
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXII, Number 2, 2017
DOI: 10.24193/subbi.2017.2.06

IMPROVING PROGRAM COMPREHENSION THROUGH

DYNAMIC CODE ANALYSIS

ROBERT FRANCISC VIDA

Abstract. Most of the software that is currently being developed in the
industry tends to be very complex and it is safe to assume that a lot
of future software projects will keep escalating in their complexity. This
means that developers need to keep track of numerous aspects of their
system at all time and that new additions to the team will have difficulty
adjusting to projects. In this paper, we will propose a set of techniques
that combine already existing dynamic code analysis concepts to resolve
the aforementioned problems, which can be summarized as being program
comprehension difficulties. To do this we introduce a few novel software
analysis and visualization techniques that facilitate program comprehen-
sion. The approach proposed within this paper allows for easy identifica-
tion of semantic information, data available at execution time, which might
be difficult or even impossible to portray in an easy to understand represen-
tation using existing software visualization techniques. During this paper
we will be considering traditional object oriented programming languages,
however these ideas should be useful in the context of other programming
paradigms as well.

1. Introduction

It is safe to say that currently, all over the world, there are many software
systems being developed for different purposes. Obviously, the size and scope
of these projects may vary but all of them have a certain degree of complexity,
which, as stated in [10], is one of the leading causes of failure in the industry.
That being said, we believe that if the developers have a good understanding
of the system at all times, they will be able to minimize complexity growth

Received by the editors: November 30, 2017.
2010 Mathematics Subject Classification. 68N01, 68M20.
1998 CR Categories and Descriptors. K.6.3 [Management of computing and in-

formation systems]: Software Management – Software maintenance; D.2.5 [Software
Engineering]: Testing and Debugging – Tracing .

Key words and phrases. Dynamic code analysis, program comprehension, software
visualization.

69



70 ROBERT FRANCISC VIDA

as new features are added or maintenance is performed, this in turn reducing
the risk of project failure.

The goal of this paper is to explore new techniques that might reduce the
change of developers needlessly adding complexity to their software system.
This is done by aiding them to better understand the behavior of their system
while also helping new additions to the team gain knowledge about the system
in an easier manner. This is called program comprehension. Most of the tech-
niques that we will present rely on dynamic program analysis and have been
designed specifically for object oriented programming, however they might be
relevant for other programming paradigms as well.

The remainder of this paper is organized as follows. Explaining what pro-
gram comprehension is and why we need it in Section 2. Section 3 presents
dynamic program analysis and why it was chosen over its static counterpart,
as well as describing the importance of software visualization and how it can
be used. In Section 4 we review existing solutions for software visualization
and list a few tools which can be used in order to enhance program compre-
hension and discuss their strengths and shortcomings. We present our original
approach and provide a few detailed examples to better explain the techniques
along with their concepts in Section 5. In Section 6 we mention a prototype
that facilitates some of the techniques discussed and finally, in Section 7, we
have the conclusion of this paper along with a few ideas for potential future
work.

2. Program Comprehension

One of the most important things to consider before altering code is how
much of it is actually understood by the person performing the change. It is
imperative for the developer to fully understand, in as much detail as possible,
how the program works before attempting to modify it since the chances of
damaging the existing system are direct proportional with the size of the
system, usually very high. This is also explained in [2]. The damage can
range from the obvious bugs and inconsistencies to the more annoying and
hard to identify ones such as performance, security and reliability.

In [11], the author presents the usefulness of program comprehension by de-
scribing what activities are required during maintenance and evolution tasks.
The common activity across these tasks implies understanding the system.
This should speak volumes about the importance program comprehension at
all stages of the development cycle.

One of the most obvious methods of keeping a program easy to understand
is to keep the code clean by the means of code review and constant refactoring
sessions. The problem is that even if the code is clean, sometimes it can be



IMPROVING PROGRAM COMPREHENSION 71

very difficult to see the bigger picture, like how some components interact
with each other on a bigger scale or in stretched out scopes. In this case,
the obvious answer is to keep the system well documented. This is relatively
easy to achieve since all you waste is a bit of time and can work wonders
in a lot of cases. That being said, having too many system descriptors, be it
explicit (documentation) or implicit (clean code) and still expect high program
comprehension from the developers is a bit too much to ask, especially if they
are relatively new to the project. It is very difficult for people to understand
a system just by reading about it.

The solutions proposed to solve this problem, or at least alleviate its effects,
are based on the fact that people are more susceptible to understand something
if they are actively involved in the process of researching [9]. This is in contrast
to more passive methods like looking through code or reading documentation,
where the person researching can only think what is happening at any given
moment. That being the case, we will look over different techniques through
which, by using dynamic program analysis, one can gain a better insight over
what happens within the program.

3. Dynamic program Analysis

Dynamic program analysis is a technique through which one can analyze the
different properties of a program while it is executing. At times, static anal-
ysis has been used to analyze the dynamic behavior of programs since it was
easier and did not require the execution of the program either. This, however,
does not yield results as precise as actually doing dynamic analysis would.
Also, as programming languages have evolved to running in more dynamic
environments, the presence of features like dynamic binding, polymorphism
and threads have made static analysis quite ineffective. This is because static
analysis can only check what is present. The packages that may be loaded
dynamically when running the application might not be present until the ex-
ecution, so this shortcoming is understandable.

The two techniques mentioned earlier, dynamic program analysis and static
program analysis are complementary, each having their own strengths and
weaknesses. The static analysis examines the source code rigorously at compile-
time. Relevant techniques include data-flow analysis, which analyzes how
variables change their values through the execution flow, symbolic execution,
which determines what input values case each part of an application to execute
and dependence analysis. Dynamic analysis looks at an application while it
is running and analyzes data obtained from that. Two commonly used tech-
niques are assertions, which are simple checks inserted within the source code
itself in order to check various things and coverage analysis which analyzes



72 ROBERT FRANCISC VIDA

the flow of the execution while an application is running [4]. In this paper
we will look at dynamic program analysis and explore to some extent the two
methods mentioned earlier.

Dynamic analysis can help guide the development process towards produc-
ing a solution that behaves, within the realm of possibility, as intended, as
well as aiding the developers in enhancing and optimizing an already working
system. By analyzing the relationships between independent threads or dura-
tion of method calls as well as the context they are called from we can easily
devise solutions that might improve overall performance. This is also clearly
stated by Thomas Ball in his article [3].

3.1. Software Visualization at Runtime. Software visualization refers to
displaying information about or related to the software system in a visual-
oriented manner so that it is easier to understand and interpret [6]. The infor-
mation type that can be used can range from the architecture of the system,
how the code is structured, to its runtime behavior, algorithm behavior.

In order to extract runtime information without altering the source code,
one could use profiling, which is a type of dynamic program analysis. Through
it we can obtain information like space or time complexity, method calls and
other statistics that are generated while running the application. Using this
information it is fairly easy to construct an execution graph or calculate the
frequency and duration of subroutines. It is on this type of analysis that the
techniques presented in this paper are based on.

After the desired information has been obtained, the next important step
is deciding on how the information shall be displayed. One obvious solution
would be to display the flow of execution in the form of an UML Sequence
Diagram. This would be quite suitable since this type of diagram is very intu-
itive and exposes the information and component interactions nicely, however
there are a two fatal drawbacks. The first one is that if the execution flow com-
plexity is too great, it will become very difficult for a user to follow through,
and the second is that this type of diagram was not created with the idea of
multiple threads of execution.

In order to identify the most suitable form of visualizing software runtime
data we need to take a look at what developers usually use to gain knowl-
edge regarding the system. That being said, the built-in debugger that most
IDEs (Integrated Development Environment) have would fit the description
perfectly. Representing the execution flow in a tree-like manner, which if going
from a leaf to the root will look like the common execution stack, would be
ideal since the user will already be familiar with the format.



IMPROVING PROGRAM COMPREHENSION 73

4. Related Work

Trying to gain program comprehension by analyzing the execution flow is
not a new idea, however the approach that we took in this paper is. In [12]
we see an approach to compare different execution traces to identify changes
within execution code, order and duration. The difference between this paper
and ours, is that we try to focus on providing as much information as possible
regarding a execution trace and present it in a easy to understand manner.
Comparing two execution flows is also presented here, however it is not the
main issue we want to tackle.

In [8] we see a similar approach to ours, applying different program analysis
techniques on the software in order gain some understanding of it. Technically
speaking, it takes it a step further by using both static and dynamic code
analysis, whereas we only use the latter. The techniques that we propose in
this paper can be used not only to understand code someone else wrote but
to gain insight into ones own code as well. The other slight difference is the
manner in which data is presented, we chose to present the data in a tree-like
manner while in the aforementioned article they seem to have chosen to go
with graphs.

Along the years there have been numerous tools that have aided developers
in analyzing the software they develop, assuring them that they are on the
right track and reducing the possibility to introduce faulty or algorithmically
incompatible features into their system.

One might argue that a debugger can be considered a tool for facilitating
program comprehension by observing the execution flow, however it has a very
big flaw. Since their aim is to inspect the code by stopping the execution at
certain points called breakpoints, they often bring the application in a state
in which it couldn’t naturally be in. This is an especially serious matter in
situations where there are multiple threads or scheduling components.

VisualVM is a visual tool written in and for Java that uses lightweight pro-
filing to extract statistics regarding an application during its runtime [13]. The
application is very easy to use and can connect to running applications at any
time. The main drawback of this tool is that it only uses a flat profiler. This
means that it only gathers data regarding memory consumption, execution
duration and execution time. This is good if someone needs a quick overview
of the system during its execution or if they are looking for memory leaks,
however it lacks context. That being said, it is impossible for the developer
to reason the behavior of the system against these statistics.

Gprof specializes on call graph executions. Call graphs can be both static,
which takes into account all possible routes and does not require the appli-
cation to be running, and dynamic, which takes into account only executed



74 ROBERT FRANCISC VIDA

methods. This means that it is able to assess the cost of routines accurately
[7]. Because of this it is easy for the people running the analysis to see the
methods that were called during the execution and also their ordering, giving
us a context of them. Seeing the path the execution took, can give develop-
ers a few hints where something went wrong or where optimizations might be
possible.

Aprof is a Valgrind tool designed to help developers identify inefficiencies
in code [5]. It is input-sensitive, that means that on top of call graph, it takes
into account the input for methods and measures their performance based on
the workload received. This is very important because the analysis allows the
developers to pinpoint the exact location where the execution ran off track.

5. Proposed Concepts and Techniques

The techniques presented within this paper are very straightforward and
previous knowledge regarding dynamic program analysis is not required in
order fully understand the ideas behind them. Before we discuss the techniques
themselves we should first define a few concepts which will be used. Some of
these concepts are not new by any means, while the others can be seen as
being built on top of existing ideas. Either way, it is important to understand
them since they are the foundation for the techniques that we will discuss later
on.

Since we will be looking at techniques through which to extract and present
the execution flow of an application we will need to analyze the simplest com-
ponent that we can relate to. That being said, considering that we are target-
ing object oriented programming, this would be the class method.

5.1. The Method Structure. An application is usually composed of mul-
tiple classes. Each of these classes have methods of the format Method =
(Linput, Linstructions, Voutput), where: Linput is the list of input arguments which
can be empty, Linstructions is the list of instructions within which can also be
empty and Voutput is the optional return value from the method. It is impor-
tant to keep in mind that the instructions may contain calls to other methods.
The best format to express the method execution, considering our needs, is a
version that offers the following components: input arguments Linput with call
time t0, output value Voutput with return time tf and a set of the method in-
structions that contains only other method calls Lmethod = (i|i ∈ Linstructions

such that i is a method called during execution). The format for the method
execution will look like this:

Methodexecution = (t0, Linput, Lmethod, tf , Voutput)



IMPROVING PROGRAM COMPREHENSION 75

5.2. Concepts. Each of these concepts are independent to each other, this is
important since it means that they can be used separately or in combination
to each other. This allows us to gather more specialized information regarding
our system, information that is more relevant to our goal. The concepts that
we considered in our approach are:

Call stack or Call tree - sequence of calls presented in a stack or tree
layout. The main reason for choosing the approach of using a stack
layout is because of the familiarity developers have with stack traces
used when debugging.
Selective focus - in order to minimize the impact on the running
application it would be optimal to focus attention on only parts of
it.
Context information - sometimes, having information on what each
method call starts with and produces is for the process of understand-
ing what exactly is happening to the application while the executing.
Selective focus using context information - this is selective focus en-
hanced with the knowledge obtained from analyzing the context. Ba-
sically only recording methods when certain conditions are met.

5.2.1. Call Stack/Call Tree. The call stack or call tree is purely a visual con-
cept through which one can depict the execution flow of an application. Having
a clear and intuitive way of checking the execution steps of an application is a
crucial aspect. It is mainly though this that the users observe how the program
unfolded, thus it is crucial to the process of understanding the system.

The decision to organize and present the method calls in a tree-like manner
was made with the purpose of having the developers already be familiar with
the representation since it works similar to how a stack trace works in debug
mode, just a bit more hierarchical.

As the root node we will have the signature of the method being called.
This will include the method name and the types of parameters it accepts.
The first child will be composed out of the parameters sent when calling the
method. If no arguments were sent, then this node should not be present at all
since it would be irrelevant. The children of the node will be the elements of
Linput component mentioned earlier. The last node will represent the return
statement of the method, this node should always be shown because this means
that the method finished successfully. If the method returns a value, the value
will also be shown. This would be Voutput. In between the first and last
node will be the nodes of all methods called from within the current method,
sorted chronologically. These nodes will be method nodes themselves and
there should be one for each element of Lmethod.



76 ROBERT FRANCISC VIDA

Figure 1. Call stack code Figure 2. Call time-
line visual representa-
tion

All of the nodes will have a time associated with them, this will be rep-
resented by a number in a column on the right hand side. This will be very
useful since it offers information on the duration of the calls.

In case there are multiple threads running, there should be separate trees
for each thread. The nodes of the threads should be intertwined, with empty
nodes representing that something happened on another thread at that time.

In Figure 1 we can see a sample code of a program that has two threads and
each of them goes on to call a different function. Figure 2 depicts an execution
of this code. We can see where each function call starts for each thread. It is
clear where the function execution overlapped and where they stopped.

A stacktrace displays the order in which methods were executed and a com-
mon profiler can provide insight into the context of the execution environment.
With this format we gain both at the same time. We can see contextual in-
formation integrated within the execution order of the methods.

5.2.2. Selective Focus. Instead of capturing the execution of every function
call on every thread, it may sometimes be desired to only focus on a certain
thread, or a certain group of functions. Applying such filters on the profiler
will drastically improve performance and reduce the impact that the profiler
has on the analyzed application.

The selective focus concept provides a good solution for reducing unneces-
sary analysis on portions of code that are of no interest to the developer. This
also allows for other analysis concepts that consume more processing power to
be used without the fear that they might disturb the natural flow of execution



IMPROVING PROGRAM COMPREHENSION 77

Figure 3. Selective
call timeline code

Figure 4. Selective
call timeline visual
representation

of the software too much. It is undeniable that if the developer adds a lot of
resource consuming analysis concepts and if the application is multithreaded,
then there is a good possibility that the execution will go into a unique state
which would not be possible under normal circumstances.

This is not a new concept, there are a lot of tools that have ways to selec-
tively choose what parts of the application to analyze, however this method
differs from the way you define these parts and the manner in which the report
is generated at the end of the analysis.

In Figure 3 we have a sample code of a program that has two threads and
each of these threads will call their own functions. Figure 4 depicts a poten-
tial execution of the code previously stated. In this certain representation, the
person running the analysis decided to ignore the method ignoredParentFunc-
tion() and so it is not represented within the timeline.

To take full advantage of the capabilities of this analysis method, we strongly
suggest implementing the filtering system in a dynamic fashion, by this we
mean being able to specify target methods through a mechanism similar to
regular expressions. This is not hard to do and one would gain the ability to
mark the functions that are to be analyzed at runtime. This is imperative
if the developer wants to intercept function calls even if they were declared
through reflection.

5.2.3. Context Information. This concept is concerned with recording the data
that is used in inter-method communication. This covers both input and
output data, however the amount of how much data to record should be kept
in mind. What this means is that if for example we have a class as input data,



78 ROBERT FRANCISC VIDA

we need to specify how deep within its fields we will record. If the class has
another class as field, and so on, there should be a stopping point to reduce
the stress of the analysis.

All of the data can be stored in a context along with their reference id so we
can observe the changes made to an entity through the entire execution. This
would allow the users to easily follow data modification during the application
execution. It is important to note, that this concept is similar to dynamic
program slicing [1], which is a technique that gathers all the statements that
changed the value of a variable during an execution. On the other hand, our
technique is able to identify the changes done to the object itself. So they are
similar in aim, which is to study the evolution of the application state, but
have different approaches on how to do this.

The context information concept is one of the most resource-consuming of
all of the ones proposed within this paper, however it also is the one that gives
the most detailed insight about what happened within the code because it can
clearly display all input and output values for each function.

5.2.4. Conditional Focus. This concept builds on top of the previous men-
tioned concept, selective focus, by adding awareness regarding the context.
This means that after we filter the parts of the program we want to focus
on, we can go even further and add that only when specific input values are
passed should we inspect the section. The overhead added to the execution
might not be very appealing, however it is well worth the sacrifice in order to
have a way to add this sort of flexibility.

5.3. Techniques. Next, we will use the concepts defined earlier and combine
them so that they will aid us in our goal of understanding the program better.
All of these techniques assume that we use a call stack as a way of presenting
the information.

5.3.1. Basic Analysis Technique. The first combination will be very straight-
forward and somewhat predictable, we will use selective focus and context
information. By using selective focus, we reduce the strain put on the appli-
cation by the analyzer and by using context information we expose detailed
information about the piece of code that we are interested in. This combina-
tion is important since with this the developer can gain in-depth knowledge
over the part of the application that he desires. Illustrating a call stack/tree of
the methods that were executed and the data received, changed and produced.
This combination can also be used as an advanced form of logging.

5.3.2. History Technique. This technique is actually built on top of the previ-
ous one, however the step is in a horizontal direction. What this means is that



IMPROVING PROGRAM COMPREHENSION 79

it does not go deeper down into extracting more data or filtering the inspected
scope of the program, but simply keeps track of multiple executions and at-
tempts to compare them. This is important since this way the developers can
examine the evolution of the behavior of a program. They can also execute
the same steps over and over again, in order to check the consistency and reli-
ability of multithreaded sections. The visual representation is not difficult to
understand, this makes it is easy to present to non-technical users and explain
how it all works. It eases the communication bridge between two groups of
people that usually have difficulty explaining their point of view to the other.

5.3.3. Checking Technique. This technique would more likely be used for test-
ing purposes rather than program comprehension. It is very possible to use a
slightly altered version of the conditional focus concept to check at all stages
that different values do not pass through certain areas of the code. Using such
a method on a system would seem as though it was attempted to add formal
verification on top of an already existing system. This is a strange approach
since formal methods are performed before any code is written, however this
method is worth mentioning since there are some situations where such ap-
proaches might be needed.

5.4. Threats to validity. It is important to keep in mind that the concepts
and techniques presented have not been proven to be a definite improvement
over other similar tools nor do we claim them to be. The techniques were
devised in order to explore new ideas in the domain of program comprehension
and are still in an experimental state at this moment.

An aspect that is quite concerning to the validity of these techniques is
scalability. These concepts were only tested in environments of small sized
applications that did not make use of too many execution threads of the same.
This concern relates to both execution and visualization issues. By this we
mean that the tool might behave faulty when a larger application is analyzed,
but also that the visualization mechanism might prove to be less suited when
too many points of interest need to be shown at the same time.

Another thing to keep in mind is that different programming languages will
have different instrumentation limitations. In a few cases these techniques
might actually be impossible to implement.

6. Working Prototype

Most of the concepts and techniques presented within this paper have al-
ready been implemented into a stable prototype. Written in Java, by the use
of instrumentation it is able to observe other Java applications while they are
being executed without affecting the normal execution flow too much. The



80 ROBERT FRANCISC VIDA

Figure 5. Screenshot of the prototype

only impact on the inspected application is that the overhead added by the
analysis itself, by this we mean the mechanism through which we extract the
data, so the execution threads might slow down a bit. The prototype is able to
handle multiple execution threads and structures the flow into a hierarchical
manner.

A few of the concepts described in this paper were only partially imple-
mented or do not have the flexibility previously described, the reason behind
this is that it is only a prototype meant to show the appeal of such a tool.
A noteworthy but not necessarily critical flaw for the tool is the fact that it
is unable to inspect the core classes because they are being used in order to
extract the data from the analyzed application. The reason we say it is not
critical is because one would normally use this application to analyze their
own code. In order to gather as much data as possible, we recommend that
the instrumentation process starts as soon as possible, exactly when the target
application is started would be ideal. The reason behind this is that although



IMPROVING PROGRAM COMPREHENSION 81

the tool is able to analyze already running applications, it is limited to classes
that have not been loaded, by this we mean those that have not yet been used.

In Figure 5 we can see the execution flow of an application that has two
threads. The two tree structures depict the methods called from each thread
as they are called, each having the identifying name of the thread above them.
The root nodes represent the first methods called that respect the filtering
conditions set before the analysis began. Whenever there are parameters sent
to the methods, a child node containing a list of parameters will be present.
Next, if there are other methods called from this method, they will be indicated
through separate suggestive nodes. The last child node of a method node will
be the return statement that will also indicate the return value if there is any.
All nodes, except for parameter nodes and their children, display the time
at which they occurred, this way one could easily tell how long the method
took to execute. We believe that this way it is easy to see crucial information
regarding methods, such as access control modifiers, input parameters, entry
and exit time points as well as method calls performed within. However, when
there are many chained methods it might be difficult to keep track of the exact
location within execution tree. In order to aid the user in orienting themselves
within the execution tree, we highlighted with yellow background the entry
and exit point of the currently selected method.

7. Conclusion and Further work

From all the information presented in this paper, it is easy to understand
the importance of program comprehension and why it is imperative for it to be
as high as possible. The method through which this is done is not particularly
important, however by using dynamic program analysis you get to observe the
application in its most crucial state, at runtime. By directly observing how
the application behaves during the execution you get to see how it reacts, no
need for speculation, we can see exactly how all parts come together and work
with each other.

We have presented various techniques through which one might enhance
the experience of gaining or maintaining program comprehension regarding an
application along with a working prototype that makes use of these methods.
It is important to note that all of these techniques require the user be engaged
in the analysis task so that the process of understanding the application can
progress more naturally.

In the future we plan to further refine the concepts and techniques previ-
ously mentioned as well as extend them to provide more customizable and
relevant information to the developers or the interested users. Pursuing other
techniques is not of the table. There were a few other ideas that did not make



82 ROBERT FRANCISC VIDA

it into this paper for various reasons. For example a technique through which
one would be able to identify hidden dependencies, detect places where design
patterns should be implemented or determine if two classes belonging to dif-
ferent components are connected to each other to tightly when they shouldn’t
(high coupling).

References

[1] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. SIGPLAN Not.,
25(6):246–256, June 1990.

[2] Usman Akhlaq and Muhammad Usman Yousaf. Impact of software comprehension in
software maintenance and evolution. Master’s thesis, Blekinge Institute of Technology,
2010. Chapter 8.

[3] Thomas Ball. The concept of dynamic analysis. SIGSOFT Softw. Eng. Notes, 24(6):216–
234, October 1999.

[4] Mario Barrenechea. Program analysis. https://www.cs.colorado.edu/~kena/

classes/5828/s12/presentation-materials/barrenecheamario.pdf, . [Online;
accessed 5-September-2017].

[5] Emilio Coppa, Camil Demetrescu, and Irene Finocchi. Input-sensitive profiling. SIG-
PLAN Not., 47(6):89–98, June 2012.

[6] Denis Gracanin, Kresimir Matkovic, and Mohamed Eltoweissy. Software visualization.
Innovations in Systems and Software Engineering, A NASA Journal, 1(2):221–230, Sep-
tember 2005.

[7] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. Gprof: A call graph
execution profiler. SIGPLAN Not., 17(6):120–126, June 1982.

[8] Wilhelm Kirchmayr, Michael Moser, Ludwig Nocke, Josef Pichler, and Rudolf Tober.
Integration of static and dynamic code analysis for understanding legacy source code.
2016 IEEE International Conference on Software Maintenance and Evolution (ICSME),
pages 543–552, 2016.

[9] Michael Prince. Does active learning work? a review of the research. Journal of Engi-
neering Education, 93(3):223–231, 2004.

[10] Roger Sessions. The it complexity crisis: Danger and opportunity. Technical report,
ObjectWatch, 2009.

[11] Priyadarshi Tripathy and Kshirasagar Naik. A Practitioner’s Approach, Software Evo-
lution and Maintenance, chapter 8. John Wiley & Sons, Inc., New York, NY, USA,
2014.

[12] Jonas Trmper, Jrgen Dllner, and Alexandru C. Telea. Multiscale visual comparison
of execution traces. In Proceedings of the 21st International Conference on Program
Comprehension, pages 53–62, 2013.

[13] Visual vm. https://visualvm.github.io/ [Online; accessed 12-December-2017].

Department of Computer Science, Faculty of Mathematics and Computer Sci-
ence, Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: robertv@cs.ubbcluj.ro


