
STUDIA UNIV. BABE��BOLYAI, INFORMATICA, Volume LX, Number 2, 2015

ENVIRONMENT MODEL-BASED TESTING OF REACTIVE

SYSTEMS: A CASE STUDY ON A SCADE MODEL

ANNAMÁRIA SZENKOVITS

Abstract. Model-based testing can facilitate automatic test generation,
thus, it can signi�cantly decrease testing costs. This paper presents a case
study where model-based testing was performed on a SCADE (Safety Crit-
ical Application Development Environment) system. Test inputs were gen-
erated automatically based on a non-deterministic, realistic environment
model expressed in Lutin. The goal of the case study was to investigate
whether such a realistic test environment can increase model and oracle
coverage. The main contribution of the paper consists in �lling in a gap in
the existing literature, since there are no other works available discussing
both the model and oracle coverage obtained with Lutin on a SCADE
system.

1. Introduction

Model-based testing is a widely used technique in the �eld of veri�cation
of reactive systems. The technique consists of �ve main steps [16]:

(1) The system under test (SUT) and/or its environment is modelled.
(2) Abstract test cases are generated from the model � usually automat-

ically or semi-automatically.
(3) The abstract tests are concretized in order to make them executable.
(4) The tests are executed on the SUT and verdicts are assigned (fail/pass)

by the oracle.
(5) The results are analysed.

In our case study, we performed environment-model based testing � ac-
cording to the above mentioned �ve steps � on a reactive system. The main
characteristics of reactive systems is that they are in continuous interaction
with their environment. During their lifecycle, they continuously read the sen-
sor data coming from the environment, update their internal state, then write

Received by the editors: July 14, 2015.
2010 Mathematics Subject Classi�cation. 68N30, 68T35.
1998 CR Categories and Descriptors. D.2.5 [Software Engineering]: Testing and De-

bugging � Testing tools (e.g., data generators, coverage testing);
Key words and phrases. Model-based testing, Reactive systems, SCADE.

128

ENVIRONMENT MODEL-BASED TESTING OF REACTIVE SYSTEMS 129

the outputs to their actuators, by which they act upon their environment.
The behaviour of reactive systems can be best described using synchronous
languages [7].

The model of the SUT upon which our case study was based, was designed
and developed in SCADE [5]. SCADE is a synchronous, widely used industrial
toolset, especially for designing avionic and railway systems. For modelling
the environment of the SUT, the Lutin language [15] was chosen. Similar
to SCADE, Lutin is also a synchronous language. In addition to SCADE,
Lutin's syntax contains elements that enable us to describe non-deterministic
behaviour, thus, to express the logic of the test environment in a more realistic
way.

In order to automatically assign verdicts (fail/pass) to the execution of
a test case, but also to calculate the oracle coverage rate, we used the Lustre
language, another synchronous language, based on the data-�ow notation [3, 7].
Lustre is also the kernel of SCADE and Lutin. To analyse the coverage of the
SUT achieved during the testing, we used the SCADE Suite MTC (Model Test
Coverage)1 tool.

The paper is structured as follows. Section 2 presents the components of
the testing framework. Part 2.1 describes some of the fundamental aspects of
the language Lutin, focusing on how di�erent properties of the language will
be exploited in our case study. Parts 2.2 and 2.3 explain the MTC and oracle
coverage criteria, respectively. Section 3 summarizes the experimental results,
while section 5 presents the conclusions and future work. Finally, section 4
reviews some of the work relevant for this topic.

2. Environment-model based testing of reactive systems

The testing framework used in the current case study consisted of the
following components, as illustrated by �gure 1: the SUT, environment model,
oracle and MTC analyser.

The SUT on which the testing was performed was the the SCADE model
of an airplane's roll control system. More precisely, we used the C code gener-
ated from the SCADE model by the SCADE Suite KCG code generator2 and
executed the test cases on it.

To model the environment, but also to simulate the SUT and to generate
test inputs, we used the Lutin language. This way, we were able to generate
realistic test inputs and achieve a high model and oracle coverage.

1http://www.esterel-technologies.com/wp-content/uploads/2013/02/SCADE-Suite-
MTC.pdf, downloaded on May 26, 2015

2http://www.esterel-technologies.com/products/scade-suite/automatic-code-
generation/scade-suite-kcg-ada-code-generator/, downloaded on May 26, 2015

130 ANNAMÁRIA SZENKOVITS

The test decision was performed automatically be the test oracle. Its role
was to decide whether the SUT generated the right outputs for the given
inputs. In addition, the oracle also contained coverage criteria based on which
we analysed the oracle coverage rate. The language used for formalizing the
oracle and oracle coverage criteria was Lustre. Finally, we used the SCADE
Suite MTC tool to analyse how thoroughly the C code generated from the
SCADE model was executed.

As illustrated in �gure 1, the SUT and environment were in continuous
interaction. The SUT read the inputs from the Lutin environment, updated its
internal state, and generated some outputs. This cyclic behaviour continued for
a speci�ed number of iterations. Meanwhile, the oracle observed the behaviour
of the SUT and decided whether the outputs generated by the SUT matched
the expected outputs for the given inputs. The SUT, environment and oracles
were connected by the Lurette tool3, an automatic test generator for reactive
systems. Lurette automated the test decision and stimulation of the SUT, by
executing the Lutin code and feeding in the inputs generated to the SUT. In
addition, Lurette also computed the oracle coverage [9].

Further on in this section, we present more in detail the components of the
testing framework.

2.1. Realistic test cases with Lutin. By using Lutin for modelling the
test environment, we were able to express non-deterministic behaviour, and to
perform guided random exploration of the environment state space. Because in
industrial, real-life problems the environment is often underspeci�ed, the non-
deterministic nature of Lutin makes it suitable to model realistic test scenarios.

The Lutin language is based on the use of constraints, which represent
descriptions of the environment and the expected properties of the SUT. The
constraints can be both boolean and numerical [14]. The constraint solver of
Lutin solves the constraints and randomly selects some of the solutions [10].
This way, a random exploration of the environment is performed.

Furthermore, Lutin enables us to in�uence the random exploration, and
thereby, to perform guided random exploration. There are two main elements
in Lutin's syntax that enable us to realize this. On one hand, we have the
non-deterministic choice operator |, as illustrated in the code example from
Figure 2. Weights can be assigned to the branches of this choice operator, this
way we can in�uence how the environment reacts. On the other hand, non-
determinism can be expressed in Lutin with random loops, which are de�ned
in terms of expected number of iterations. Based on Raymond et al. [15], there
are two possibilities to express the expected number of iterations:

3http://www-verimag.imag.fr/Lurette,107.html?lang=, downloaded on May 26, 2015

ENVIRONMENT MODEL-BASED TESTING OF REACTIVE SYSTEMS 131

Figure 1. Components of the test framework: The SUT as a C code
generated from a SCADE model with SCADE Suite KCG, the environ-
ment model expressed in Lutin, the oracle formulated in Lustre, and the
MTC analyser. The SUT and environment are in continuous interac-
tion with each other and have a cyclic behaviour. The execution of the
SUT and environment, as well as the automation of the test decision and
computation of the oracle coverage is done by the Lurette tool.

(1) loop[min,max]: the number of iterations should be between the con-
stants min and max.

(2) loop~av:sd: the average number of iteration should be av, with a stan-
dard deviation sd.

The above mentioned control structures were used to create an environment
model for the SCADE SUT. The environment model is presented in detail in
section 3.

2.2. Model test coverage. In order to evaluate the performance of the au-
tomated test method, the SCADE Suite MTC tool was used. The MTC tool
retrieves coverage data of the SUT model based on the MC/DC (modi�ed con-
dition/decision coverage) criterion [1]. The MC/DC is a widely-used coverage

132 ANNAMÁRIA SZENKOVITS

node choice () returns(x :int) =

2 loop {

| 3 : x = 42

4 | 1 : x = 1

}

Figure 2. Lutin code, featuring a choice operator and the weights in
boldfaced font, associated with the di�erent choice possibilities.

criterion in the model-based testing of SCADE models and of safety-critical
systems in general.

One of the goals of this case study was to decide whether a higher model
coverage can be obtained with a realistic environment model than with a ran-
dom one. In order to investigate this question, the coverage rate obtained by
the realistic environment was compared to the one obtained by some test in-
puts generated at random. A detailed analysis of our results can be found in
section 3.

2.3. Oracle and oracle coverage. The SUT expected properties were for-
malized as Lustre predicates. We used the functional requirements speci�cation
of the SUT in order to extract the oracle information.

In addition to automating the test decision, oracle coverage can also be
measured with Lurette. It is de�ned as a set of Boolean conditions, while the
oracle coverage rate is the rate of coverage conditions that have been true at
least once during the run of the simulation [9].

In our case study, we used the oracle coverage rate as feedback in order to
manually re�ne the environment and create even more realistic test scenarios.
Furthermore, we compared the oracle coverage rate with the MTC coverage
rate obtained with the Lutin environment. The results of the comparison are
presented in section 3.

3. Experimental Results

3.1. SUT model. Our case study focused on the roll control SCADE model.
The model, together with the system's speci�cation, was provided by Ansys 4,
as part of the SCADE installation package. As shown in �gure 3, the system's
main functionality is to calculate a plane's roll rate, based on the joystick
command and the left and right adverse yaw rates. The model has three real
inputs: the joystick command (generated by the pilot), and the left and right
adverse yaw of the plane's wings. Based on these inputs, the SUT calculates

4http://www.ansys.com/, downloaded on May 26, 2015

ENVIRONMENT MODEL-BASED TESTING OF REACTIVE SYSTEMS 133

the plane's roll rate. In addition, if this rate falls outside of a given interval,
warning alarms are generated by the model, represented as boolean outputs.

Figure 3. SCADE model of the roll control system. The system cal-
culates the the plane roll rate (output rollRate) according to a joystick
command (input joystickCmd) and the e�ect from the two plane wings
(inputs leftAdverseYaw and rightAdverseYaw). In addition, the sys-
tem computes the left and right warning alarms (outputs leftWarning

and rightWarning) which are activated, respectively, if the plane roll
rate is strictly less than -15.0◦ per second or strictly greater than 15.0◦ per
second.

3.2. Environment model. For designing a realistic environment model in
Lutin, the code from the Lutin manual5 was used and adapted to the roll
control SCADE model. The Lutin code simulates the change of the joystick
command and left and right adverse yaws, respectively. Starting from an
initial value chosen at random, the values start to increase or decrease by a
random number, as shown in code snippets from �gures 4 and 5, until they
reach a certain minimum or maximum. Then, their values start to change in
the opposite direction. The direction of the change is also chosen at random,
using Lutin's choice operator. The number of iterations is in�uenced with
Lutin's choice operator, as illustrated in the code snippet from �gure 6. The
parameters of the main node � shown in �gure 7 were chosen empirically
based on the oracle coverage. Figure 8 illustrates the inputs generated with
Lutin after 50 steps.

3.3. MTC analysis. In order to analyse the e�ect of a realistic environment
model on MTC, we generated two test suites. In the �rst case, we used the
Lutin environment to generate input sequences of length 5, 10, 20, 50 and

5http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lurette/doc/lutin-man.pdf,
downloaded on April 24, 2015

134 ANNAMÁRIA SZENKOVITS

1 let between(x, min , max : real) : bool =

((min < x) and (x < max))

Figure 4. Lutin combinator choosing a random number betweenmin and
max. Combinators are a kind of well-typed macros, which were introduced
in the language to allow code reuse.

1

node up(init , delta:real) returns(x : real) =

3 x = init fby loop

{ between(x, pre x, pre x + delta) }

5

node down(init , delta:real) returns(x : real) =

7 x = init fby loop

{ between(x, pre x - delta , pre x) }

Figure 5. Lutin nodes increasing/decreasing the value of x with with
a random number between 0 and delta. The pre operator accesses the
value of x from the previous iteration.

1 node up_and_down(min , max , delta : real) returns

(x : real) = between(x, min , max)

3 fby

loop {

5 | run x := up(pre x, delta)

in loop { x < max }

7 | run x := down(pre x, delta)

in loop { x > min }

9 }

Figure 6. Lutin node with the choice operator |, choosing at random
between the execution of the two nodes: up and down. Since there are no
weights assigned to the two branches of the operator, the nodes are both
chosen with probability 0.5. Once a branch is chosen, the execution of the
node up/down is repeated until x reaches max/min.

100. In the second one, we randomly generated test sequences with the same
length. The length of the input sequences was chosen empirically. The coverage
obtained with the two methods was analysed with the MTC tool. The results
are summarized in table 1.

A signi�cant improvement in the coverage rate can be observed in the case
of the Lutin environment compared to the random one, where the length of the
input sequences was 5, 10 and 20. However, no improvements can be observed

ENVIRONMENT MODEL-BASED TESTING OF REACTIVE SYSTEMS 135

1 node main(a:real; b:bool; c:bool) returns

(x:real; y:real; z:real; t:bool) =

3 run x:= up_and_down (-30.0, 30.0, 10.0) in

run y:= up_and_down (-30.0, 30.0, 10.0) in

5 run z:= up_and_down (-20.0, 20.0, 10.0)

Figure 7. Main node of the Lutin code, describing the environment's be-
haviour. The weights were chosen empirically, based on the oracle coverage
rate. Inputs: the plane's roll rate (a), the left (b) and right (c) warning
signs; outputs: joystick command (x), left (y) and right (z) adverse yaws.

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

d
e
g
r
e
e
s

steps

joystick
left yaw

right yaw

Figure 8. Test inputs generated with Lutin for the Roll Control SCADE
system, through 50 iterations.

in the case of the Lutin environment for longer input sequences. This is due
to the fact that the SUT chosen for the case study is a small SCADE model
with few inputs and small inner state space. Thus, a high model coverage can
be obtained even with random inputs, if the number of inputs is high enough.

3.4. Oracle coverage analysis. The oracle was implemented using Lustre
observer nodes having access to both the input and output variables of the
SUT. We focused on the requirements specifying the functioning of the roll
control system's roll rate warning alarms. The complete description of the
requirements can be seen in �gure 9. We used two oracle nodes, as shown in
code snippets from �gure 10 and 11. The �rst oracle (�gure 10) checks the
correct functioning of the left warning alarm, while the second one (�gure 11)
supervises the right warning alarm.

136 ANNAMÁRIA SZENKOVITS

Length of the input
sequence Random environment Lutin environment

5 54.38% 68.42%

10 71.92% 75.43%

20 81.70% 84.21%

50 91.22% 91.22%

100 91.22% 91.22%

Table 1. MTC coverage rates obtained with the Lutin and the random
environment.

Figure 9. Part of the roll control system's speci�cation describing the
functionality of the roll rate warning alarms. In our case study, we focused
on this requirement when designing the oracle and oracle coverage. Source:
o�cial SCADE tutorial.

The oracle nodes ful�ll two roles. On one hand, they check if the SUT gen-
erated outputs match the expected outputs for some given inputs according to
the speci�cation. On the other hand, the oracle nodes also contain coverage
criteria. As explained in section 2.1, the coverage criteria are expressed as Lus-
tre conditions. The values of these conditions are stored in boolean variables,
which must also be added to the node's output list. Lurette calculates the
oracle coverage rate based on the value of these boolean variables. A coverage
criterion is considered covered if it has been true at least once during the test
execution.

We used the oracle coverage rates computed by Lurette to manually re�ne
the Lutin environment and generate more realistic test cases. In addition, we
found that there is a correlation between the oracle coverage and the MTC
coverage. Table 2 shows how the MTC coverage rates increased together with
the oracle coverage rate.

ENVIRONMENT MODEL-BASED TESTING OF REACTIVE SYSTEMS 137

1 node too_low(b,c,t:bool; a,x,y,z:real)

returns (ok , c1, c2, c3:bool);

3 let

ok = true -> a>= -15.0 or b;

5 c1 = a< -15.0;

c2 = a= -15.0;

7 c3 = a> -15.0;

9 tel

Figure 10. Oracle in Lustre, checking requirement 9. If the roll rate
of the plane is smaller than -15◦ per second, the left warning alarm
should turn on. Boolean inputs b and c represent the state of left and right
warning alarms, respectively. Real input a holds the value of the plane roll
rate, while x the joystick command, y the left adverse yaw, and z the right
adverse yaw. The oracle coverage is expressed as the constraints c1, c2
and c3. It covers the cases where the roll rate of the plane lies around the
lowest allowed limit (-15◦ per second).

1 node too_high(b,c,t:bool; a,x,y,z:real)

returns (ok , c4, c5, c6:bool);

3 let

ok = true -> a <=15.0 or c;

5 c4 = a <15.0;

c5 = a=15.0;

7 c6 = a >15.0;

9 tel

Figure 11. Oracle in Lustre, checking requirement 9. If the roll rate of the
plane is greater than 15◦ per second, the left warning alarm should
turn on. Boolean inputs b and c represent the state of left and right
warning alarms, respectively. Real input a holds the value of the plane
roll rate, while x the joystick command, y the left adverse yaw, and z the
right adverse yaw. The oracle coverage is expressed as the constraints c4,
c5 and c6. It covers the cases where the roll rate of the plane lies around
the greatest allowed limit (15◦ per second).

4. Related Work

The research domain of model-based testing has been explored in a number
of references. We mention a few of the related articles which emphasize the
practical applicability of environment-model based testing methods to real-life
problems. We focus especially on articles in which Lutin and Lurette were

138 ANNAMÁRIA SZENKOVITS

Oracle coverage MTC coverage

33% 73.68%

50% 75.43%

66% 77.19%

Table 2. Oracle and MTC coverage rates obtained with the Lutin envi-
ronment. The length on the input sequence was 20.

used to perform the testing, but we also brie�y review the work related to
other environment-model based testing tools.

In [9] a case study is presented where Lutin and Lurette are used for check-
ing the correctness of reactive systems developed incrementally. These tools are
also used for elaborating and re�ning formal, consistent and accurate functional
requirements. The authors use the oracle coverage rate for early validation of
both the system model and the formal requirements, and also to improve the
test scenarios. The case study presented is based on a collaboration with in-
dustrial developers of nuclear power plant control systems. One of the tested
systems was developed using SCADE.

Two further case studies are presented in [8]. One of them presents a dy-
namic system which simulates the behaviour of the temperature and pressure
of a �uid in a pipe, while the other one Lutin is used to automate the execu-
tion of timed test plans. The authors concluded that Lutin and Lustre allow
the design of test plans that are more robust to software (or speci�cation)
evolutions.

The usage of Lurette for automatic generation of realistic input sequences
is demonstrated also in [11]. Three industrial case studies in testing reactive
embedded programs are presented here. The examples were extracted from an
application developed in SCADE. The �rst example is a SCADE node that
converts resistance to temperature, the second one is a component that com-
putes the position of a propulsion nozzle according to the values of two sensors
that measure electric tension, while the last one is a typical example of a fault-
tolerant heat controller. In the presented examples, the Lucky language was
used to model the environment. Working with similar modelling techniques,
Lucky was basically the previous version of Lutin.

In all of the above mentioned articles � just like in our case study �
oracle coverage is analysed and used to re�ne the environment model. However,
unlike in our work, the authors of these articles don't investigate the structural
coverage of the SUT model.

Beside Lutin and Lurette, there are several other languages and tools
available for performing environment-model based testing on reactive systems.
Bousquet et al. [2, 4] present a speci�cation-based language called Lutess,

ENVIRONMENT MODEL-BASED TESTING OF REACTIVE SYSTEMS 139

while Marre et al. [12, 13] describe Gatel, a test generation tool for Lustre
programs. However, we could not �nd any case studies discussing how these
tools can improve the structural coverage of the SUT model.

5. Conclusion and Future Work

We presented a case study where environment-model based testing was
performed on a reactive system in form of a SCADE model. The system
modelled the behaviour of a plane's roll control. To create an environment
model, we used Lutin, a language that was originally designed to program
stochastic reactive systems. Through the use of Lutin, we were able to design
realistic environments. For automating the test decision, as well as to de�ne
the oracle coverage criteria, we used several Lustre nodes.

We analysed the SUT model coverage using the SCADE Suite MTC tool.
In order to investigate whether the Lutin environment has improved the model
coverage, we compared the MTC coverage rate achieved by the Lutin environ-
ment with the coverage rate obtained by a random environment. Beside the
MTC coverage, we also computed the oracle coverage rate based on the Lustre
oracle coverage criteria. We used this coverage rate as feedback in the process
of re�ning the environment model and obtaining realistic test cases with Lutin.

Experimental results with the MTC tool showed that, in the case of the
realistic Lutin environment, the model's coverage rate increased signi�cantly
for short input sequences of length 5, 10, and 20, compared to the coverage rate
obtained with the completely random environment. However, no improvements
could be observed for longer sequences with length 50 or 100. If the input
sequence was long enough, a coverage rate close to 100% could be achieved.
Further research however should test the method on a more complex SCADE
model in the railway automation domain, coming from our industrial partner,
Siemens. Here we expect more spectacular results.

Furthermore, to fully bene�t of the possibilities o�ered by Lutin's syntax,
we plan to add weights to the choice operators from our Lutin code. This
way, we will have more control over the non-determinism of the environment.
In addition, we plan to experiment with di�erent learning techniques in order
to improve the Lutin parameters automatically, and increase the model cover-
age, with input sequences as short as possible. One possibility would be the
implementation of the Di�erential Evolution [6] technique in order to automat-
ically �ne-tune the environment model. We will use the parameters of Lutin's
non-deterministic operators to build up the population of the evolutionary al-
gorithm, and both the MTC and oracle coverage rates to measure the �tness
of a population.

140 ANNAMÁRIA SZENKOVITS

6. Acknowledgement

This material is based upon work supported by the Siemens international
Railway Automation Graduate School (iRAGS) and the SCADE Academic
Program. Thanks for Erwan Jahier from Verimag Research Center6, for pro-
viding technical support with Lutin.

References

[1] Paul Ammann and Je� O�utt. Introduction to Software Testing. Cambridge
University Press, New York, NY, USA, 1 edition, 2008.

[2] L. du Bousquet and N. Zuanon. An overview of Lutess: A speci�cation-based
tool for testing synchronous software. In Proceedings of the 14th IEEE Interna-
tional Conference on Automated Software Engineering, ASE '99, pages 208�215,
Washington, DC, USA, 1999. IEEE Computer Society.

[3] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: A declarative
language for real-time programming. In Proceedings of the 14th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, POPL '87,
pages 178�188, New York, NY, USA, 1987. ACM.

[4] L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon. Lutess: A
speci�cation-driven testing environment for synchronous software. In Proceed-
ings of the 21st International Conference on Software Engineering, ICSE '99,
pages 267�276, New York, NY, USA, 1999. ACM.

[5] Francois Xavier Dormoy. Scade 6 a model based solution for safety critical
software development. ERTS 2008, 2013.

[6] S. Das and P.N. Suganthan. Di�erential evolution: A survey of the state-of-the-
art. Evolutionary Computation, IEEE Transactions on, 15(1):4�31, Feb 2011.

[7] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data
�ow programming language lustre. Proceedings of the IEEE, 79(9):1305�1320,
Sep 1991.

[8] Erwan Jahier, Simplice Djoko-Djoko, Chaouki Maiza, and Eric Lafont.
Environment-model based testing of control systems: Case studies. In Erika
Ábrahám and Klaus Havelund, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems, volume 8413 of Lecture Notes in Computer Sci-
ence, pages 636�650. Springer Berlin Heidelberg, 2014.

[9] Erwan Jahier, Nicolas Halbwachs, and Pascal Raymond. Engineering functional
requirements of reactive systems using synchronous languages. In International
Symposium on Industrial Embedded Systems, 2013. SIES'13., Porto, Portugal,
06 2013.

[10] Erwan Jahier and Pascal Raymond. Generating random values using
binary decision diagrams and convex polyhedra. In Trends in Con-
straint Programming, pages 349�356. ISTE, London, UK, may 2007.
http://www.iste.co.uk/index.php?isbn=9781905209972.

[11] Erwan Jahier, Pascal Raymond, and Philippe Baufreton. Case studies with
lurette v2. Int. J. Softw. Tools Technol. Transf., 8(6):517�530, October 2006.

6http://www-verimag.imag.fr/?lang=en, downloaded on May 26, 2015

ENVIRONMENT MODEL-BASED TESTING OF REACTIVE SYSTEMS 141

[12] Bruno Marre and Agnes Arnould. Test sequences generation from lustre de-
scriptions: Gatel. In Proceedings of the 15th IEEE International Conference on
Automated Software Engineering, ASE '00, pages 229�, Washington, DC, USA,
2000. IEEE Computer Society.

[13] Bruno Marre and Benjamin Blanc. Test selection strategies for lustre descrip-
tions in gatel. Electronic Notes in Theoretical Computer Science, 111:93�111,
Jan 2005.

[14] P. Raymond, X. Nicollin, N. Halbwachs, and D. Weber. Automatic testing of
reactive systems. In Real-Time Systems Symposium, 1998. Proceedings., The
19th IEEE, pages 200�209, Dec 1998.

[15] Pascal Raymond, Yvan Roux, and Erwan Jahier. Lutin: A language for speci-
fying and executing reactive scenarios. EURASIP J. Emb. Sys., 2008, 2008.

[16] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools Ap-
proach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

Department of Mathematics and Computer Science, Babe³-Bolyai Univer-

sity, 1 M. Kog lniceanu St., 400084 Cluj-Napoca, Romania

E-mail address: szenkovitsa@cs.ubbcluj.ro

