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GAUSSIAN-TYPE RESOURCE ALLOCATION POLICIES

FOR VIRTUALIZED DATA CENTERS

CORA CRĂCIUN AND IOAN SALOMIE

Abstract. This paper defines two Gaussian-type resource allocation poli-
cies for virtualized data centers. The policies allocate physical resources to
virtual machines in a more relaxed way than server consolidation methods,
but in a more constraint way than load balancing methods. The Gaussian
policies are compared with the First Fit and Best Fit heuristics regarding
the energy consumption in data centers and some performance metrics.
The assessment is performed by simulation, for virtualized data centers
with sufficient physical resources and time-varying workloads.

1. Introduction

Jobs’ performance and consumed energy in data centers depend on the
scheduling and resource allocation methods used for jobs’ deployment [4].
Time performance improves if the workload is evenly distributed between the
available physical machines and the machines are run at their full processor
capacity. This maximum performance design, however, becomes power ineffi-
cient when the physical machines are provisioned to work at their peak power,
even when their utilization is low. Typical servers in data centers work at
10–50% from their capacity [1], while their optimum utilization is 70–80% [2].
Different Dynamic Power Management (DPM) techniques [17, 9] have been
proposed to address this issue of servers’ low utilization in data centers. DPM
techniques consolidate the workload on few servers and switch the unused re-
sources off or place them in low power-performance states [7]. In dynamic
systems, however, the jobs’ resource requirements are time-varying and thus,
at run-time, the consolidated physical machines may become overused. In such
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cases, the jobs receive less resources than required, wait for free resources, or
migrate to other hosts. In all cases, the jobs’ performance decreases.

In this paper, we propose an alternative approach to resource consolidation
and load balancing methods, for virtualized data centers. For this, we define
two Gaussian-type resource allocation policies for mapping jobs encapsulated
in virtual machines (VMs) on physical hosts. These policies pack the VMs
on hosts less tightly than the consolidation methods, but more tightly than
the load balancing methods. With this approach, the VMs are assigned with
a higher priority to those hosts which are neither overused nor underused.
In the assignment process, the new policies maximize Gaussian-type resource
allocation functions depending on the available and the required physical re-
sources. The shape of the mapping functions may be adjusted by changing
some parameters.

The Gaussian-type policies are evaluated by simulation, for deploying
time-varying workloads in a virtualized data center with sufficient physical re-
sources. The simulations are performed using a dynamic resource management
framework built upon the Haizea lease management scheduler [11, 19, 18]. The
aim of this work is to evaluate the effect of the proposed policies on the fol-
lowing metrics: the energy consumption in data centers, the number of VMs
migrations, the mean number of active hosts, and the VMs’ total flow time.
The Gaussian policies are compared with the greedy First Fit (FF) and Best
Fit (BF) heuristics and with a load balancing method.

Although the two Gaussian-type policies are evaluated here only by sim-
ulation, they may be tested in real environments. For example, Haizea works
not only as a simulator, but also as a backend VM scheduler for the Open-
Nebula resource management framework [18, 15]. Extensions of Haizea may
as well be adapted to work in such real conditions.

This paper is structured as follows. Next section presents other investi-
gations related to current work. Section 3 defines the Gaussian-type resource
allocation policies and illustrates their behavior with respect to FF and BF.
In Section 4, the Gaussian and reference policies are evaluated by simulation
in data centers with sufficient physical resources. Final section summarizes
current work.

2. Related work

Static and dynamic resource allocation in data centers may be performed
using exhaustive search, optimization methods based on variants of bin or
vector packing, or approximation algorithms. Many resource allocations use
heuristics, which are fast but lead to approximate and suboptimal solutions
[5, 20, 10].
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In order to achieve server consolidation in virtualized environments, the
approach in [6] combines “effective VM sizing” with variants of First Fit De-
creasing (FFD) and Best Fit Decreasing (BFD) heuristics, or with information
about VM hosting history and correlation. “Effective sizing” is based on sto-
chastic bin packing, which allows bin overflowing with a given probability.
The pMapper framework [21] uses several VM-to-host mapping algorithms to
solve a cost-performance-power optimization problem in virtualized heteroge-
neous clusters. Entropy [12] uses constraint programming in order to minimize
the number of active servers and the VM migration number in homogeneous
clusters. The work in [23] proposes a multi-objective method for dynamic
placement of VMs in data centers. This method improves the power efficiency
by up to 20% and performance by up to 30%, and decreases the number of
VMs migrations by up to 80%.

The VM-to-host mapping functions used by the Gaussian-type policies de-
fined in this paper are close to the assignment/migration probability functions
presented in reference [14]. In their work, the authors define policies based on
statistical Bernoulli trials, in order to reduce the energy consumption in cloud
data centers, without performance degradation. Normal distributions are also
used to model the VMs’ resource requirements, as in references [13] and [6]. In
our case, the VMs’ requirements are uniformly distributed random numbers,
while the Gaussian-type policies are deterministic and guide the VM-to-host
mapping process.

3. The Gaussian-type resource allocation policies

Let consider that a data center contains NH ordered physical machines and
NV VMs must be assigned to the hosts based on their CPU requirements. We
denote by RCPU a VM’s required CPU share and by TCPU, UCPU, and ACPU

a host’s total, used, and available CPU resources, respectively (all quantities
are in percents and TCPU = UCPU + ACPU). Feasible hosts for a given VM
requiring RCPU resources are those with ACPU ≥ RCPU. Since the VMs’ CPU
requirements are time-varying, at run-time, some hosts may become overused.
In such cases, selected VMs from the overloaded hosts migrate to other feasible
physical machines.

The Gaussian-type policies described in the following use two resource
allocation procedures. In one case, the VMs are queued and are mapped on
feasible hosts by a policy depending only on the hosts’ properties. In the other
case, the VMs are not ordered and are assigned to hosts by a policy depending
both on the VMs’ and hosts’ properties. The first resource allocation proce-
dure is suitable for on-line conditions, because the search is performed only
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Figure 1. (a) The G1(UCPU) Gaussian-type resource alloca-
tion function. The thresholds in formula (2) are ThrL = 40
and ThrH = 80, and the area of the shaded region is a = 0.8.
(b-c) Examples of resource allocations using the G1 policy, for
the hosts H1–H5

among the hosts. The second procedure, however, is more suitable for off-line
conditions, since the search is both among VMs and hosts.

3.1. The G1 policy.

3.1.1. The G1 resource allocation function. The G1 resource allocation pol-
icy assigns a given VM from a queue to the feasible host that maximizes the
G1(UCPU) function. This function resembles the t-distribution defined in ref-
erence [1], which models the hosts’ utilization when they deploy VMs with
randomly distributed resource requirements. There, the t-distribution is used



98 CORA CRĂCIUN AND IOAN SALOMIE

to compute upper and lower dynamic utilization thresholds for the hosts. For
each host, the parameters of the t-distribution are estimated from the host’s
historical usage over some time period. Physical resources are allocated to
the VMs using the power-aware Modified Best Fit Decreasing policy [1]. In
our case, the resource allocation policy is of Gaussian-type and we map the
VMs on hosts by comparing the hosts’ G1(UCPU) functions. As in reference
[1], however, with this policy we aim to avoid the under or overusage of the
physical resources.

For a feasible host, G1 depends on the host’s CPU utilization, UCPU, and is
a Gaussian centered at the middle point of the threshold interval [ThrL, ThrH]
(Fig. 1). The area below the Gaussian function and between the two thresholds
is a specified value a ∈ (0, 1). Then, the G1 function is

(1) G1(UCPU) =
1

σ
√

2π
exp

[
−(UCPU − µ)2

2σ2

]
,

where

(2) µ =
ThrL + ThrH

2
, σ =

ThrH − ThrL

2
√

2 erf−1(a)
,

and erf−1 is the inverse error function. For the unfeasible hosts, the G1 func-
tion is zero.

The thresholds have close meaning to that used in the literature [1, 13].
The hosts with higher utilization than ThrH are overused and those with
lower utilization than ThrL are underused. In case of G1 policy, however, the
VMs may still be mapped on feasible hosts with utilization falling outside the
threshold interval, but with lower chances than to the other hosts.

The shape of the G1 function may be adjusted by changing the thresholds
or the a parameter. The mean value of the thresholds imposes the G1 func-
tion’s location. The distance between the thresholds and the a parameter, on
the other hand, influence in opposite ways the Gaussian’s width. At limit,
when a is close to zero, G1 degenerates in the zero function. In this case, the
G1 policy treats all hosts equally and if G1 uses the 1−G1 resource allocation
function, then it behaves as the FF policy.

Each host is characterized by its G1 function. The hosts with the same
ThrL, ThrH, and a parameters own identical functions. The hosts also having
the same CPU utilization, UCPU, are equally likely to accept or reject a VM.
All homogeneous physical machines from a data center may use the same
resource allocation function G1. On contrary, heterogeneous hosts from the
same data center or identical hosts from different data centers may use distinct
functions.
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3.1.2. Example using the G1 policy. An example of resource allocation using
the G1 policy is presented in Figure 1b. The thresholds have been chosen
based on the values reported in the literature [3, 22]. The a = 0.8 parameter
ensures that most part of the G1 function lies inside the [0%,100%] utilization
range. Only H3, H4, and H5 are feasible hosts for a VM requiring an RCPU =
20% CPU share. Both H3 and H4 have the same maximal G1(UCPU) value for
this VM. In case of ties, the resource allocation algorithm chooses the lowest-
indexed host, here H3. In general, the chosen host may be the one with a
higher or a lower CPU utilization. To remove this ambiguity, an improved
algorithm may select consistently one of the hosts, based on CPU utilization
criteria. Even better, the algorithm may adapt to run-time conditions and
choose the host with high CPU utilization for resource consolidation and the
host with low CPU utilization for load balancing.

3.1.3. Comparison of G1 with FF and BF policies. Let now compare the G1
resource allocation policy with the FF and BF heuristics. If the hosts are
identical and initially empty, they are all feasible and characterized by the
same G1(0) value. Thus, the G1 policy assigns a given VM to the first host,
H1. Unless H1 becomes unfeasible, next VMs in the queue are also allocated
to this host, because its G1(U1

CPU) value is maximal among all hosts. Up to
this point, G1, FF, and BF behave identically. Let assume now that the host
H1 is 90% used and the current VM requires a 35% CPU share. Since H1

lacks resources, all policies assign the VM to the next host, H2. Both H1

and H2 are feasible destination hosts for the following VM requiring a 10%
CPU share. FF assigns the VM to the first feasible host, namely H1. BF
chooses the same host, because H1 remains with less free resources than H2

after VM assignment. On contrary, the G1 policy selects the host H2, because
G1(U2

CPU = 35) > G1(U1
CPU = 90) (Fig. 1c).

In case of FF and BF policies, an increase in the VMs’ CPU requirements
on host H1 would immediately trigger some VMs migrations from H1 to other
hosts. In case of G1, however, the hostH1 still has some free resources and may
afford such resource requirements increases. Therefore, G1 promotes resource
consolidation, but in a less greedy way than FF and BF. In addition, G1 may
reduce the number of VMs migrations and avoid their drawbacks: the jobs’
performance degradation, the electrical power overhead for the hosts involved
in migration, and the network use.

3.2. The G2 policy.

3.2.1. The G2 resource allocation function. The G2 policy favors those alloca-
tions in which the VMs’ required resources are close to some fraction α ∈ (0, 1]
from the hosts’ available resources. To our knowledge, this policy has not been
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previously used for resource allocation. Unlike G1, G2 uses a resource alloca-
tion function G2(RCPU, ACPU), which depends both on the required and the
available resources. For the unfeasible hosts, the G2 function is zero. The G2
policy may allocate resources either for ordered VMs or for sets of VMs.

In case of VM queues, the next VM to be mapped on hosts is known at
each scheduling time. As a result, for a given VM, the G2 policy finds the
host that maximizes the one-variable function G2([RCPU], ACPU), with fixed
RCPU value and variable ACPU. From now on, we include a fixed variable of
the G2 function in square brackets. In case of VM sets, on the other hand,
the G2 policy chooses iteratively the feasible (VM , host) pairs that maximize
the two-variable function G2(RCPU, ACPU).

The G2 function is defined as follows. For a host with ACPU available re-
sources, G2 is a Gaussian centered at RCPU = αACPU. Moreover, G2 decreases
at a fraction r ∈ (0, 1) from its peak value when RCPU = αACPU ± ACPU/2.
Thus, the G2 function is

(3) G2(RCPU, ACPU) =
1

σ
√

2π
exp

[
−(RCPU − αACPU)2

2σ2

]
,

where

(4) σ =
ACPU

2
√

2 ln(1/r)
.

Both the location and width of the G2 function depend on the host’s
available resources. When ACPU changes – because new VMs are mapped on
the host, other VMs finish their work, or the CPU requirements of the running
VMs are changing – the host’s G2 function, G2(RCPU, [ACPU]), moves along
the RCPU axis and changes its width.

Figure 2 contains a three-dimensional representation of theG2(RCPU, ACPU)
function, when ACPU ∈ [10%, 100%], RCPU ∈ [10%, ACPU], and the parame-
ters are α = 0.5 and r = 0.001. With these parameters, the Gaussian of a
host with fixed ACPU value is centered at RCPU = ACPU/2, and decreases at
0.001 from its peak value when RCPU = 0 or RCPU = ACPU. Therefore, the
VMs and the hosts are better matched if the required resources are close to
half the available ones.

3.2.2. Example using the G2 policy. Let exemplify the use of the G2 policy
for mapping a set of four VMs on three hosts. The hosts have the following
available resources: A1

CPU = 50% (H1), A2
CPU = 70% (H2), and A3

CPU = 100%
(H3). The VMs require the CPU shares R1

CPU = 10% (V1), R2
CPU = 20% (V2),

R3
CPU = 35% (V3), and R4

CPU = 30% (V4). The resource allocation functions
G2 of all hosts have the same parameters α = 0.5 and r = 0.001.



RESOURCE ALLOCATION POLICIES FOR VIRTUALIZED DATA CENTERS 101

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

A
CPU

20
30

40
50

60
70

80
90

R C
PU

20
30
40
50
60
70
80
90

G
2
(R

C
P
U
,A

C
P
U
)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(%)

(%
)

Figure 2. Three-dimensional representation of the
G2(RCPU, ACPU) Gaussian-type function, with parameters
α = 0.5 and r = 0.001 (formulas 3–4)

The VM-to-host mapping process is illustrated in Figure 3. Each subfigure
corresponds to a resource allocation iteration step. Each step selects from the
unassigned VMs and from the feasible physical machines the (VM , host) pair
with the maximalG2(RCPU, ACPU) value. Subfigures (a) to (d) are given in the
order in which the G2 policy selects the (VM , host) pairs. Each Gaussian curve
is the G2(RCPU, [ACPU]) function of a host (continuous line for H1, dashed line
for H2, and dotted line for H3), at fixed ACPU and variable RCPU. The vertical
lines located at 10%, 20%, 35%, and 30% RCPU values indicate the VMs’
required CPU shares. The vertical line for a VM with RCPU requirements
has a length equal with the maximal G2([RCPU], ACPU) value among all hosts.
The (VM , host) pair selected at each step is indicated with a dot on the host’s
Gaussian curve. The four steps of the mapping process are the following:

• Step 1: Figure 3a shows the Gaussian functions G2(RCPU, [A
1
CPU =

50]) for H1, G2(RCPU, [A
2
CPU = 70]) for H2, and G2(RCPU, [A

3
CPU =
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Figure 3. An example of mapping a set of four VMs (V1, V2,
V3, and V4) on three hosts (H1, H2, and H3), using the G2
policy

100]) for H3. The (VM , host) pair with the maximal G2 value at this
step is (V2,H1).
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• Step 2: After Step 1, the host H1 remains with A1
CPU = 30%

available resources. As a result, the G2 function of H1 moves to-
wards lower values along the RCPU axis. The Gaussian functions
G2(RCPU, [A

1
CPU = 30]) for H1, G2(RCPU, [A

2
CPU = 70]) for H2, and

G2(RCPU, [A
3
CPU = 100]) for H3, as well as the required resources for

the unmapped VMs V1 (10%), V3 (35%), and V4 (30%) are shown in
Figure 3b. The (VM , host) pair selected at this step is (V1,H1).
• Step 3: After Step 2, the host H1 remains with 20% available CPU.

As before, the G2 function of H1 moves towards lower values along the
RCPU axis. The resource allocation functions G2(RCPU, [A

1
CPU = 20])

for H1, G2(RCPU, [A
2
CPU = 70]) for H2, and G2(RCPU, [A

3
CPU = 100])

for H3, and the required resources of V3 (35%) and V4 (30%) are shown
in Figure 3c. Now, the host H1 lacks resources for both VMs. The
final mapping at this step is (V3,H2).
• Step 4: After Step 3, the host H2 remains with 35% available CPU.

Figure 3d presents the Gaussian functions for the three hosts,
G2(RCPU, [A

1
CPU = 20]) for H1, G2(RCPU, [A

2
CPU = 35]) for H2, and

G2(RCPU, [A
3
CPU = 100]) for H3. V4 (30%) is the only VM still un-

mapped on a physical machine. The host H1 is unfeasible for this VM
and the host H2 has a lower G2 value than H3. Finally, V4 is assigned
to the host H3.

At Step 4, both FF and BF policies map the VM V4 on host H2 and
keep the host H3 unused. In conclusion, the G2 policy may use more physical
machines than FF and BF, and thus may increase the energy consumption in
data centers. A decrease in the VM migration number, however, compensates
for this energy increase. Being less tightly packed with VMs, the hosts using
the G2 policy have less chances to overflow at run-time, when the VMs’ CPU
requirements are changing. Therefore, less VMs migrate from one host to
another.

4. Evaluation of the Gaussian-type policies

4.1. Simulation experiments. In this section, we compare by simulation
the Gaussian-type policies with the greedy FF and BF heuristics and with
a load balancing scenario. Simulation experiments consisted in deploying 40
VMs with time-varying resource requirements in a homogeneous data cen-
ter with 20 identical hosts. The evaluation was performed using a resource
management framework built upon the Haizea lease scheduler [11, 19, 18].
The framework was used for VM scheduling, resource allocation, and host
management, and for computing several performance metrics and the energy
consumption in virtualized data centers.



104 CORA CRĂCIUN AND IOAN SALOMIE

We enhanced the Haizea scheduler with the following facilities: (a) new
resource allocation policies; (b) periodical change of the VMs’ CPU require-
ments; (c) management of the overused hosts and of the suspended VMs; (d)
computation of performance and energy metrics. Unlike reference [1], we con-
sidered only the overused hosts and not the underused ones when performing
the VMs’ migrations.

In the framework, the VMs have been modeled using Haizea’s best-effort
leases [19]. After their simultaneous arrival at the data center, the VMs were
mapped on hosts according to their CPU requirements, the hosts’ available
resources, and the chosen resource allocation policy. For simulating a work-
flow, the VMs’ CPU requirements were changed periodically at each 2 min.
The VMs’ CPU shares, RCPU (in percents), were generated as uniformly dis-
tributed random numbers between 10 and 40, rounded up to the nearest integer
values. The VMs’ CPU traces lasted 300 min. The times were measured on
the data center’s clock.

All physical machines of the data center were single-processor and had the
CPU capacity TCPU = 100%. We considered that, while deploying VMs, the
physical machines used a dynamic electrical power proportional to their CPU
usage, UCPU [8]. The idle power of each machine was 70% of the total power of
250 W at full CPU utilization [1]. Only the active machines consumed energy,
the idle ones being switched off.

The framework performed the VM scheduling and resource allocation in
a centralized way. The VMs were either queued at the data center, for their
further mapping on hosts, or were selected from a VM set. After initial assign-
ment, at run-time some VMs were suspended, because their resource require-
ments changed and their hosts became overused (ACPU > TCPU). Namely,
the VMs of each overloaded host were first sorted increasingly by their CPU
requests. Then, the VMs with the lowest requests were suspended in order,
until the host’s overload was cleared. Most suspended VMs were migrated to
other hosts, but few VMs were resumed on the original hosts. The hosts were
checked for overloading at each change of the VMs’ CPU requirements. The
VMs were relocated using the off-line migration procedure provided by the
Haizea scheduler [11, 19, 18]. Unlike Haizea, we allowed more VMs to migrate
simultaneously from the same host, without performance overhead. The mi-
grated VMs were mapped on other hosts using the same resource allocation
policy as the initial VMs.

Regardless of the resource allocation policy used, all suspended VMs, mi-
grated or not, experienced a 19 s delay corresponding to a suspension / re-
sumption rate of 32 MB/s. Other rates would have caused other delays. While
suspended, the VMs did not consume CPU resources, neither on the initial nor
on the final hosts. Because each VM required 300 min of effective processing,
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its flow time was increased with the corresponding suspension delays. Each
time the initial or suspended VMs were mapped on hosts, the Gaussian-type
resource allocation functions were computed with the instantaneous RCPU,
UCPU, and ACPU values of the virtual or physical resources.

Simulation experiments were repeated 100 times. Within the same ex-
periment, all compared resource allocation policies used a common set of 40
randomly generated VMs’ CPU traces. A different random CPU trace was
generated for each VM. Parameters of the G1 resource allocation function
were ThrL = 40, ThrH = 80, and a = 0.8. Parameters of the G2 function were
α = 0.5 and r = 0.001.

4.2. Results. Figure 4 presents the following metrics computed from the 100
repeated experiments of deploying 40 VMs, with 300 min long CPU traces, in
a data center with 20 hosts: the consumed energy, the mean number of active
hosts in the entire makespan, the number of VMs migrations, the number of
VMs suspensions without migration, the total number of VMs migrations and
suspensions, and the VMs’ total flow time (the sum of all VMs’ processing
times). Four scheduling and resource allocation policies were used for queued
VMs (FFq, BFq, G1q, and G2q) and one policy for VM sets (G2s). Based on
these results, we drew the following conclusions:

(a) In all experiments, the two G2 policies were less energy-efficient than
FFq, BFq, and G1q, but generated a lower number of VMs migrations. The
G2q and G2s policies performed similarly with respect to all metrics. In
52% of experiments, G2s consumed more energy than G2q, and in 59% of
experiments, G2s generated less VMs migrations than G2q.

(b) In 67% of experiments, the G1q policy consumed more energy than
FFq, but in 96% of experiments G1q generated less VMs migrations than FFq.

(c) The investigated policies showed similar relative behavior for the fol-
lowing metrics: 1. the energy consumption and the mean number of active
hosts, and 2. the VM migration number and the flow time. The first similarity
came from the fact that the energy consumption depended on how many hosts
were switched-on and were deploying VMs. On the other hand, the VMs’ total
flow time followed the VM migration number because the CPU traces of all
VMs were equally long, and the total migration time overhead depended on
how many migrations occurred in the experiment.

(d) For all policies, the number of VMs suspensions without migration was
very small (less than 3.2% from the total number of migrations and suspen-
sions). These suspensions with resumption on the same hosts were caused by
the host management procedure used in this work. From each overloaded host,
the framework suspended in order the VMs with the lowest CPU request, until
the overload was cleared. With this procedure, more VMs than necessary were
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Figure 4. Boxplot representation [16] of the energy and per-
formance metrics in 100 simulation experiments of deploying
40 VMs on 20 hosts. The horizontal lines inside the boxes in-
dicate the data’s median values and the full knots indicate the
data’s mean values.

suspended from some overloaded hosts. For few suspended VMs, the original
hosts still had resources, and thus the VMs were resumed on the same hosts
without migration. Other host management procedures, not considered here,
may generate only VMs migrations.

(e) For each experiment, we computed the relative values (in percents)
of the energy and VM migration number, for the G1q and G2q policies with
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respect to the FFq policy. Then, we have calculated the mean and standard
deviation of the relative values obtained for all 100 experiments. In case
of G1q vs. FFq, the mean relative energy was 1.1% and the mean relative
VM migration number was -23.4%. These values, however, had very high
standard deviations (2.2% for energy and 10.5% for VM migration number).
For G2q vs. FFq, the mean relative energy was 8.9% (sd = 3.1%) and the
mean relative VM migration number was -64.5% (sd = 6.7%). Thus, the G2q
policy decreased the VM migration number relative to FFq with more than
55%, with an energy overhead of up to 12%.

(f) Beside FF and BF, we have also compared the Gaussian-type policies
with a load balancing scenario. This scenario used the same data center con-
figuration (40 VMs and 20 hosts) and VMs’ CPU traces as the other policies.
Calculations were performed for the 100 simulation experiments considered
previously. Two VMs were mapped on each host, in order to avoid the hosts’
overloading at the VMs’ maximal CPU requirements of 40%. In this setting,
all VMs finished their work in 300 min, as required. The load balancing sce-
nario led to a higher energy consumption (mean = 21.32 kWh and sd = 0.02
kWh, in 100 experiments), a smaller flow time (200 h), and no VM migration
compared to all the other policies considered in present work (Fig. 4).

5. Conclusions

In this paper we have proposed two Gaussian-type resource allocation poli-
cies for virtualized data centers. In the resource allocation process, the two
policies maximized Gaussian functions depending on some adjustable param-
eters and on the required and available resources. The Gaussian-type policies
packed the VMs on hosts less tightly than the consolidation policies, but more
tightly than the load balancing methods. Compared to First Fit and Best Fit,
the Gaussian policies tended to use more physical machines, but they were
more robust to the VMs’ workload variations. As a result, the energy con-
sumption in data centers was higher, but the number of VMs migrations was
smaller. A drawback of the two policies is their exhaustive search in the VMs’
or hosts’ collections, which makes them suitable mostly for relatively small
data centers. Similar Gaussian-type policies to those described in this paper
may be defined for other physical resources than the CPU. For instance, the
resource allocations constrained by multiple physical resources (CPU, mem-
ory, hard-disk, or network I/O) may use a policy based on a multidimensional
Gaussian function. Solving such a resource allocation problem must consider
which physical resources have correlated usage, which may be overprovisioned,
shared between different VMs, or may be reclaimed from the VMs if not used.
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