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DISCOVERING PATTERNS IN DATA USING ORDINAL

DATA ANALYSIS

ADRIANA M. COROIU, RADU D. GĂCEANU, AND HORIA F. POP∗

Abstract. Discovering patterns in data is becoming more and more im-
portant for different fields of research. The analysis of ordinal data is
sensitive and requires special attention. In order to analyze ordinal data,
we may use various criteria. In our paper, we present a solution by using
different linkage criteria (ward, median, centroid, weighted, complete and
single linkage method) with agglomerative clustering algorithms.

To evaluate and interpret our results we have considered some internal
and external evaluation indexes for clustering (also known as cluster analy-
sis). The experiments reveal different comparative results. To validate our
clustering results, we used pair-counting measures (Jaccard, Recall, Rand
and Fowlkes-Mallows indexes), BCubed-based measures (F1-Measure), set-
matching-based measures and editing-distance measures (Purity, Precision
and Recall) for external evaluation and Silhouette index for analyzing in-
trinsic characteristics of a clustering (internal evaluation).

The comparative experiments for different linkage methods suggest that
for an ordinal data set, by using ward linkage methods we achieve more
accurate results in terms of cluster validity than others linkage criteria
applied to our data set.

1. Introduction

Clustering is one of the most useful methods to discover patterns in data
[21]. Due to its role related to discover structures in data, we can say that
clustering is a good tool for exploration of data. From the early ideas of the
1930s [12], this field has experienced a vast extension filed by new concepts
and computational difficulties [1]. Nowadays, the omnipresence of clustering
in our life is overwhelming.
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Comprehending information has turned into a basic goal of intelligent data
analysis (IDA), data mining (DM), sensor fusion, image comprehension, and
logic-driven system modeling. Clustering has turned into an equivalent word in
a differentiated set of philosophies and algorithms that are almost exclusively
data-driven and in which any optimization is predominantly, if not exclusively,
data-oriented.

Clustering offers ascend to an assortment of data granules whose utilization
uncovers the structure of information. Indeed, to a short and unsophisticated
search of the web for a simple search of any library database returns thousands
of hits, revealing an impressive breadth of applications: from bio-medicine
to marketing, engineering, economics, biological sciences, chemistry, military,
food engineering, finance, and education [13].

In literature, there are different data analysis methods targeting continu-
ous data, but there are few methods for ordinal data analysis. The analysis
of ordinal data is more sensitive because we cannot apply the usual formulas,
such as mean, or standard deviation on such data.

Our aim is to study the applicability of clustering algorithms on ordinal
data. We consider a Naive agglomerative clustering approach [12] and the
Slink algorithm [26] with several linkages and we apply them on a standard
data set [16] with ordinal data.

This paper is structured as follows: Section 2 presents the main idea on
which this paper is based. Section 3 and Section 4 present important notions
related to clustering, data types, linkage methods and the agglomerative clus-
tering algorithms that are used in the paper. Section 5 describes the performed
experiments and provides an interpretation of the obtained results, and finally,
the last section draws the conclusions and presents ideas for future work.

2. Motivation

According to the scientific literature [12, 28], clustering is one of the most
popular method of extracting essential information from data. Ordinal data
is a particular type of data, and due to its properties, is very sensitive and
require different techniques of analysis.

Ordinal data is a type of data gathered from different surveys of social
sciences such as psychology, education, sociology, medicine. In these domains,
the researchers are using different questionnaires in order to gather the infor-
mation from the patients or users. The analysis of data from these domains was
the main point of start in this paper. The information that can be collected
using clustering may offer precious information for a therapist, psychologist
or sociologist.
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One of the main issues of ordinal variables is that distances, means, or
standard deviations cannot be directly computed. Even if ranks are associated
to the given categories, the size of the difference between two categories is
in general inconsistent. If the difference between categories was measurable
then the variables would be considered interval-based or ratio-based in which
case distances, mean, and standard deviation would be well-defined. Since
this is not always the case, the problem of ordinal data analysis is important
particularity in fields like economics or social-behavioural sciences, where data
is often ordinal by nature [4].

3. Theoretical background

Unlike classification, which breaks down class-labeled data sets, clustering
investigates data without class labels. The objects are clustered together based
on maximizing the intraclass similarity and minimizing the interclass similar-
ity [2]. Clustering is the main unsupervised learning method. The learning
procedure is unsupervised since the information, samples are not class labeled.

We introduce some fundamental notions related to clustering: types of
data, distance, and similarity measures.

3.1. Challenges in clustering. Clustering is a challenging research field.
There are some requirements for clustering as a data mining tool, as well as
aspects that can be used for comparing clustering methods. The following
features should be considered:

• Scalability: Many clustering algorithms deal with small data sets con-
taining fewer than several hundred data objects; but nowadays, a large
database may contain millions or even billions of objects. Clustering
on only a sample of a given large data set may conduct to biased re-
sults. In this case, highly scalable clustering algorithms are needed
[10].
• Ability to deal with different types of attributes: Many algorithms are

designed to cluster numeric (interval-based) data. However, applica-
tions may require clustering other data types, such as binary, nomi-
nal (categorical), and ordinal data, or mixtures of these data types.
Recently, more and more applications need clustering techniques for
complex data types such as graphs, sequences, images, and documents.
• Discovery of clusters with arbitrary shape: Numerous clustering algo-

rithms determine clusters based on Euclidean or Manhattan distance
measures. Algorithms based on such distance measures tend to find
spherical clusters with similar size and density. However, a cluster
could be of any shape. Consider sensors, for example, which are often
deployed for environmental surveillance.
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• Requirements for domain knowledge to determine input parameters:
Many clustering algorithms require users to provide domain knowl-
edge in the form of input parameters such as the desired number of
clusters. Consequently, the clustering results may be sensitive to such
parameters. Parameters are often hard to determine, especially for
high-dimensionality data sets and where users have yet to grasp a
deep understanding of their data. Requiring the specification of do-
main knowledge not only burdens users, but also makes the quality of
clustering difficult to control.
• Ability to deal with noisy data: Most data sets contain exceptions

and/or missing, obscure, or mistaken information [10]. Clustering al-
gorithms can be sensitive to such noise and may produce poor-quality
clusters. Therefore, we need clustering methods that are robust to
noise.
• Incremental clustering and insensitivity to input order: In many ap-

plications, incremental updates (newer data) may arrive at any time.
Some clustering algorithms cannot incorporate incremental updates
into existing clustering structures and, instead, have to recompute a
new clustering from scratch. Clustering algorithms may also be sen-
sitive to the input data order. That is, given a set of data objects,
clustering algorithms may return dramatically different clustering de-
pending on the order in which the objects are presented. Incremental
clustering algorithms and algorithms that are insensitive to the input
order are needed [11].
• Capability of clustering high-dimensional data: An information set

can contain various measurements or qualities. When clustering doc-
uments, for instance, every keyword can be viewed as a measurement,
and there are regularly a huge number of keywords. Most clustering
algorithms are great at taking care of low-dimensional data, for exam-
ple, data sets including just a few measurements. Discovering clusters
of data in a high dimensional space represents a challenge, particularly
considering that such data can be exceptionally inadequate and very
skewed.
• Constraint-based clustering: Real-world applications may need to per-

form grouping under different sorts of limitations. A challenging task is
to find data groups with good clustering behavior that satisfy specified
constraints.
• Interpretability and usability: Users need clustering results to be in-

terpretable, understandable, and usable.
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3.2. Types of data – Data objects and attributes. Data sets consist of
data objects. Data objects are generally described by attributes or variables.
Data objects are also known as samples, examples, instances, data points, or
objects. If the data objects are stored in a database, they are called data
tuples. That is, the rows of a table correspond to the data objects, and the
columns correspond to the attributes. In the following section, we will have a
short description of these notions.

The world encompassing us creates different sorts of data. The formal
representation and association of patterns mirror the path in which we intend
to process the data. The most broad scientific taxonomy being in common
use distinguishes among numeric, ordinal, and nominal variables [10].

An attribute is a data field, represented as a characteristic or as a feature
of a data object. The nouns attribute, dimension, feature, and variable are
often used interchangeably in the literature. The term dimension is commonly
used in data warehousing. Machine learning literature tends to use the term
feature, while statisticians prefer the term variable. Data mining commonly
uses the term attribute. Observed values for a given attribute are known as
observations. A set of attributes used to describe a given object is called an
attribute (feature) vector.

The type of an attribute is determined by the set of possible values: nom-
inal, binary, ordinal, or numeric. In the following subsections, we offer a short
presentation for each type.

The values of a nominal attribute are symbols or names of things. Each
value represents some kind of category, code, or state, therefore the nominal
attributes are also referred to as categorical. The values do not have any
meaningful order. Because nominal attribute values do not have any mean-
ingful order about them and are not quantitative, it makes no sense to find
the mean or median value for such an attribute, given a set of objects.

A binary attribute is a nominal attribute with only two categories or states:
0 or 1, where 0 typically means that the attribute is absent, and 1 means that
it is present. Binary attributes are referred to as Boolean if the two states
correspond to true and false. A binary attribute is symmetric if both of its
states are equally valuable and carry the same weight; that is, there is no
preference on which outcome should be coded as 0 or 1.

An ordinal attribute is an attribute with possible values with a meaningful
order or ranking, but the difference between successive values is not known.
Ordinal attributes are useful for registering subjective assessments of qualities
that cannot be measured objectively; thus ordinal attributes are often used
in surveys for ratings. They may also be obtained from the discretisation of
numeric quantities by splitting the value range into a finite number of ordered
categories [18].
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The nominal, binary, and ordinal attributes are qualitative and these de-
scribe a feature of an object without giving an actual size or quantity. The
values of qualitative attributes are typically words representing categories. If
integers are used, they represent computer codes for the categories, as opposed
to measurable quantities.

A numeric attribute is quantitative, in other words, a measurable quantity,
represented in integer or real values. Numeric attributes can be interval-scaled
or ratio-scaled.

Interval-scaled attributes are measured on a scale of equal-size units. The
values of interval-scaled attributes have orders and can be positive, 0, or nega-
tive. Thus, in addition to providing a ranking of values, such attributes allow
us to compare and quantify the difference between values.

A ratio-scaled attribute is a numeric attribute with an inherent zero-point.
That is, if a measurement is the ratio-scaled, we can speak of a value as being
a multiple (or ratio) of another value. In addition, the values are ordered,
and we can also compute the difference between values, as well as the mean,
median, and mode.

The concept of distance is the essential component of any form of clustering
that helps us navigate through the data space and form clusters. By computing
dissimilarity, we can sense and articulate how close together two patterns are
and, based on this closeness, allocate them to the same cluster. In the case
of continuous features there is a long list of distance functions. Each of these
functions implies a different view of the data because of their geometry [3].

4. Clustering algorithms

Clustering algorithms partition the objects into groups, or clusters, so that
objects within a cluster are similar to one another and dissimilar to objects
in other clusters. Similarity is commonly defined in terms of how close the
objects are in space, based on a distance function. The quality of a cluster may
be represented, for example, by its diameter, the maximum distance between
any two objects in the cluster.

Clustering can be used as a standalone tool to gain insight into the distri-
bution of data, to observe the characteristics of each cluster, and to focus on
a particular set of clusters for further analysis. Alternatively, it may serve as
a preprocessing step for other algorithms, such as characterization, attribute
subset selection, and classification, which would then operate on the detected
clusters and the selected attributes or features [6, 8].

4.1. Partitioning methods. Given a set of n objects, a partitioning method
constructs k partitions of the data, where each partition represents a cluster
and k <= n. That is, it divides the data into k groups such that each group
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must contain at least one object [14]. In other words, partitioning methods,
conduct a one-level partitioning on data sets. The basic partitioning methods
typically adopt exclusive cluster separation. That is, each object must belong
to exactly one group. While partitioning methods meet the basic clustering
requirement of organizing a set of objects into a number of exclusive groups,
in some situations we may want to partition our data into groups at different
levels such as in a hierarchy.

4.2. Hierarchical methods. A hierarchical method creates a hierarchical
decomposition of the given set of data objects. A hierarchical method can be
classified as being either agglomerative or divisive, based on how the hierar-
chical decomposition is formed.

The agglomerative approach starts with each object forming a separate
group. It successively merges the objects or groups close to one another, until
all the groups are merged into one, or a termination condition holds. The
divisive approach, starts with all the objects in the same cluster. In each
successive iteration, a cluster is split into smaller clusters, until eventually
each object is in one cluster, or a termination condition holds.

Hierarchical clustering methods can be distancing, biased or density, and
continuity based. Various extensions of hierarchical methods consider cluster-
ing in subspaces as well [25]. An agglomerative hierarchical clustering method
uses a bottom-up strategy. It typically starts by letting each object form its
own cluster and iteratively merges clusters into larger and larger clusters, un-
til all the objects are in a single cluster or certain termination conditions are
satisfied. The single cluster becomes the hierarchys root.

For the merging step, it finds the two clusters that are closest to each other
(according to a similarity measure), and combines them to form one cluster.
Because two clusters are merged per iteration, where each cluster contains at
least one object, an agglomerative method requires at most n − 1 iterations
[18].

In the bottom-up mode known as an agglomerative approach, we treat each
pattern as a single-element cluster and then successively merge the closest
clusters. At each pass of the algorithm, we merge the two closest clusters.
The process is repeated until we get to a single data set or reach a certain
predefined threshold value.

The top-down approach works in the opposite direction: we start with the
entire set treated as a single cluster and keep splitting it into smaller clusters.
Intuitively, we can easily envision three typical ways of computing the distance
between the two clusters.
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4.3. Linkage methods used in clustering. One advantage of hierarchical
clustering algorithms over partitioning algorithms is that the number of clus-
ters does not need to be known in advance, there is no initial assignment of
data to clusters needed, and also a distance measure between data items is not
necessary. The algorithms only need an intercluster similarity measure (which
may be based on a data point similarity measure). The most common linkage
measures are [17]:

• single linkage;
• complete linkage;
• average linkage;
• median linkage method;
• weighted linkage method;
• centroid linkage method;
• ward linkage method.

In the following subsection all these linkage methods are described.
We have the next notation to describe the linkages used by the various

methods: Cluster r is formed from clusters p and q.

• nr is the number of objects in cluster r;
• xri is the i-th object in cluster r.

The single linkage or minimum distance rule starts out by finding the
two points with the minimum distance. These are placed in the first cluster.
At the next stage a third point joined the already-formed cluster of two if
the minimum distance to any of the members of the cluster is smaller than
the distance between the two closest unclustered points. Otherwise, the two
closest unclustered points are placed in a cluster. The process continues until
all points end up in one cluster. The distance between two clusters is defined
as the shortest distance from a point in the first cluster that is closest to a
point in the second [26]. This linkage method is also called nearest neighbor:

d(r, s) = min(dist(xri, xsj)), i ∈ (i, ..., nr), j ∈ (1, ..., ns) (1)
The complete linkage option starts out in just the same way by clustering

the two points with the minimum distance. However, the criterion for joining
points to clusters or clusters to clusters involves the maximum (rather than
minimum) distance. That is, a third point joined the already formed cluster
if the maximum distance to any of the members of the cluster is smaller than
the distance between the two closest unclustered points. In other words, the
distance between two clusters is the longest distance from a point in the first
cluster to a point in the second cluster. This linkage method is also called
furthest neighbor [27]:

d(r, s) = max(dist(xri, xsj)), i ∈ (i, ..., nr), j ∈ (1, ..., ns) (2)
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The average linkage option starts out in the same way as the other two.
However, in this case the distance between two clusters is the average dis-
tance from points in the first cluster to points in the second cluster. The
average linkage uses the average distance between all pairs of objects in any
two clusters:

d(r, s) = 1
nrns

∑nr
i=1

∑nr
j=1 dist(xri, xsj) (3)

The median linkage uses the euclidean distance between weighted centroids
of the two clusters:

d(r, s) = ||x̃rx̃s||2 (4)
where x̃r and x̃s are weighted centroids for the clusters r and s. If cluster

r was created by combining clusters p and q, x̃r is defined recursively as:
x̃r = 1

2(x̃p + x̃q) (5).
The weighted average linkage uses a recursive definition for the distance

between two clusters.
If cluster r was created by combining clusters p and q, the distance between

r and another cluster s is defined as the average of the distance between p and
s and the distance between q and s:

d(r, s) = d(p,s)+d(q,s)
2 (6)

Centroid linkage uses the euclidean distance between the centroids of the
two clusters:

d(r, s) = ||xr − xs||2 (7)
where xr = 1

nr

∑nr
i=1 xri.

Wards linkage method starts out by finding two points with the minimum
within groups sum of squares. The points continue to be joined to the first
cluster or to other points depending on which combination minimizes the error
sum of squares from the group centroid. This method is also known as a k-
means approach. Closely related to the Wards algorithm is the Howard-Harris
algorithm. The Howard-Harris algorithm is a hierarchical divisive method
which uses the k-means method of assigning cases to the clusters [27].

Ward’s linkage uses the incremental sum of squares, that is, the increase
in the total within-cluster sum of squares as a result of joining two clusters.
The within-cluster sum of squares is defined as the sum of the squares of the
distances between all objects in the cluster and the centroid of the cluster.
The sum of squares measure is equivalent to the following distance measure
d(r, s):

d(r, s) =
√

2nrns
(nr+ns) ||xr − xs||2 (8)

where xr and xs are the centroids of clusters r and s, nr and ns are the
number of elements in clusters r and s. In some references the Ward linkage
does not use the factor of 2 multiplying nr and ns.
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4.4. Cluster validity. In order to establish the quality of the results gathered
in a clustering, we can analyze the external validation indexes and the internal
validation indexes [19].

• External validation. In external validation, the quality of the algorithm
is evaluated by comparing the resulting clusters with pre-specified in-
formation. There are many external validation measures like Purity,
Rand, Entropy, Jaccard coefficient or Fowlkes-Mallows Index (FM)
[7]. The clusters formed are evaluated and interpreted according to
the distance between data points and cluster centers of each cluster
[15].
• Internal validation. For internal validation, the evaluation of the re-

sulting clusters is based on the clusters themselves, without additional
information or repeating of the clustering process. This family of tech-
niques is based on the assumption that the algorithms should search for
clusters whose members are close to each other and far from members
of other clusters.

5. Computational experiments

Clustering is the process of partitioning a set of data objects (or observa-
tions) into subsets. Each subset is a cluster, such that objects in a cluster are
similar to one another, yet dissimilar to objects in other clusters. In this con-
text, different clustering methods may generate different clustering tree on the
same data set. Hence, clustering is useful in that it can lead to the discovery
of previously unknown groups within the data.

Hierarchical clustering algorithms may be identified as either hierarchical
agglomerative or hierarchical divisive, meaning that they contract or expand
the space between groups of points in the multivariate space. Wards method
and complete linkage rules are of the divisive variety and tend to create clus-
ters of roughly equal size that are hyper-spherical in form. The average linkage
method neither expands nor contracts the original space, while the single link-
age tends to agglomerate or contract the space between groups of points in
multivariate space.

The experiments reveal different results. Based on them, we provide com-
parisons. To validate our clustering results, we have the following measures,
pair counting measures, BCubed based measures, set matching based mea-
sures and editing distance measures - for external evaluation and Silhouette
index for analyzing intrinsic characteristics of a clustering resulted structure -
internal evaluation.

For all these measures of validation in our experiments we gathered values
of the specified index of them. For pair counting measures, we have values
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for the following indexes: Jaccard, Recall, Rand and Fowlkes-Mallows indexes
and for set matching based measures and editing distance measures we have
values for Purity, Precisions and Recall.

The Jaccard index is a common index for binary (and non-binary) variables
[17].

If x = (x1, ..., xn) and y = (y1, ..., yn) are two vectors with all real and
positive xi, yi, then the Jaccard similarity coefficient is defined as:

J(x, y) =
∑

i min(xi,yi)∑
i max(xi,yi)

(9)

The Rand index in statistics, and in particular in data clustering, is a
measure of the similarity between two data clustering trees. Rand index is
related to the accuracy, but is applicable even when class labels are not used
[23].

For a set of n elements S = (o1, ..., on) and two partitions of S to com-
pare, X = (X1, ..., Xr), a partition of S into r subsets, and Y = (Y1, ...Ys),
a partition of S into s subsets, and with the definition of the following: a –
the number of pairs of elements in S that are in the same subset in X and
in the same subset in Y ; b – the number of pairs of elements in S that are in
different subsets in X and in different subsets in Y ; c – the number of pairs
of elements in S that are in the same subset in X and in different subsets in
Y ; d – the number of pairs of elements in S that are in different subsets in X
and in the same subset in Y , we have:

R = a+b
a+b+c+d (10)

For Fowlkes-Mallows index we have the following [7]: two clustering trees
of n objects identified A1 and A2. The trees A1 and A2 can be cut to produce
k ∈ {2, . . . , n − 1} clusters for each tree. And for each value of k, we have:
M = [mi,j ], i ∈ {1, . . . , k} and j ∈ {1, . . . , k} where mi,j is of objects common
between the i−th cluster of A1 and j−th cluster of A2. Fowlkes-Mallows index
(Bk) can then be computed for every value of k and we have 0 ≤ Bk ≤ 1. For
a specific value of k we have the formula (11):

Bk = Tk√
PkQk

(11)

Tk =
∑k

i=1

∑k
j=1 m

2
i,j − n (12)

Pk =
∑k

i=1(
∑k

j=1 mi,j)
2 − n (13)

Qk =
∑k

j=1(
∑k

i=1 mi,j)
2 − n (14)

Fowlkes-Mallows index showed that on using two unrelated clustering
trees, the value of this index approaches zero as the number of total data
points chosen for clustering increase; whereas the value for the Rand index
for the same data quickly approaches making Fowlkes-Mallows index a much
accurate representation for unrelated data [7].
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In order to compute the purity of a set of clusters, first, we calculate the
purity for each cluster, according to formula (15):

Pj = 1
nj
Max(ni

j) (15)

In other words, Pj is a fraction of the overall cluster size that the largest
class of objects assigned to that cluster represents. The overall purity of the
clustering solution is obtained as a weighted sum of the individual cluster
purities and given as:

Purity =
∑m

j=1
nj

n Pj (16)
Were nj is the size of cluster j,m is the number of clusters, and n is the

total number of objects [15].
For computations of the recall and precision indexes we have the following

formulas [9].
Recall(i, j) =

nij

ni
(17)

Precision(i, j) =
nij

nj
(18)

Were nij is the number of objects of class i that are in cluster j, nj is the
number of objects in cluster j and ni is the number of objects in class i.

The silhouette is the average, over all clusters, of the silhouette width
of their points. If x is a point in the cluster Ck and nk is the number of
points in Ck, then the silhouette width of x is defined by the ratio where
a(x) is the average distance between x and all other points in Ck, and b(x) is
the minimum of the average distances between x and the points in the other
clusters [20].

For a given point x, its silhouette width ranges from 1 to 1. The higher
the silhouette, the more compact and separated are the clusters [24].

The Silhouette coefficient is an example of such an evaluation, where a
higher Silhouette coefficient score relates to a model with better defined clus-
ters. The Silhouette coefficient is defined for each sample and is composed of
two scores [24]: a – the mean distance between a sample and all other points
in the same class and b – the mean distance between a sample and all other
points in the next nearest cluster.

The Silhouette coefficient s is given as:
s = b−a

max(a,b) (19)

First data set used in our experiment was the Dermatology data set [16] —
a data set with 366 instances and 33 attributes and the attribute characteristics
are categorical. In this data set, every feature (clinical and histopathological)
was given a degree in the range of 0 to 3. A value of 0 indicates that the
feature was not present, 3 indicates the largest amount possible, and a value
of 1 or 2 indicates the relative intermediate values.

The second data set used in our experiment was Chronic Kidney Disease
data set [16]. The original data set Chronic Kidney Disease is a data set
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with 400 instances and 24 attributes divided in 11 numeric attributes and 13
nominal attributes. In order to have an ordinal data set, we create a subset of
this original data set. To get the ordinal subset for Chronic Kidney Disease
Data Set, we have performed the following: we have deleted the nominal
attributes and we process the numeric attributes. The 11 remaining attributes
are: blood pressure, albumin, blood glucose, blood urea, serum creatinine,
sodium, potassium, hemoglobin, packed cell volume, white blood cell count
and red blood cell count. We scaled these numerical values and we transformed
the numerical values in three ordinal values: small (coded with 1), medium
(coded with 2) and high (coded with 3).

For our experiment, we have used an open source data mining software
written in Java called ELKI [5]. We have performed experiments with two
agglomerative clustering algorithms: Slink and Naive agglomerative clustering
algorithm. For these two algorithms we have chosen different linkage criteria
(ward, median, centroid, weighted, complete, average and single linkage).

In order to evaluate our results, we have used several measures for inter-
nal and external evaluation of a clustering. For external evaluation, we have
chosen the following methods of evaluation: pair counting measures, BCubed
based measures, set matching based measures, editing distance measures.

Pair counting measures are an approach based on counting pairs of objects
that are classified in the same way in both clustering trees. For Pair counting
measures we have gathered the following values, indexes: Jaccard, Recall,
Rand and Fowlkes-Mallows indexes.

The Jaccard index has values between 0 – independent clustering tree
and 1 - identical clustering tree. The Rand index is an index which correctly
classifies pairs of elements, its value between 0 and 1; he value 1 means that
two partitions perfectly agree. The FM is an external evaluation method that
is used to determine the similarity between two clusters. A higher value for
Fowlkes-Mallows index indicates a greater similarity between two clusters [22].

Our experiments show a greater value of Jaccard, Rand and Fowlkes-
Mallows indexes if we have applied ward linkage method in comparisons to
other linkage method analyzed (median, centroid, weighted, complete, average
and single linkage). Consequently, ward linkage method provides an accurate
clustering than another linkage methods applied in an agglomerative cluster-
ing algorithm. The second evaluation methods on which we have values of
indexes is BCubed-based measures – BCubed metrics decompose the evalua-
tion process estimating the precision and recall associated with each item in
the distribution. The item precision represents how many items in the same
cluster belong to its category. At the same time, the recall associated with
one item represents how many items from its category appear in its cluster.
BCubed metrics independently compute the precision and recall associated to
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Index/Linkage Method
(Algorithm) for 2 data sets

Ward Median Centroid Complete Single
Nave Slink Nave Slink Nave Slink Nave Slink Nave Slink

Jaccard
0.19 0.65 0.23 0.27 0.51 0.52 0.19 0.27 0.19 0.60
0.23 0.67 0.26 0.31 0.55 0.55 0.22 0.32 0.22 0.64

Recall
0.19 0.65 0.23 0.27 0.51 0.52 0.19 0.27 0.19 0.75
0.23 0.67 0.26 0.31 0.55 0.55 0.22 0.32 0.22 0.75

Rand
0.21 0.65 0.44 0.47 0.63 0.64 0.21 0.29 0.41 0.90
0.24 0.67 0.45 0.48 0.68 0.67 0.25 0.35 0.47 0.91

FowlkesMallows
0.44 0.81 0.48 0.52 0.71 0.72 0.43 0.52 0.43 0.75
0.47 0.83 0.49 0.55 0.73 0.74 0.47 0.55 0.48 0.77

F1-Measure
0.45 0.87 0.53 0.56 0.71 0.72 0.47 0.57 0.50 0.83
0.50 0.89 0.55 0.60 0.73 0.74 0.50 0.59 0.53 0.88

Purity
0.29 0.78 0.39 0.43 0.61 0.62 0.32 0.41 0.36 0.84
0.30 0.79 0.41 0.46 0.66 0.63 0.35 0.44 0.38 0.88

Precision
0.98 0.97 0.84 0.85 0.85 0.86 0.97 0.97 0.83 0.83
0.97 0.96 0.83 0.84 0.83 0.84 0.95 0.96 0.80 0.81

Silhouette
0.63 0.35 0.69 0.67 0.63 0.62 0.62 0.60 0.70 0.47
0.64 0.40 0.71 0.69 0.64 0.64 0.64 0.62 0.78 0.52

Table 1. Values achieved. Columns represent achieved index
for both algorithms in different linkage methods

each item in the distribution. The precision of an item represents the amount
of items in the same cluster that belong to its category. The recall of an item
represents how many items from its category appear in its cluster. In our case,
our experiments outline a higher value of precision which means that the clus-
ter achieved is more precision-oriented. A higher value of precision is achieved
applied no matter of the linkage methods on agglomerative algorithms.

We can reach a maximum value for inverse purity by making a single cluster
with all items. In our experiments, the results show a lower value of inverse
purity and a higher value of purity, which means that the clustering methods
return good results. The results of the purity achieved by applying our linking
criteria shows that if we chose the single linkage method, for purity we received
a higher value (0.84 and 0.88) than if we have been chosen ward linkage method
(value of purity 0.78 and 0.79), so according to this measurement set matching,
the single linkage criteria provides better results than other linkage criteria.

For the internal evaluation of a clustering, the analyzed and achieved value
is the silhouette index, which validates the clustering performance based on
the pairwise difference between cluster distances. In our experiments, we
have obtained a higher value with ward linkage methods than with single
linkage methods. The values are between 0.50 and 0.70 and these outline that
reasonable structure has been found.

Table 1 shows the results of the two algorithms using different linkage
criteria, using two ordinal data sets.
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6. Conclusion and future work

The aim of this paper was to study the agglomerative clustering algorithms
in the case of an ordinal data sets. We have performed tests using Naive
algorithm and Slink agglomerative clustering algorithm. We have studied
the appropriate linkage criteria to be used for particular algorithms. Our
experiments reveal good results in term of clustering evaluation for the ward
linkage criteria as compared to other linkage criteria.

One of the future point of our research is related, first to outlier detection
for ordinal data and, second, to the knowledge based clustering and as well as
figuring out a way to introduce robustness via fuzzy logic.
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