
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LX, Number 2, 2015

A STARUML PLUGIN FOR INCLUDING ASPECTS IN A

UML CLASS DIAGRAM

BRISTENA VRÂNCIANU AND GRIGORETA S. COJOCAR

Abstract. Aspect oriented programming (AOP) is a programming par-
adigm that complements the existing programming paradigms in order to
be able to clearly separate all the concerns from a software system in anal-
ysis, design and implementation phases. One of the main difficulties when
using the aspect oriented paradigm is that the control flow of the system
is difficult to follow and understand just inspecting the source code since
not all the relevant data about a piece of code can be seen at that code.
Some additional information may exist in the aspect that affect that part
of code. In this paper we propose a set of notations for including aspects
in an UML class diagram and we present a StarUML plugin that allows
the use of these notations. The aspects, their relationships with other as-
pects, classes or interfaces, and the visualization of the classes that will be
modified dynamically or statically by includind the aspects into the final
system can be represented with the plugin. This may ease the understand-
ing of the overall static structure of a software system and may highlight
the consequences of adding aspects to a software system.

1. Introduction

Separation of concerns [15] is always an important factor in designing easily
maintainable and evolvable software systems. However, practice has shown
that it is not easy to clearly separate all the concerns from a software system.
Most concerns can be clearly separated using just one programming paradigm,
however there still are some concerns whose design and implementation are
entangled with other concerns. Other programming paradigms, extending
the existing ones, have been developed in order to allow better separation of
concerns that are still entangled. Aspect oriented paradigm (AOP) is one of
these paradigms and it usually extends the object-oriented paradigm [13].

Received by the editors: .June 26, 2015.
2010 Mathematics Subject Classification. 68N19, 68N99.
1998 CR Categories and Descriptors. D.2.2[Software Engineering]: Design Tools and

Techniques – Computer-aided software engineering ; D.1.m [Software]: Programming Tech-
niques – Miscellaneous.

Key words and phrases. aspect oriented paradigm, design, UML class diagram.

104



A STARUML PLUGIN FOR INCLUDING ASPECTS IN A UML CLASS DIAGRAM 105

Even though there are already a number of aspect oriented languages such
as AspectJ [3] and AspectC++ [2] that provide new language constructs for
implementing the crosscutting concerns, there is no generally accepted design
notation that supports the design of aspect oriented systems.

Having a graphical design notation would make the understanding of an
aspect oriented system much easier and it would also serve as a basis for as-
sessing the impact of crosscutting concerns on their base classes (core classes).

The Unified Modeling Language (UML) is a graphical language for visu-
alizing, constructing, specifying and documenting the artefacts of a software
system. The goal of UML is to provide tools for analysis, design, and im-
plementation of software based systems to all parties involved: developers,
system architects, etc [5, 17, 22]. One of the main advantages of using UML is
that it has defined a set of modeling concepts that are now generally accepted,
and it also contains visual representation of the defined concepts that are easy
to understand and interpret by humans. The concepts defined by UML can
be used to represent the static structure (such as classes, components, node
artifacts) or the behavior (such as activities, interactions, state machines) of
the software system [21]. The concepts can be used to build different kind of
diagrams (i.e., class diagrams for the static structure and sequence diagrams
for the behavior). Even though UML contains a very large set of concepts, it
does not include all the concepts that may appear during the development of
different kinds of software systems, mainly because some of the concepts are
specific to a certain application domain. That is why, the language also con-
tains extension mechanisms that allow the addition of new modeling elements,
modify the specification of the existing ones or change their semantics [5].

The main contributions of this paper are the proposal of a new notation for
representing introductions in an UML class diagram and the development of
a StarUML plugin that allows developers to include aspects in UML class di-
agrams. Aspects relationships with other elements from a UML class diagram
can also be displayed using the proposed plugin.

The paper is structured as follows. In Section 2 we present the new con-
cepts introduced by the aspect oriented paradigm. The existing proposed
notations for including aspects in an UML class diagram are presented in Sec-
tion 3. The proposed notations are given in Section 4 and the StarUML plugin
is described in Section 5. A small example of using the proposed notations is
presented in Section 6. Some conclusions and future research directions are
given in Section 7.



106 B. VRÂNCIANU AND G.S. COJOCAR

2. AOP Concepts

In order to design and implement crosscutting concerns, the aspect ori-
ented paradigm introduces new concepts: join point, pointcut, advice, aspect
and introduction, and weaving for building the final software system. An im-
portant characteristic of aspect oriented programming is that it can only be
used for crosscutting concerns, the core concerns are still designed and imple-
mented using the base programming paradigm, that usually is object-oriented
programming, but it can be any other programming paradigm. In the follow-
ing the concepts introduced by AOP are briefly presented.

Join point. A join point is a well-defined point in the execution of a pro-
gram. Any software systems can be seen as a sequence of execution points like:
assignments, conditional statements (if, switch), loop statements (for, while,
do-while or repeat), function/method calls, function/methods executions, etc.
regardless of the programming paradigm used for developing the system. As-
pect oriented programming only uses some of these points, called join points,
in order to add new behavior.

Pointcut. The execution of a software system consists of many join points.
However, not all of them are necessary for the design and implementation of
crosscutting concerns. A pointcut selects join points, and exposes some of the
values in the execution context of those join points.

Advice. A pointcut allows selecting join points from the software system,
however they do not change its behavior. An advice defines crosscutting be-
havior and it is defined in terms of pointcuts. The code of an advice runs
at every join point selected by its pointcut. There are different options as to
when the code of the advice is executed relatively to the corresponding join
point(s):

• Before: the advice code is executed before the selected join point.
This type of advice does not have the ability to prevent execution flow
proceeding to the join point (unless it throws an exception).

• After : the advice code is executed after the selected join point. There
can be three situations, depending on the execution of the join point:

– After returning : the advice code is executed only if the join point
execution completes normally.

– After throwing : the advice code is executed only if the join point
execution ends by throwing an exception.

– After (finally): the advice code is executed regardless of the means
by which the selected join point exits (normal or exceptional re-
turn).



A STARUML PLUGIN FOR INCLUDING ASPECTS IN A UML CLASS DIAGRAM 107

• Around : the advice code surrounds the selected join point. It can
perform custom behavior before and after the selected join point. It
can also decide whether the selected join point should still be executed
or not, or it may cause multiple executions of the selected join point.

Introduction. It is sometimes necessary to modify the static structure of
a type (by adding new members - attributes/methods or by modifying its
inheritance hierarchy) in order to design and implement a crosscutting concern.
Even though advices add new behavior to existing types, they do not modify
their static structure. An introduction allows developers to extend the static
structure of existing types. New methods and/or attributes can be added, or
the type inheritance hierarchy can be modified (by adding new interfaces or
by modifying the base type of the existing type).

Aspect. An aspect is a new kind of type specified by the aspect oriented
paradigm that is used to implement one crosscutting concern in a modular
way. An aspect is similar to a class, it can contain attributes and methods
declarations but it also encapsulates pointcuts, advice and introductions. In
some aspect oriented languages (i.e., AspectJ [3], AspectC++[2]) aspects can
inherit from other classes, implement some interfaces or even inherit from
other aspects. However some constraints must be followed when inheriting
from another aspect. For example, in AspectJ an aspect can inherit only from
an abstract aspect.

Weaving. When the aspect oriented paradigm is used for developing software
systems, the core concerns are developed independently of the crosscutting
concerns. However, in the end, they still have to be put together in order
to obtain the final executing system. Weaving is the process that produces
the final system, and the weaver is the tool used to produce it. The weaver
takes some representation of the core concerns (source code or binaries), some
representation of the crosscutting concerns (source code or binaries) and pro-
duces the output, which is often a binary representation. The approach used
for weaving depends on the aspect oriented language: AspectJ uses byte-code
modification, Spring AOP uses dynamic proxies, while AspectC++ uses source
code preprocessing.

3. Existing UML-based Notations and Plugins for Aspects

Since the appearance of aspect oriented programming, many attempts to
identify an appropriate notation of aspect oriented design have been made.
Most approaches (Suzuki and Yamamoto [20], Aldawud et al. [1], Kande et al.
[12, 11], Zakaria et al. [23], Pawlak et al. [16], Stein et al. [19], Jacobson and
Ng [10], Basch and Sanchez [4], and Zhang [24]) focused on introducing new



108 B. VRÂNCIANU AND G.S. COJOCAR

modeling elements for the concepts defined by AOP: aspect, advice, pointcut
and the relevant relationships, while other approaches (like the one proposed
by Herrero et al. [9]) focused on a particular crosscutting concern and tried to
introduce special notations for the elements needed to design that crosscutting
concern.

All the proposals have considered a way of representing the aspect concept
into the class diagram. Most of them also considered representing the advice
[12, 16, 19, 20, 23, 24] and the pointcut [10, 12, 16, 19, 24]. Very few proposals
considered representing introductions [10, 19, 20] and even fewer considered
representing join points [4, 19]. There is very little consensus related to the ap-
propriateness of a chosen representation for the concepts introduced by AOP:

• Aspect - The aspect is usually represented starting from the Class clas-
sifier enhanced with the aspect stereotype [1, 16, 19, 23] or starting di-
rectly from the Classifier [10, 12, 20]. Only a few proposals considered
using a non classifier as a starting element, namely the package with
two compartments for pointcuts and advices [4, 24].

• Join point - There are only two proposals for representing them, con-
sisting in links [19] and a notation in the form of a circle with a cross
inside [4].

• Pointcut - There is very little overlapping between the proposals for
representing pointcuts. In [12] and [19] pointcuts are represented using
the pointcut stereotype, while Pawlak et al. [16] propose a representa-
tion based on an association from an aspect class towards a classifier
stereotype with pointcut. Zakaria et al. [23] model a pointcut based
on the Class classifier and by providing a link to its aspect by a has
pointcut association. Zhang sees it as a stereotype package [24]. Ja-
cobson and Ng [10] proposed representing pointcuts as operations in
their own compartment of the aspect stereotype.

• Advice - Stein et al.[19] and Zakaria et al.[23] model an advice as
an UML operation of a stereotyped named advice; while Suzuki and
Yamamoto [20] provide a suggestion of using a constraint for the cor-
responding weave and Kande et al. [12] suggest to represent it as a
compartment in the new aspect classifier.

• Introductions - There is only one approach, proposed by Stein et al.
[19], in explicitly modeling introductions that uses parameterized tem-
plates. The class extensions compartment introduced by Jacobson et
Ng [10] in their proposal can also be used to represent introductions,
however from their representation it is not very clear how the exten-
sions will be realized (introduction or advice).



A STARUML PLUGIN FOR INCLUDING ASPECTS IN A UML CLASS DIAGRAM 109

Only a few proposals (Aldawud et al. [1], Suzuki and Yamamoto [20],
Zakaria et al. [23], Kande et al. [12] and Stein et al. [19]) have taken into con-
sideration the relationships that the aspects can have with the other elements
from the class diagram (classes, interfaces). Aldawud et al. [1] proposed to
use the control relationship to represent which other classes the aspect code
controls. Suzuki and Yamamoto [20] proposed the usage of the already exist-
ing realize relationship to represent an aspect and the classes that the aspect
affects. Zakaria et al. [23] proposed to use one of their newly introduced
control, track, report, customize, validate, save, handleerror, handleexception
relationships to represent the relation between an aspect and a class. Each
aspect should have at least one association with a class in order to affect the
system. Kande et al. [12] introduced the binding relationship to specify what
class of objects an instance of the aspect can be bound to. Stein et al. [19]
introduced the crosscut relationship between an aspect and a class to specify
that the aspect affects the class. The crosscut relationship also implies that
the aspect requires the presence of the class in order to behave as expected.

Very few proposals considered explicilty vizualizing the parts that will be
affected by introducing one or more aspects, however for some proposals the
structure of the aspect notation or the relationships introduced can be used for
determining the parts of the software system that are affected by the aspects
presence. Jacobson and Ng proposal [10] display the affected parts in the Class
extensions compartment that contains all the classes from the system that will
be affected by the aspect (either statically by introductions or dynamically
through advice). The aspect notation proposed by Kande et al. [12] contains
compartments that display introductions, meaning that those classes will be
affected by the aspect. Also, the binding relationship introduced by them
show other affected parts (through dynamic crosscutting). The aspect-class
relationships can also be considered as relationships that show the affected
parts of the software system.

Plugins. Even though there were many proposals for including aspects into
an UML class diagram, only a couple plugins were developed (Suzuki and
Yamamoto [20] and Herrero et al. [9]) in order to actually use the proposed
notations. These plugins were developed for Rational Rose CASE tool.

4. UML Aspect Notations Proposed for Designing

We consider that not all the concepts introduced by the aspect oriented
paradigm can and should be represented in a class diagram. The join points
from a software system do not provide any relevant information about the
static structure of the system. However, the visual representation of other
concepts can provide useful information to the developers. Adding aspects to



110 B. VRÂNCIANU AND G.S. COJOCAR

the class diagram may ease the understanding of the overall static structure of
a software system and may highlight the consequences of adding aspects to a
software system. The information that should, in our opinion, be represented
in a class diagram are:

• The aspects that are used for building the system, and their type
(abstract or concrete). The internal static structure of an aspect is
important as it will show, besides the normal fields and methods, the
defined pointcuts together with the collected context, the type of the
pointcut (abstract or concret), and the defined advice and their type
(before, after, around).

• If and how they change the static structure of other existing elements
from the class diagram (classes, interfaces). It should represent the
type whose static structure will be modified either by introducing new
members (fields, methods, etc.) or by modifying the inheritance hier-
archy of the type (adding a base class or implementing interfaces).

• Relationships with other elements from the class diagram. We consider
important the following relationships:

– Aspect-aspect: An aspect may inherit from another aspect, or an
aspect may have precedence over another aspect during weaving.

– Aspect-interface: An aspect may implement one or more inter-
faces.

– Aspect-class: An aspect may inherit (or extend) from a class, it
may modify the static structure of an existing class, or it may
modify the behavior of a class through one or more advices.

4.1. Concepts represented. In the following we describe the notations that
we propose to be used to represent the AOP concepts in a class diagram:

• Aspect. An aspect is a stereotype of the UML Class model element,
like in [1]. We use the stereotype <<aspect>> to distinguish between
the aspect and base class (see Figure 1).

• Pointcut. A pointcut is a stereotype of the UML Operation model
element, like in [19]. A pointcut is displayed as an operation with the
<< pointcut >> stereotype (Figure 1).

• Advice. An advice is a stereotype of the UML Operation model ele-
ment. We define a new stereotype for each type of advice:
<< before >>, << after >> and << around >> (Figure 1).

• Introduction. Usually, there are two types of introductions that can
be performed using AOP: addition of members (attributes or methods)
to a class, and the modification of class hierarchy (inheriting from
another class or implementing one or more interfaces). We propose the
usage of our newly defined << introduces >> relationship in order



A STARUML PLUGIN FOR INCLUDING ASPECTS IN A UML CLASS DIAGRAM 111

Figure 1. UML notation for aspect, pointcut and advice.

to specify that the introduction is done through the aspect. For each
situation, the << introduces >> relationship is linked with different
model elements:

– Slice. A slice is a stereotype of Class model element, and it con-
tains the attributes and the methods added to a class through an
aspect, like in AspectC++ [2]. The slice is linked with the class
that will contain its members, and with the aspect, as shown in
Figure 2. The end of the relationship corresponding to the class
is a plus sign to represent that the slice members will be added
to it.

Figure 2. Members introduction with slice.

– Generalization. The << introduces >> relationship is linked
with a generalization relationship between two classes to represent
that the inheritance is introduced through the aspect at weave
time (see Figure 3). If the aspect is removed from the system, the
generalization relationship between the two classes will not exist
anymore.

– Interface realization. The << introduces >> relationship is
linked with an interface realization relationship between a class
and an interface to represent that the realization is introduced
through the aspect at weave time (see Figure 4). If the aspect



112 B. VRÂNCIANU AND G.S. COJOCAR

Figure 3. Class inheritance introduction.

is removed from the system, the interface realization relationship
between the class and the interface will not be defined anymore.

Figure 4. Interface implementation introduction.

• Crosscutting. A << crosscut >> relationship between an aspect
and a class is defined, as in [1], to signify that the aspect will modify
the behaviour of one or more source code parts from the class (usually
methods) through an advice (before, after, or around) (see Figure 5).

Figure 5. Crosscutting relationship



A STARUML PLUGIN FOR INCLUDING ASPECTS IN A UML CLASS DIAGRAM 113

• Aspect generalization. An aspect may inherit from another ab-
stract aspect (it may contain abstract pointcuts). A generalization
relationship is defined between two aspects (as in Figure 6), with the
constraint that the base aspect should be abstract.

Figure 6. Aspect generalization

5. StarUML Plugin

StarUML [18] is a software modeling platform that supports UML (Unified
Modeling Language). It is an open source software and it provides extensibil-
ity, and flexibility. It accepts UML 2.0 notation and it offers many types of
diagrams, but you can also create your own type of diagram. StarUML has
two important versions:

• StarUML1 which appeared around 1996, and since then suffered many
changes until 2005. It was implemented in Delphi, C/C++, JavaScript,
C# and has 11 types of diagrams, including: class diagram, use-case
diagram, sequence diagram, etc. The 2005 version can still be used
today.

• StarUML2, appeared at the beginning of 2015. There were no changes
made on the first version from 2005 until 2015. Because this version of
StarUML appeared only in 2015, its documentation is not complete,
especially the part about extending its features.

We have developed a plugin for StarUML version 1 because it has a de-
velopers guide that allows us to make the extensions.

This plugin can be used for representing the set of notations described
in Section 4.1: aspects, pointcuts and advice and the relationships between
aspects, classes or interfaces. StarUML offers a special concept for creating
user defined elements: Notation Extension Technology (NXT) that is a dialect
of the Lisp programming language. The profile is implemented in XML.



114 B. VRÂNCIANU AND G.S. COJOCAR

Code generation. StarUML also offers the possibility of generating an XMI
file, that is an XML-based type of file, associated to a diagram. Starting from
this file, we can automatically generate the AspectJ (or other aspect oriented
language) source code corresponding to the aspects from the diagram and their
relationships (introduces, aspect generalization, etc.). We cannot generate code
for all the relationships that can be defined in the diagram. For example, the
crosscut relationship is too ambiguous to automatically generate code for it.
The current version of our plugin can automatically generate source code only
for the aspects included in the diagram. The code corresponding to other
elements such as classes and interfaces is not generated.

In Listing 1 and Listing 2 are shown the AspectJ automatically generated
code corresponding to the aspects from the diagram presented in Figure 6.

public abstract aspect AspectTracing{

public abstract pointcut trace ();

before (): trace (){

}

after ():trace (){

}

}

Listing 1. AspectTracing generated code.

public aspect ApplicationTracing extends AspectTracing{

public pointcut trace ();

}

Listing 2. ApplicationTracing generated code.

6. Example

Hannemann and Kiczales [8] have studied the effects of using aspect ori-
ented techniques in the structure of the design patterns introduced by Gamma
et al. in [7], and implemented them in Java and AspectJ. Their results have
shown that aspect oriented techniques improve the implementation of many
patterns. In some cases the improvement is reflected in a new solution struc-
ture with fewer or different participants, in other cases, the structure remains
the same, only the implementation changes. Patterns assign roles to their par-
ticipants, for example Subject and Observer for the Observer pattern. These
roles define the functionality of the participants in the pattern context. They
found that patterns with crosscutting structure between roles and participant
classes gain the most improvement. The improvement comes primarily from
modularizing the implementation of the pattern. This is directly reflected in
the implementation being textually localized. An integral part of achieving



A STARUML PLUGIN FOR INCLUDING ASPECTS IN A UML CLASS DIAGRAM 115

this is to remove code-level dependencies from the participant classes to the
implementation of the pattern.

In order to show the usage of the proposed notations and plugin, we use the
Weather Monitoring application designed and implemented as an example for
the Observer design pattern in Head First Design Pattern [6]. The Weather
Monitoring application tracks from a weather station the current weather con-
ditions (temperature, humidity, and barometric pressure), and provides three
display options: current conditions, weather statistics and a simple forecast
which are all updated in real time as the station acquires the last measure-
ments. The design of the application without using AOP is shown in Figure 7.
The weather conditions are kept in a WeatherData object and there are three
different displays for each option: CurrentConditions, StatisticsDisplay
and ForecastDisplay. The WeatherData is the subject and the three display
options are the observers from the Observer pattern.

Figure 7. Weather Monitoring architecture with Observer pattern.

The AOP implementation of the Observer pattern is similar with the one
described in [14] and removes the dependency between the concrete subject
class and the abstract Subject class, and the dependency between the concrete
observers and the Observer interface from the source code. The dependencies
are made using introductions in a separate aspect. The new architecture of
the application using AOP is shown in Figure 8 (the methods from the classes
are not shown).

The diagram shown that the dependencies between CurrentConditions,
StatisticsDisplay and ForecastDisplay and the Observer are introduced
by the ObserverAspect. Without the aspect, these dependencies do not exist



116 B. VRÂNCIANU AND G.S. COJOCAR

Figure 8. Weather Monitoring architecture with AOP based Observer.

anymore. The WeatherData generalization of the Subject class is also intro-
duced by the aspect. The ObserverAspect also crosscuts the WeatherData

class, as each time the measurementsChanged method is executed, an advice
is executed that will automatically notify the observers.

All these changes to the static structure of the Weather Monitoring appli-
cation can be vizualized from the AOP-enhaced class diagram.

7. Conclusions and Further Work

We have proposed in this paper a set of notations to be used in order
to model aspects in a UML class diagram. Some notations were previously
introduced by other authors, and a few of them are newly defined (the slice,
the introduces relationship, aspect generalization, etc.). These notations can
ease the understanding of an AOP-based software system by graphically rep-
resenting the parts that will be affected by introducing the aspects into the
final software system. The notations were included in a StarUML plugin that
we have developed in order to ease their usage and acceptance. We have also
presented an example of how these notations can be used for modeling the
AOP-based architecture of a small application.

Further work should be done in the following directions:

• To consider other AOP elements that should be represented in the
diagram, like the precedence relationship between two aspects.



A STARUML PLUGIN FOR INCLUDING ASPECTS IN A UML CLASS DIAGRAM 117

• To propose a more general version of the crosscut relationship, as for
large software systems it may be difficult the vizualize all the classes
that will be modified by the aspect. For Logging crosscutting concern
which affects a big number of classes from the software system, the
usage of the crosscut relationship may burden the understanding of
the design.

References

[1] Omar Aldawud, Tzilla Elrad, and Atef Bader. A UML Profile for Aspect Oriented
Modeling. In Aspect Oriented Programming Workshop at OOPSLA 2001, pages 1–6,
2001.

[2] AspectC++ Homepage. http://www.aspectc.org/.
[3] AspectJ Project. http://eclipse.org/aspectj/.
[4] Mark Basch and Arturo Sanchez. Incorporating aspects into the uml. In Proceedings of

the Aspect Oriented Modeling Workshop at AOSD, 2003.
[5] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language

User Guide (2nd Edition). Addison-Wesley Professional, 2005.
[6] Elisabeth Freeman, Eric Freeman, Bert Bates, and Kathy Sierra. Head First Design

Patterns. O’ Reilly & Associates, Inc., 2004.
[7] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design Patterns.

Elements of Reusable Object-Oriented Software. Addison-Wesley, March 1995.
[8] Jan Hannemann and Gregor Kiczales. Design Pattern Implementation in Java and As-

pectJ. In OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 161–173, New York,
NY, USA, 2002. ACM Press.

[9] J.L. Herrero, F. Sanchez, F. Lucio, and M. Torro. Introducing Separation of Aspects
at Design Time. In Aspect-Oriented Programming (AOP) Workshop at ECOOP 2000.
2000.

[10] Ivar Jacobson and Pan-Wei Ng. Aspect-Oriented Software Development with Use Cases.
Addison Wesley, 2004.

[11] Mohamed M. Kande, Jorg Kienzle, and Alfred Strohmeier. From AOP to UML- A
Bottom-Up Approach. In Proceedings of the 1st International Workshop on Aspect-
Oriented Modeling with UML. Enschede, The Netherlands, 2002.

[12] Mohamed M. Kande, Jorg Kienzle, and Alfred Strohmeier. From AOP to UML: Towards
an Aspect-Oriented Architectural Modeling Approach. Technical report, Swiss Federal
Institute of Technology, Lausanne, Switzerland, 2002.

[13] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In Proceedings
European Conference on Object-Oriented Programming, volume LNCS 1241, pages 220–
242. Springer-Verlag, 1997.

[14] Russell Miles. AspectJ Cookbook. O’Reilly, March 2004.
[15] David L. Parnas. On the Criteria To Be Used in Decomposing Systems into Modules.

Communications of the ACM, 15(12):1053–1058, December 1972.
[16] Renaud Pawlak, Laurence Duchien, Gerard Florin, Fabrice Legond-Aubry, Lionel Sein-

turier, and Laurent Martelli. A uml notation for aspect-oriented software design. In



118 B. VRÂNCIANU AND G.S. COJOCAR

Proceedings of the Aspect Oriented Modeling with UML workshop at AOSD (2002),
2002.

[17] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Language
Reference Manual. Addison-Wesley, 1999.

[18] StarUML - The Open Source UML/MDA Platform.
http://staruml.sourceforge.net/v1/about.php.

[19] Dominik Stein, Stefan Hanenberg, and Rainer Unland. An UML-based Aspect-Oriented
Design Notation for AspectJ. In AOSD 2002, pages 1–7, 2002.

[20] Junichi Suzuki and Yoshikazu Yamamoto. Extending UML with Aspects: Aspect
Support in the Design Phase. In Aspect-Oriented Programming (AOP) Workshop at
ECOOP’99, pages 14–18. 1999.

[21] UML 2.4.1 Superstructure. http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/.
[22] Unified Modeling Language(UML). http://www.uml.org/.
[23] Aida Atef Zakaria, Hoda Hosny, and Amir Zeid. A uml extension for modeling aspect-

oriented systems. In Second International workshop on Aspect-Oriented Modeling with
UML at UML 2002. 2002.

[24] Gefei Zhang. Towards aspect-oriented class diagrams. In Proceedings of 12th Asia-
Pacific Software Engineering Conference, pages 763–768, 2005.

Babeş-Bolyai University, Department of Computer Science, 1, M. Kogal-
niceanu Street, Cluj-Napoca, Romania

E-mail address: vrancianu bristena@yahoo.com

E-mail address: grigo@cs.ubbcluj.ro


