what might be expensive
is replaced with a simple indexing operation with constant complexity. These
approaches increase code size and memory consumption, but the speed gain
outweighs the cost. “Robby” implements lookup tables to improve the perfor-
mance when simulating large neural networks. They are used when computing
postsynaptic responses, a process that involves, for some neural models, repet-
itive evaluations of exponential functions. In addition, when simulating neural
networks some operations are independent and can be executed in parallel (for
example the update of a neuron membrane potential). These operations are
implemented using OpenMP directives [10] to allow multi-threading.

3. Robby as a framework for robot learning

As outlined in previous sections, “Robby” is designed for the simulation of
large-scale neural networks for robotic control in a computationally efficient
way with as little code as possible. It is able to simulate different types of spik-
ing neurons at different levels of detail. In the current implementation, the
available models are the integrate-and-fire [5] and Izhikevich [11]. Because of
its simplicity the integrate-and-fire neuron is commonly used in large-scale sim-
ulations [12, 13, 14] while the Izhikevich neuron can reproduce the complex be-
havior observed only at more detailed models while at the same time allowing
an efficient implementation [11]. Thus, this selection of neuron models albeit
small is sufficient, since complex models are computationally expensive and
networks composed out of them would not be feasible as robotic controllers.
Different types of static and dynamic synapses together with various plastic-
ity rules (short-term plasticity [15], spike-timing-dependent plasticity (STDP)
[16], synaptic scaling [17] or intrinsic neuronal plasticity [18]) are available in
order to facilitate learning. In the case of static synapses a fixed current is
injected into the postsynaptic neuron at the time of the presynaptic activation
while dynamic synapses feature facilitation or depression mechanisms. In ad-
dition, different supervised learning rules for spiking neural networks [19, 20]



88 CĂTĂLIN V. RUSU, TIBERIU BAN, AND HOREA ADRIAN GREBLĂ

together with reward modulated spike-timing-dependent plasticity [21] are im-
plemented in order to create a framework for reinforcement learning [22].

In the following we present a simple experiment to demonstrate some of
the features of “Robby” and their application. Consider the setup presented

Image

Image
get image

im
a

g
e

 filte
rin

g

s
p

ik
e

 c
o

d
in

g

E-puck

Figure 3. Experiment setup. A spiking neural network con-
trolled an E-puck robot located in a rectangular arena. The
network received as input the video information from a camera
mounted on top of the robot and controlled the motor activa-
tion.

in Fig. 3. An E-puck robot with an externally mounted camera navigated
through a rectangular arena which contained no obstacles. The controller of
the robot was a spiking neural network with three layers of neurons. The first
and third served as sensor and motor neurons respectively.

The input neurons conveyed video information about the environment.
More precisely, the pixels of the image received from the camera were av-
eraged to provide input for the 400 input neurons. These activation values
were normalized between 0 and 1. The input neurons fired Poisson spike
trains with rate proportional to the activation, between 10 and 50 Hz. The
400 output neurons served as motor neurons, 200 for each motor (left and



ROBBY: A NEUROROBOTICS CONTROL FRAMEWORK 89

right). Each of these neuron populations is further divided into two 100 neu-
ron pools. These two pools of neurons are assigned to one motor with its
speed proportional to their corresponding average firing rate. The spikes were
converted to effector activation by integrating them with a leaky accumulator
of time constant τ = 500 ms. The activation of two 100 motor neurons popu-
lations were averaged to yield the activation of one effector at a timestep. In
this antagonistic setup given the activation a+ and a− of the two 100 neuron
populations, the motor was given a relative command (a+ + a−). The net-
work was thus composed out of 400 input neurons and 400 motor neurons.
The network also had 1500 hidden neurons. All the neurons were modeled as
integrate-and-fire. Each non-input neuron in the network sent connections to
30% of hidden and motor neurons. Input neurons projected onto 45% of the
hidden neurons. All the connections were chosen randomly from the uniform
distribution. The connections between the first and second layer together with
the recurrences within the hidden layer were static spiking synapses while to
ones that projected onto the motor neurons were static STDP synapses. In
this simple experiment the goal of the robot was to freely explore the environ-
ment for 15 seconds. The distance traveled by the robot from the initial point
is depicted in Fig. 4. It was computed from the information received from
a camera located on top of the environment which recorded every position of
the robot. The distribution of synaptic weights of a randomly selected motor
neuron at the beginning and at the end of the simulation together with the
activation values of the motors received at each timestep are also depicted in
Fig. 4. The resulted bimodal weight distribution is consistent with experimen-
tal results [16]. The duration of a simulation step which includes the timestep
of the neural controller together with the time required to send data to and
from the robot has on average the value of 70 ms (see Fig. 4). Due to the low
data transfer rates of the robot connection the duration of the communication
cycle increases to an average of 400 ms if the video from the E-puck on-board
camera is transmitted instead from the external camera on top of the robot.
This value is dependent upon the settings of the camera like for example num-
ber of pixels or color depth. Although this experiment is simplistic it presents
some of the basic features of “Robby” and how they can easily be used in the
context of robot learning and control with spiking neural networks.

The experiment was aimed to present the flexibility of the framework that
had been developed around Robby. As previously stated, this framework has a
major advantage of being able to include elements of supervised learning rules
with respect to the goal of achieving results in reinforced learning.

The next step that is under development is to apply the neural network
framework of Robby to a new business domain in gathering information from



90 CĂTĂLIN V. RUSU, TIBERIU BAN, AND HOREA ADRIAN GREBLĂ

Figure 4. Experiment results. (a) The weight distribution of
a randomly selected motor (output) neuron at t = 0 s (dashed
line) and t = 15 s. (b) The distance traveled by the robot from
the initial point. (c) The duration of a simulation step in ms.
(d) The activation value of each motor.

patterns of mistakes found by analysing test papers, as presented as a theoret-
ical approach in [23]. Results already obtained in developing a mathematical
model [24] proved that in order to maximize the robustness of the framework,
elements of unsupervised learning (i.e. generation of frequent item sets and
determining association rules) need to be linked with elements of supervised
learning, in order to prune out coincidental occurrences that are not relevant
in terms of knowledge gathered as patterns of mistakes.

So far results from [24] as well as [23] were heavily based on rationales that
followed strongly the mathematical model of association rules. This business
domain can be extended with a new approach, incorporating elements of neural
networks in addition to the existing mathematical model. Using the framework
of Robby the goal is to include results gathered from association rules and



ROBBY: A NEUROROBOTICS CONTROL FRAMEWORK 91

frequent item set discovery in order to modify existing algorithms based on
neural networks that are currently used in credit card fraud detection, in
order to study the possibility of predicting frauds in evaluation tests, based
on patterns of mistakes.

4. Conclusion

We have introduced a flexible distributed control framework for robotic
interaction with spiking neural networks ideal for large-scale simulations. Our
aim was to create a multi-threaded, flexible, lightweight framework which
promotes code reuse. “Robby” is not intended to be a multi-purpose tool,
but it proved to be a convenient tool for quickly exploring new ideas and
write experiments with a small amount of code. At the current stage in the
development the number of supported robotic platforms and neuron models is
still limited. Future plans include support for further commonly used robotic
devices and neuron models.

References

[1] B.P. Gerkey, R.T. Vaughan, K. Stoy, A. Howard, G.S. Sukhatme, and M.J. Mataric.
Most Valuable Player: A Robot Device Server for Distributed Control. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Wailea,
Hawaii, 2001.

[2] P. Fitzpatrick, G. Metta, and L. Natale. Towards long-lived robot genes. Robotics and
Autonomous Systems, 56(1):29–45, 2008.

[3] D.S. Blank, D. Kumar, L. Meeden, and H. Yanco. Pyro: A python-based versatile
programming environment for teaching robotics. Journal of Educational Resources in
Computing, 2004.

[4] Bruyninckx H. Open robot control software: the orocos project. 2001.
[5] W. Gerstner and W. Kistler. Spiking neuron models: Single neurons, populations, plas-

ticity. Cambridge University Press, 2002.
[6] R. Haralick and L. Shapiro. Computer and Robot Vision. Addison-Wesley Publishing,

1992.
[7] G. Wolberg and S. Zokai. Robust image registration using log-polar transform. IEEE

International Conference on Image Processing, 2000.
[8] M. Hall and J. Mayfield. Improving the Performance of AI Software: Payoffs and Pitfalls

in Using Automatic Memoization. Proceedings of the Sixth International Symposium
on Artificial Intelligence, Monterrey, Mexico, 1993.

[9] M. Hall and J.P. McNamee. Improving software performance with automatic memoiza-
tion. Johns Hopkins APL Technical Digest, 18(2), 1997.

[10] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and J. McDonald. Parallel
Programming in OpenMP. Morgan Kaufmann, 2000.

[11] E. M. Izhikevich. Simple model of spiking neurons. IEEE Transactions on Neural Net-
works, 14:1569–1572, 2003.

[12] Brunel N. The evidence for neural information processing with precise spike-times: A
survey. Natural Computing, 3:195–206, 2000.



92 CĂTĂLIN V. RUSU, TIBERIU BAN, AND HOREA ADRIAN GREBLĂ

[13] Cessac B and Vieville T. On dynamics of integrate-and-fire neural networks with adap-
tive conductances. Frontiers in Computational Neuroscience, 2, 2008.

[14] Soula H. Alwan A. and Belson G. Learning at the edge of chaos: Temporal coupling of
spiking neuron controller for autonomous robotics. 2005.

[15] L.F. Abbott and W.G. Regehr. Synaptic computation. Nature, 431:796–803, 2004.
[16] S. Song, K. D. Miller, and L. F. Abbott. Competitive hebbian learning through spike-

timing-dependent synaptic plasticity. Nature Neuroscience, 3:919–926, 2000.
[17] G.G Turrigiano and S. B. Nelson. Homeostatic plasticity in the developing nervous

system. Nature Reviews Neuroscience, 5:97–107, 2004.
[18] W. Zhang and D. J. Linden. The other side of the engram: Experience-driven changes

in neuronal intrinsic excitability. Nature Reviews Neuroscience, 4:885–900, 2003.
[19] F. Ponulak. ReSuMe-new supervised learning method for Spiking Neural Networks. In-

ternational Conference on Machine Learning, ICML, 2005.
[20] R. Florian. The chronotron: a neuron that learns to fire temporally-precise spike pat-

terns. PLoS ONE, 7(8), 2012.
[21] R. Florian. Reinforcement learning through modulation of spike-timing-dependent

synaptic plasticity. Neural Computation, 19(6):1468–1502, 2007.
[22] Sutton RS and Barto AG. Reinforcement learning. 1998.
[23] Ban T. Fuzzy computing for complexity level of evaluation tests. Studia Universitatis

Babes-Bolyai, Seria Informatica, LVIII:81–93, 2013.
[24] Ban T. Generating and assessing test papers complexity using predictions in evolution-

ary algorithms. 2009.

Department of Computer Science, Faculty of Mathematics and Computer Sci-
ence, Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: rusu@cs.ubbcluj.ro

E-mail address: tiberiu@cs.ubbcluj.ro

E-mail address: horea@cs.ubbcluj.ro


