
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXI, Number 2, 2016

A GENETIC ALGORITHM APPROACH FOR EVOLVING

NEURAL NETWORKS

ALEXANDRU-ION MARINESCU

Abstract. We present an alternative approach for training feed-forward
neural networks (abbrev. NN) by means of a genetic algorithm (abbrev.
GA) that alters the network’s hidden weights and biases. We, by no means,
out-rule the back-propagation training algorithm, but instead use it to
train the evolved NNs for a much smaller number of generations and focus
more on the mutation and crossover operators and how they can be applied.

The basic principle involved is that each and every NN can be treated as
a chromosome for a GA and, as a consequence, is subject to the mutation
and crossover operators. A notable advantage of our approach is that we
not only avoid over-fitting the NN, but are also able to alter the number
of hidden neurons that make up the hidden layer of the NN, effectively
removing the need for the user to specify them explicitly. We manage to
outperform plain-vanilla NNs by a factor of 1 to 10 percent on well known
data sets. At first this may not seem significant, but it becomes crucial
when dealing with applications where accuracy is critical and training time
is not an issue (such as disease diagnosis).

1. Introduction

The following paper assumes that the reader has a fair understanding
of how feed-forward NNs and evolutionary algorithms work. The rationale
behind our decision to evolve a NN by means of a GA stems from the fact that a
lot of trial and error is involved in fine tuning the so called ”hyper-parameters”
(i.e. number of hidden neurons and NN learn rate) such as to maximize
accuracy on training data and minimize error on test data. Consequently, by
applying the standard GA operators (mutation and crossover) on our NNs we
are able to achieve the same accuracy of a plain-vanilla NN with ten times less

Received by the editors: October 15, 2016.
2010 Mathematics Subject Classification. 92B20.
1998 CR Categories and Descriptors. A.1 General Literature [INTRODUCTORY

AND SURVEY]; I.2.6 Computing Methodologies [ARTIFICIAL INTELLIGENCE]:
Learning – Connectionism and neural nets.

Key words and phrases. biology, AI, neural network, genetic algorithm, evolution, muta-
tion, crossover, optimization.

124

EVOLVING NN THROUGH GA 125

number of training epochs, with the added benefit of completely delegating
the training process to a separate task. In turn, this parallel training model
enables us to have a generous chromosome pool of NNs while lowering the
performance footprint.

The main phenomenon that acts in the detriment of NNs, which all imple-
mentations wish to avoid is known in literature as ”over-fitting” and it roughly
means that the NN has become attuned to the training data so well that it is
incapable of correctly classifying the test data, or equivalently in mathematical
terms, it is unable to escape a local minimum/maximum. To overcome this
issue, we have altered the classical GA implementation and propose a novel
means for refreshing the chromosome pool with new candidates for genetic
material. The main trade-off that we wish to point out is that we significantly
improve accuracy at the expense of execution time.

2. Conceptual presentation

Our GA [3, 7, 4] implementation is a modified version of its classical coun-
terpart and has an additional mechanism for dealing with over-fitting. It
monitors the fitness trend of the chromosomes from the internal chromosome
pool and if it detects no significant variation triggers a ”cataclysm” during
which a percentage of the fittest chromosomes is destroyed and replaced with
a fresh new batch of individuals. At first, this may seem counter-intuitive, but
we still keep a copy of the best chromosomes in what we call the ”garden of
Eden”. Finally, we sort the garden of Eden with the fittest chromosome being
the returned solution.

The next step we took was to treat a three layer (i.e. input, hidden and out-
put) feed-forward NN [9] as a chromosome within a GA, consequently subject-
ing it to the mutation and crossover operators [8, 6]. This is achieved easily in a
modern OOP language, such as C# by having an interface IChromosome with
the following methods: ”Mutate” which takes as input an IChromosome and
returns an IChromosome, and ”Crossover” which receives two IChromosome
parameters and outputs the corresponding pair of IChromosome offspring.

Afterwards all that remains to be done is inherit the NN from the IChro-
mosome interface and implement the corresponding methods. The reader may
ask whether the evolved NN is used as-is, directly from the GA, for which the
answer is no. After successful mutation/crossover, the NN is still trained, al-
beit for a much smaller number of epochs (the training algorithm we applied
is the standard back-propagation training). The workload of training the
chromosomes is split between the available processor cores using TPL (Task
Parallel Library) in order to improve overall performance.

126 ALEXANDRU-ION MARINESCU

The concept of training a NN using a GA stemmed from the following
research involving Continuous-Time Recurrent Neural Networks [2, 1], which
are notoriously difficult to train using the classical back-propagation algorithm
and thus the authors suggest an alternate training scheme, which involves
employing a GA [8]. The original contribution of this paper to the field of AI
is the parallel execution of the training method, together with a specialized
version of the GA and possibility to offload the most intensive tasks to the
GPU, which will be detailed in future research.

The next section focuses mainly on aspects regarding our implementation
of a GA, detailing how each parameter affects the overall behavior of the GA,
along with the implications of inheriting the NN from the IChromosome in-
terface in order for it to function within a GA. Afterwards we discuss the
benchmarks we used for testing the accuracy of our combined GA-NN ap-
proach for solving concrete classification tasks. We conclude the paper by
stating the future directions of our research in the field of AI.

3. NNs in the context of GAs

In our particular case, the parameters used for evolving a NN are as follows:
LogEnabled = false (disable logging of events for faster execution), PoolSize
= 50 (the number of chromosomes in the pool is capped at 50), PoolSortMode
= PoolSortMode.Descending (sort the pool in descending order with respect
to fitness), ProbabilityOfMutation = 0.1 (mutation is performed in 1 of 10
chromosomes), ProbabilityOfCrossover = 0.1 (crossover is performed in 1 of
10 chromosomes, with a random, more fit partner), ThresholdForCataclysm
= 0.001 (cataclysm is performed if the current pool weight minus the previous
pool weight in absolute value is smaller than this value), PercentageOfCata-
clysm = 0.25 (25% of the fittest chromosomes are replaced with new genetic
material in the event of a cataclysm).

The pool weight which we have mentioned above is computed in this fash-
ion (index is zero-based):

double WeightChromosome (double min , double max , i n t index)

{
i f (Abs (max−min)<Eps i lon)

re turn 1/(index +1);

re turn (pool [index] . F i tne s s ()−min)/(max−min)/(index +1);

}

double WeightPool ()

{
double min=−I n f i n i t y , max=+I n f i n i t y ;

i f (PoolSortMode==Descending)

{
max=pool [0] . F i tne s s () ;

EVOLVING NN THROUGH GA 127

min=pool [PoolSize −1] . F i tne s s () ;

}

i f (PoolSortMode==Ascending)

{
min=pool [0] . F i tne s s () ;

max=pool [PoolSize −1] . F i tne s s () ;

}

double weight =0;

f o r (i n t i =0; i<PoolS ize ; i++)

weight+=WeightChromosome (min , max , i) ;

r e turn weight ;

}

As the reader may have noticed, the weight of a chromosome is directly
proportional to the minimum and maximum fitness of the pool and its index
order in the sorted pool. The total weight of the pool is the sum of the weights
of all its chromosomes.

The core of the GA is the evolutionary iteration step, which is run for a
given number of generations (100 in our particular case):

void EvolveOne ()

{
f o r (i n t i =0; i<PoolS ize ; i++)

{
i f (R. NextDouble()>Probabi l i tyOfMutat ion)

cont inue ;

pool . Add(pool [i] . Mutate ()) ;

}

f o r (i n t i =1; i<PoolS ize ; i++)

{
i f (R. NextDouble()>Probab i l i tyOfCrossover)

cont inue ;

pool . Add(pool [i] . Crossover (pool [R. Next (i)])) ;

}

Task . WaitAll (ta sk s) ;

t a sk s . Clear () ;

pool . Sort () ;

i f (PoolSortMode==Descending)

pool . Reverse () ;

pool . Trim(Poo lS ize) ;

gardenOfEden . Add(pool [0]) ;

poolWeightPrev=poolWeightCrt ;

poolWeightCrt=WeightPool () ;

i f (Abs (poolWeightCrt−poolWeightPrev)<ThresholdForCataclysm)

I n i t i a l i z e (PercentageOfCataclysm) ;

}

Notice the ”Task.WaitAll” construct. This notifies the GA that the result-
ing offspring NNs are still training and will be ready for the current iteration

128 ALEXANDRU-ION MARINESCU

after this instruction yields (it is part of the TPL library which we have men-
tioned earlier). We do not leave the resulting offspring untrained, but instead
train them on a much smaller number of epochs (10 vs. 100).

The fitness of a NN is computed as the difference between its accuracy
on training data and error on test data (we apply an 80% training and 20%
testing scheme):

• The accuracy is computed on the training data, equal to correct
correct+wrong ;

• The error is computed on the test data, equal to the sum of the squared
errors for each sample input;

Internally, the NN stores several arrays of weights and biases which are
updated via back-propagation during each epoch. Of particular interest to us
are the ”Input-Hidden Weights” and the ”Hidden-Output Weights” matrices
and the ”Hidden Biases” array respectively.

We have settled upon a mutation operator which is either deleterious or
additive. The decision regarding which type will be applied is made randomly,
whilst also taking into consideration some lower and upper bounds for the
hidden neuron count (1 and 50 respectively in our case). The deleterious
mutation chooses a random hidden neuron index and deletes the corresponding
neuron, effectively removing its associated weights and biases from the Input-
Hidden Weights, Hidden Biases and Hidden-Output Weights arrays. We have
left room for improvement here, suggesting that the choice of which neuron is
deleted can be made not randomly, but based on how well it behaves during the
algorithm (such as successful activation count). Similarly, the additive type of
mutation inserts a new neuron in the NN and updates the three structures we
mentioned earlier. The new neuron is initialized randomly with some small
positive value in the range [10−4, 10−3]. Lastly, the crossover operator takes as
parameters two chromosomes (i.e. NNs), chooses two hidden neuron indexes
that define a sub-sequence and are valid for both NNs (take into account the
fact that crossover could be applied to NNs with a different number of hidden
neurons) and exchanges this sub-sequence, together with the corresponding
weights and biases between the two neural nets. One final aspect to keep in
mind which is essential to the correct functioning of a NN is data normalization
within the working domain of the activation function (in this particular case
we used the hyperbolic tangent f(x) = tanh(x) = 2

1+e−2x − 1 which handles

data in the range [-1,1].

4. Numerical results

We have compared our results against a plain 3-layer feed-forward NN con-
sisting of fully-connected input, hidden and output layers, with fixed hidden

EVOLVING NN THROUGH GA 129

neuron count and trained via back-propagation. Our candidate for testing is
the NN we described above, which was evolved using a GA.

Data set description:

• Abalone [10] — Predicting the age of an abalone (a type of ma-
rine snail) from physical measurements. The age of abalone is de-
termined by cutting the shell through the cone, staining it, and count-
ing the number of rings through a microscope. Number of instances
– 4177, number of properties – 9 (Sex, Length, Diameter, Height,
WholeWeight, ShuckedWeight, VisceraWeight, ShellWeight, Rings);

• Balance [11] — This data set was generated to model psychological
experimental results. Each example is classified as having the balance
scale tip to the right, tip to the left, or be balanced. Number of
instances – 625, number of properties – 5 (ClassName, LeftWeight,
LeftDistance, RightWeight, RightDistance);

• Banknote [12] — Data were extracted from images that were taken
from genuine and forged banknote-like specimens. For digitization, an
industrial camera usually used for print inspection was used. The final
images have 400 by 400 pixels. Due to the object lens and distance to
the investigated object gray-scale pictures with a resolution of about
660 dpi were gained. Wavelet transform tools were used to extract fea-
tures from images. Number of instances – 1372, number of properties
– 5 (Variance, Skewness, Curtosis, Entropy, Class);

• Car [13] — Car evaluation database was derived from a simple hier-
archical decision model originally developed for the demonstration of
DEX. Number of instances – 1728, number of properties – 7 (BuyPrice,
MaintPrice, DoorCount, PersonCount, LuggageBoot, Safety, Evalua-
tion);

• Haberman [14] — The dataset contains cases from a study that was
conducted between 1958 and 1970 at the University of Chicago’s Hos-
pital on the survival of patients who had undergone surgery for breast
cancer. Number of instances – 306, number of properties – 4 (Patient-
AgeAtOp, PatientYearOfOp, PositiveAxillaryNodes, SurvivalStatus);

• Iris [15] — This is perhaps the best known database to be found in
the pattern recognition literature. The data set contains 3 classes of
50 instances each, where each class refers to a type of iris plant. One
class is linearly separable from the other 2; the latter are not linearly
separable from each other. Number of instances – 150, number of
properties – 5 (SepalLength, SepalWidth, PetalLength, PetalWidth,
Class);

130 ALEXANDRU-ION MARINESCU

• Letter [16] — The objective is to identify each of a large number of
black-and-white rectangular pixel displays as one of the 26 capital let-
ters in the English alphabet. The character images were based on 20
different fonts and each letter within these 20 fonts was randomly dis-
torted to produce a file of 20,000 unique stimuli. Each stimulus was
converted into 16 primitive numerical attributes (statistical moments
and edge counts) which were then scaled to fit into a range of integer
values from 0 through 15. Number of instances – 20000, number of
properties – 17 (Letter, BoxPosHorizontal, BoxPosVertical, BoxWidth,
BoxHeight, PixelCount, PixelsBoxX, PixelsBoxY, VarianceX, Vari-
anceY, Correlation, MeanXXY, MeanXYY, EdgeCountLR, EdgeCor-
relationXY, EdgeCountBT, EdgeCorrelationYX);

• Nursery [17] — Nursery Database was derived from a hierarchical
decision model originally developed to rank applications for nursery
schools. It was used during several years in the 1980’s when there was
excessive enrollment to these schools in Ljubljana, Slovenia, and the
rejected applications frequently needed an objective explanation. The
final decision depended on three sub-problems: occupation of parents
and child’s nursery, family structure and financial standing, and social
and health picture of the family. The model was developed within
expert system shell for decision making DEX. Number of instances –
12960, number of properties – 9 (ParentsOccupation, ChildNursery,
FamilyForm, Children, Housing, Finance, SocialConditions, Health-
Conditions, Decision);

For all considered data sets the type of problem is classification for multi-
class with balanced training data, transforming the output data into a discrete
domain. The numerical results illustrate both the accuracy on training data
and error on test data.

Plain NN
Tester Input Hidden Output Fitness Accuracy Error

Abalone 10 7 1 0.52 1.00 0.48
Balance 4 5 3 0.75 0.87 0.12

Banknote 4 5 2 0.95 0.97 0.02
Car 21 13 4 0.97 0.98 0.01

Haberman 3 5 2 0.33 0.72 0.38
Iris 4 5 3 0.84 0.90 0.06

Letter 16 33 26 0.51 0.77 0.26
Nursery 27 31 5 0.92 0.97 0.05

Table 1. Benchmark results for a plain-vanilla NN.

EVOLVING NN THROUGH GA 131

GA NN
Tester Input Hidden Output Fitness Accuracy Error

Abalone 10 7 1 0.52 1.00 0.48
Balance 4 15 3 0.98 1.00 0.02

Banknote 4 17 2 0.99 1.00 0.01
Car 21 24 4 0.99 1.00 0.01

Haberman 3 10 2 0.41 0.75 0.33
Iris 4 8 3 0.97 1.00 0.03

Letter 16 49 26 0.71 0.86 0.15
Nursery 27 44 5 0.99 0.99 0.00

Table 2. Benchmark results for a GA-trained NN.

After running the benchmarks through a total of 10 independent tests and
selecting the best candidates in terms of fitness, our approach yields an increase
in overall fitness by a factor of 1 to 10 percent (Tables 1 and 2). The abalone
data set, as stated in literature, proves to be particularly challenging as a
classification task [5]. Please remark that Fitness = Accuracy−Error, where
Accuracy is the accuracy on training data and Error is the error on test data. It
is very important to keep in mind that, although the NNs from the chromosome
pool are trained for a much smaller number of generations than the standalone
neural net and we utilize the CPU cores to their maximum potential, it is
still orders of magnitude slower due to the amount of computations involved.
Nevertheless, the results obtained point out that training NNs via a GA proves
useful when high accuracy and low error are required, regardless of the time
needed to train the NN, such as applications where the two factors are critical.

5. Conclusions

In the closing section of this article, we hope that we have provided valuable
insight into how one can apply the benefits of a GA to classical feed-forward
NNs in order to achieve more accurate results. The original contributions of
this paper consist of a hybrid NN GA approach with a specialized GA that
tries to avoid over-fitting, with the ability to auto-tune NN hyper-parameters.
There is still a lot of room left for improvement, for example analyzing more
advanced mutation/crossover schemes, but this is left to the reader’s choice.
Henceforth, we will focus on deep-learning algorithms, namely recurrent NNs
and analyze how a GA can be applied to strengthen their overall performance.
Additionally, we will explore the benefits of the recent advances in general-
purpose GPU computing (GPGPU) and try to apply them to our framework.

132 ALEXANDRU-ION MARINESCU

References

[1] G. Bailador, D. Roggen, G. Tröster, G. Triviño, Real time gesture recognition using
Continuous Time Recurrent Neural Networks, Proceedings of the ICST 2nd Interna-
tional Conference on Body Area Networks, BodyNets ’07, ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering), 2007.

[2] R. D. Beer, On the Dynamics of Small Continuous-Time Recurrent Neural Networks,
Adaptive Behavior 3(4), 1995, pp. 469-509.

[3] L. Davis, Handbook of Genetic Algorithms, Van Nonstrand Reinhold, New York, 1991.
[4] D E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,

Addison-Wesley Publishing Company, Inc., 1989.
[5] M. Keijzer, Genetic Programming: 7th European Conference, EuroGP 2004, Coimbra,

Portugal, April 5-7, Proceedings, Volume 7, Springer Science & Business Media, 2004.
[6] P. Koehn, Combining Genetic Algorithms and Neural Networks: The Encoding Prob-

lem, Dissertation Thesis, University of Tennessee, December 1994.
[7] M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1998.
[8] D. J. Montana, L. Davis, Training Feedforward Neural Networks Using Genetic Algo-

rithms, Proceedings of the 11th International Joint Conference on Artificial Intelligence,
Volume 1, IJCAI’89, 1989, pp. 762-767.

[9] R. Tadeusiewicz, R. Chaki, N. Chaki, Exploring Neural Networks with C#, CRC Press,
Taylor & Francis Group, 2014.

[10] UCI Machine Learning Repository, Abalone Data Set, http://archive.ics.uci.edu/
ml/datasets/Abalone.

[11] UCI Machine Learning Repository, Balance Scale Data Set, http://archive.ics.uci.
edu/ml/datasets/Balance+Scale.

[12] UCI Machine Learning Repository, Banknote Authentication Data Set, http://

archive.ics.uci.edu/ml/datasets/banknote+authentication.
[13] UCI Machine Learning Repository, Car Evaluation Data Set, http://archive.ics.

uci.edu/ml/datasets/Car+Evaluation.
[14] UCI Machine Learning Repository, Haberman’s Survival Data Set, http://archive.

ics.uci.edu/ml/datasets/Haberman%27s+Survival.
[15] UCI Machine Learning Repository, Iris Data Set, http://archive.ics.uci.edu/ml/

datasets/Iris.
[16] UCI Machine Learning Repository, Letter Recognition Data Set, http://archive.ics.

uci.edu/ml/datasets/Letter+Recognition.
[17] UCI Machine Learning Repository, Nursery Data Set, http://archive.ics.uci.edu/

ml/datasets/Nursery.

Department of Computer Science, Faculty of Mathematics and Computer
Science, Babeş-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania

E-mail address: amarinescu@cs.ubbcluj.ro

