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APPLYING SUPPORT VECTOR REGRESSION METHODS

FOR HEIGHT ESTIMATION IN ARCHAEOLOGY

VLAD-SEBASTIAN IONESCU

Abstract. In this paper we apply Support Vector Machines to the prob-
lem of predicting the height of human skeletons given bone measurements.
There exist archaeological methods for estimating height, but our purpose
is to investigate the potential of Support Vector Regression for this task.
Since skeletal stature clearly depends on individual bone lengths, building
SVM models for this task has the potential of giving an accurate machine
learning automation for this task, which can be useful for archaeologists.
We investigate multiple kernels and performance evaluation methodologies
and compare our results to existing literature results on the topic. Our ex-
periments show that SVM regression models are very good for the problem
at hand, outperforming existing approaches.

1. Introduction

A very important problem in archaeology and forensic science is the prob-
lem of height estimation. Existing approaches that deal with this problem
involve simple regression formulas based on statistical methods. Our goal is
to investigate the potential of more complex methods, such as Support Vector
Machines (SVMs). We believe that the good performance of Support Vector
Machines on other problems can make them ideal for solving the problem of
height estimation as well, due to their good performance at inferring complex
relationships between data: in our case between the bone measurements and
the associated height of the skeletons.

This is a problem that is difficult even for humans, with no clear relation-
ship between the features and their labels, which suggests the use of machine
learning models.
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The problem is important for researchers in archaeology and related fields
because it allows them to discover important facts about a certain population,
relating to issues such as their health, gender differences and body sizes at
different times in history.

We propose using SVM regression models because of their known good
performance in general on regression tasks, their efficient implementations in
various libraries and their ability to easily adapt to multiple problem settings
through the use of kernels. To the best of our knowledge, our approach is novel,
since SVM models have not been used in the literature for height estimation
until now. Our obtained experimental results are significantly better than the
existing ones in the literature and prove the ability of machine learning models
and SVMs in particular to solve this problem.

Our experiments are performed on open source skeletal data which was
previously used for this task. Because of this, we have a relevant baseline to
compare our results against.

The paper has the following structure. Section 2 presents the problem
of height estimation and its importance for archaeologists, as well as existing
approaches for solving it. Section 3 provides an overview of Support Vector
Regression. Section 4 presents our experimental setup and methodology. Sec-
tion 5 presents our data sets and the results obtained on each one. Section 6
presents a comparison of our results to related work and Section 7 contains
our conclusions and future research directions.

2. The height estimation problem

According to [17, 3], height estimation is a central part of anthropological
analysis and is generally used in order to determine social stucture in extinct
populations. More complex theories can also be inferred from stature, relating
to health, body size trends and adaptability to environmental changes.

The first anatomical method for height estimation was introduced by
Thomas Dwight in 1894, a method that caused significant errors. Karl Pear-
son then introduced regression formulas, but there were studies that identi-
fied certain shortcomings regarding their applicability to different populations
[10, 8, 9].

A milestone approach is introduced in [2], along with the open source data
sets we use in this article. The approach consists of multiple formulas based
on measurements of important bones in the human body.

A variety of approaches exist for this problem, which proves its impor-
tance. The existing methods are either anatomical or mathematical in nature.
A study comparing the two classes of methods can be found in [18], which
concludes that anatomical methods are superior only if the skeletal remains
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are sufficiently complete and that otherwise the mathematical methods are to
be preferred.

A comprehensive literature review on this topic can be consulted in [15].
We have previously introduced two novel machine learning models based on
artificial neural networks and genetic algorithms for the problem approached
in this paper [7].

3. Support Vector Regression

Support Vector Machines were introduced for binary classification by Vap-
nik as far back as 1963 and further developed by Cortes and Vapnik [16]. The
idea behind SVMs is to find a maximum margin separating hyperplane. They
are very robust to different problems due to the kernel trick, which allows
them to accurately do non-linear classification as well, and due to the fact
that, unlikely neural networks, they do not have to concern themselves with
local optimums.

Support Vector Regression is an extension of SVMs to regression prob-
lems. A widely used method is called ε-Support Vector Regression, in which
we want to find a function that approximates each training example with at
most ε error, if possible, or allow for some degree of error (specified by a hy-
perparameter C > 0) if not. This is similar to the width of the margin in
Support Vector Classification.

The mathematical formulation in which only an error of ε is allowed is
given in Formula (1) [16, 1].

(1)

minimize
1

2
‖w‖2

subject to

{
yi − (w · xi + b) ≤ ε
(w · xi + b)− yi ≤ ε

The more robust formulation that allows for some mistakes and is used in
practice is given in Formula (2) [16, 1].

(2)

minimize
1

2
‖w‖2 + C

m∑
i=1

(ξ−i + ξ+i )

subject to


yi − (w · xi + b) ≤ ε+ ξ−i
(w · xi + b)− yi ≤ ε+ ξ+i
ξ−i , ξ

+
i ≥ 0

In both equations, standard notation is used: w is a weight vector that
we use to multiply the input with and make predictions, m is the number
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of training instances, xi is a training sample, yi is its target and b is a bias
term. The resulting optimization problems are then solved using numerical
algorithms. Various kernel functions can also be used in order to obtain non-
linear classification or regression [16].

Intuitively, Support Vector classification and regression are similar in that
classification attempts to find a separating hyperplane that goes as much
through the “middle” of the space that exists between the data classes and
regression attempts to find a hyperplane that goes as much through the “mid-
dle” of the data as possible. The hyperparameter C is what controls how much
“slack” we give the algorithm, or how much we tolerate mistakes.

For reference, Formula (3) presents some of the most often used kernels
for Support Vector Machines.

(3)

Klinear(x, x
′) = x · x′

Kpolynomial(x, x
′) = (γ(x · x′) + r)d

Krbf (x, x′) = e−γ‖x−x
′‖2

Ksigmoid(x, x
′) = tanh(γ(x · x′) + r)

4. Experimental setup and methodology

In this section, we describe the software libraries and the experimental and
testing methods used for running our experiments.

4.1. Software libraries and experimental methods. All of our experi-
ments are performed using the scikit-learn machine learning library [14]. For
Support Vector Machines, this in turn uses the libsvm library [5], which is
known to be a very powerful library for SVMs. Using well-known open source
and well documented libraries ensures bug free experiments and guarantees
that our experiments can easily be reproduced by other researchers.

We run experiments using the linear, RBF (Radial Basis Function), poly-
nomial and sigmoid kernels. We use a randomized grid search to tune the
hyperparameters for our SVM model (such as the C and ε values). It has re-
cently been shown that using a random search is better than using a standard
grid search [13]. We use 10 fold cross validation [6] as the model evaluation
method within the random search. The parameter configuration that gives
the best results, according to the Mean Absolute Error (MAE), is returned
after 1000 random parameter samplings from a uniform distribution over [0, 1)
for each model parameter, except the d parameter for the polynomial kernel,
which was sampled from the set {1, 2, 3, 4, 5}, and the C parameter, which
was sampled from [0, 10000) when optimizing the RBF kernel, from [0, 10)
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when optimizing the sigmoid kernel and from [0, 100) when optimizing the
linear kernel. For the polynomial kernel, the grid searches found d = 1, which
basically considers a linear kernel, so we do not include it in the presentation.

We also normalized our data by mean subtraction and division by the
standard deviation.

For finding the optimal hyperparameters, we have added the normalization
step as the first step of a pipeline, with the second and final step being the
Support Vector Regressor. Our normalizer only scales features. The resulting
pipeline is then used as the final regressor given to the randomized search for
optimization. This entails that mean and standard deviation are computed
on the training folds and the same values are used to normalize the test fold
during testing. After normalization, the test fold is fed to the actual regressor
part of the pipeline.

The way in which we optimize hyperparameters using randomized grid
searching is fixed (we will refer to it as the M1 method). However, we consider
the following methods as well, which we will optimize using a standard grid
search over a feasible set of hyperparameters.

(1) Method M2 involves normalizing our entire data prior to doing 10 fold
cross validation and also normalizing our targets (the correct statures).
Performance scores are reported considering the values returned by
the model unscaled. This approach can potentially overestimate the
performance of a model, due to the fact that it does not really mimic
real world scenarios by assuming we can also normalize the test data
together with the training data;

(2) Method M3 uses the pipeline approach of M1, but it also normalizes
targets. We believe this to be a realistic application scenario that can
help improve performance.

4.2. Testing method. For each methodology and kernel, we use a single run
of 10 fold cross validation per iteration, storing and using the hyperparameters
that define the model which minimizes the Mean Absolute Error score (MAE)
over all iterations. That model is then used to report the MAE and Standard
Error of the Estimate (SEE) according to Formula (4). In this formula, m is
the number of considered instances, yi is the known target value, and ŷi is the
value given by our trained model.

A 95% confidence interval for the mean on the 10 test folds is also reported,
as described in [4].

We present our results for two case studies representing different popula-
tions as well as for their concatenation.
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(4) MAE =
1

m

m∑
i=1

|yi − ŷi| SEE =

√√√√ 1

m

m∑
i=1

(yi − ŷi)2

5. Data sets and experimental results

In this section we present the experimental evaluation of the SVM model
on three case studies, following the process described in Section 4.

5.1. Data sets. Our data set is open source and taken from [2]. It consists
of two case studies, both in the same format and containing seven features
related to skeletal bone measurements in centimeters and the skeleton gender:
the length of the humerus, the radius and ulna lengths, the femur, tibia and
fibula lengths, the length of the whole leg (femur+tibia) and the gender. For
each of the bones, the measurement represents the length of the longest of
the two bones. Each of the two case studies contains 92 instances: the first
one contains measurements of caucasians and the second one measurements
of afro-americans (47 males and 45 females in each).

5.2. Experimental results. Figure 1 presents the two case studies reduced
to a single dimension using Principal Component Analysis (PCA) [11]. The x
axis of this graph represents the value of the single feature computed by PCA
and the y axis represents heights. It can be seen that even under this setting,
it is trivial to find a linear function that approximates the data, which makes
us expect very good results from the linear SVM kernel, since it will be able
to make use of more features, when even a single one shows good potential,
at least if obtained by PCA.

5.2.1. First case study - Caucasians. Table 1 presents results for the first case
study under all three evaluation methodologies.

For the Caucasian case study, the linear kernel proved to be the best under
the M1 testing methodology, while the RBF kernel proved to be the best under
M2 and M3.

For the M2 and M3 testing methodologies, we obtained the best results
with identical model hyperparameters. This is understandable, since the meth-
ods are very similar and the scaled targets cannot differ too much in our data
set. For larger datasets, the differences could potentially be bigger, thus re-
quiring different hyperparameters. Therefore, one might want to employ a
randomized grid search for the other methodologies as well. For our purposes
however, we wanted to showcase both kinds of searches.

We note that all three kernels give very good results under all three
methodologies, considering that the errors are in centimeters and the data
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(a) Caucasian case study
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PCA for the afro-american data set

(b) Afro-american case study

Figure 1. Data set reduced to a single feature using Principal
Component Analysis.

Kernel
MAE
(cm)

SEE (cm) Hyperparameters M

linear 0.046±0.010 0.056±0.011 C = 91.92, ε = 0.07

M1
RBF 0.088±0.061 0.101±0.068 C = 9625.77, ε = 0.07, γ = 0.004

sigmoid 0.881±0.504 0.913±0.504
C = 4.064, ε = 0.114,

γ = 0.0162, r = 0.164

linear 0.049±0.009 0.057±0.009 C = 5, ε = 0.001

RBF 0.042±0.014 0.050±0.015 C = 910, ε = 0.0001, γ = 0.001
M2

sigmoid 0.490±0.350 0.515±0.355
C = 5, ε = 0.0001,

γ = 0.01, r = 0.0001

linear 0.049±0.010 0.057±0.010 C = 5, ε = 0.001

RBF 0.040±0.012 0.048±0.014 C = 910, ε = 0.0001, γ = 0.001
M3

sigmoid 0.735±0.515 0.756±0.520
C = 5, ε = 0.0001,

γ = 0.01, r = 0.0001

Table 1. Results obtained on the Caucasian case study. 95%
confidence intervals are used for the results.

set contains almost 100 instances, which means that even in the worst case
(0.881 MAE for the sigmoid kernel in the M1 methodology), our average
mistake is under one centimeter.

Overall, the best results are obtained under the M3 methodology.
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Kernel
MAE
(cm)

SEE (cm) Hyperparameters M

linear 0.031±0.008 0.041±0.017 C = 28.41, ε = 0.017

M1
RBF 0.107±0.097 0.141±0.131 C = 7304.752, ε = 0.037, γ = 0.02

sigmoid 0.268±0.099 0.339±0.171
C = 9.844, ε = 0.013,

γ = 0.0062, r = 0.479

linear 0.056±0.052 0.114±0.154 C = 0.1, ε = 0.001

RBF 0.051±0.030 0.081±0.072 C = 910, ε = 0.001, γ = 0.001
M2

sigmoid 0.146±0.090 0.187±0.141
C = 0.9, ε = 0.0001,

γ = 0.01, r = 0.0001

linear 0.057±0.053 0.116±0.157 C = 0.1, ε = 0.001

RBF 0.055±0.037 0.090±0.091 C = 910, ε = 0.001, γ = 0.001
M3

sigmoid 0.195±0.147 0.220±0.167
C = 0.9, ε = 0.0001,

γ = 0.01, r = 0.0001

Table 2. Results obtained on the African-american case
study. 95% confidence intervals are used for the results.

5.2.2. Second case study - Afro-americans. Table 2 presents results for the
second case study under all three evaluation methodologies.

Once more, the linear kernel is the best under the M1 methodology. Com-
pared to the first case study’s M1 results, scores are better with the linear
and sigmoid kernels and worse with the RBF kernel, although the differences
are very small for any practical concerns.

The RBF kernel took the top spot under the M2 and M3 methods once
again. Compared with the first case study, the M2 and M3 results are worse
for the Afro-american case study, only the sigmoid kernel in the M2 setting
managing to surpass its direct competitor.

Overall, results are worse on the second case study than on the first, but
not in a significant fashion.

This time, the best results are obtained under the M1 methodology.

5.2.3. Mixed case study. The mixed case study consists of the concatenation
of the data sets corresponding to the previous two case studies, resulting in a
bigger data set that contains both populations.

We have not added any new feature to distinguish the two populations.
Since the two populations look similar in the PCA plots (Figure 1), we

expect their concatenation to yield good results as well.
Table 3 presents results for the mixed study. This time, the radial basis

function kernel clearly outperforms the other kernels taken into consideration.
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Kernel
MAE
(cm)

SEE (cm) Hyperparameters M

linear 0.340±0.103 0.417±0.129 C = 98.508, ε = 0.394

RBF 0.243±0.152 0.347±0.223 C = 9563.38, ε = 0.164, γ = 0.009
M1

sigmoid 2.604±1.177 2.855±1.208
C = 5.824, ε = 0.0972,

γ = 0.01, r = 0.7156

linear 0.458±0.225 0.551±0.254 C = 0.29, ε = 0.001

RBF 0.261±0.137 0.367±0.215 C = 10000, ε = 0.0001, γ = 0.001
M2

sigmoid 1.246±0.391 1.305±0.389
C = 6, ε = 0.1,

γ = 0.01, r = 0.0001

linear 0.469±0.223 0.577±0.270 C = 0.29, ε = 0.001

RBF 0.252±0.130 0.376±0.268 C = 10000, ε = 0.0001, γ = 0.001
M3

sigmoid 1.469±0.498 1.585±0.527
C = 6, ε = 0.1,

γ = 0.01, r = 0.0001

Table 3. Results obtained on the mixed case study. 95% con-
fidence intervals are used for the results.

This implies that the RBF kernel is the most robust, being able to deal with
more data instances even if they are from different populations. This suggests
that the RBF kernel should perform the best in practice.

For the M2 and M3 methodologies, we again did not obtain significant
differences in results with different model hyperparameters.

We obtained the best results under the M1 methodology.
Another testing scenario that we plan to research in the future involves

the concatenation of the two data sets, but with a new feature added that
specifies which population each instance belongs to.

Figure 2 shows the learning curves for the RBF kernel on the mixed case
study, unde the M1 testing methodology. It can be seen the model generalizes
very well and there is no overfitting. Because of the good generalization, it is
unlikely for more data to produce better results. Because the training score
error increases very slowly, it is likely that more data will not lead to worse
results. It can also be seen that the model achieves its optimal performance
with few training instances.

6. Comparison to related work

All of our results outperform existing literature results. As far as we are
aware of, only [2] presents results on these data sets. Their obtained SEE
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Figure 2. Learning curves for the mixed case study, with the
RBF kernel under the M1 methodology and considering MAE
scores.

errors are between 3.05 and 3.66 cm. Our worst result is 2.855 SEE on the
mixed case study using the sigmoid kernel under the M1 testing methodology.

On the individual case studies, all of our results are well below 1 SEE,
with most of them being under 0.5 and the best of them under 0.1.

Taking into consideration work done on other data sets but regarding the
same issue, such as [17, 3, 12, 19] and others, we note that no previously
existing method manages to achieve errors less than a centimeter, under any
scoring metric. This can be attributed to the fact that previous methods only
seem to consider a few features, to which they apply rather basic statistical
procedures. It is impossible for us to test SVM applications on those data sets,
since they are not public. Therefore, a direct comparison between our results
and existing results on the data sets in [17, 3, 12, 19] would be meaningless.
However, it stands to reason that, given the results we have presented in
Section 5, SVM-based models can potentially outperform existing methods on
other data sets as well.

Table 4 presents a quick comparison between our methods and other lit-
erature results on the data set we have worked with.
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Method
Best
SEE

Worst
SEE

Short description

SVM 0.048 0.913
First case study, RBF kernel under the M3
methodology for the best SEE and sigmoid kernel
under the M1 methodology for the worst case.

SVM 0.041 0.339
Second case study, linear and sigmoid kernels,
both under the M1 methodology.

SVM 0.347 2.855
Mixed case study, RBF kernel under the M1
methodology and sigmoid kernel also under the
M1 methodology.

[2] 3.05 3.66
Regression formulas based on basic statistical
methods.

Table 4. Overview of literature results on the data set we
have used.

Therefore, our Support Vector Regression approach is a very reliable solu-
tion to the problem of skeletal height estimation given the lengths of certain
bones, leading to much better results than previous approaches and having
the potential to be easily adapted to new data sets from the field.

7. Conclusions and future work

We have presented in this paper how SVM regression methods can be
applied for estimating the height of archaeological remains. We have run
extensive experiments on two archaeological data sets that are freely available,
obtaining very good results that surpass previous results from the literature.

Our results are also superior considering other data sets. While this com-
parison does require further investigation, it is a valid conjecture due to the
fact that SVMs are a family of machine learning algorithms, which means
they can learn from any type of data. If they could learn well on one data
sets, it stands to reason that they are able to do the same on another data set
containing similar kind of data.

We have applied three testing methodologies, which we believe to mimic
certain real world scenarios well. We also used a randomized grid search for
one of them, which recent research has shown to be the best was of optimizing
hyperparameters.

Therefore, we consider the SVM-based methods that we have applied to
offer significant contributions to the fields of archaeology and forensic analysis
and believe that they will generalize well to other problems of a similar nature.
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As a future research direction, we plan to experiment with more machine
learning libraries and on more data sets. We also plan to find different kernels
to test. Another possible direction is refining our hyperparameter searches, by
reducing the intervals we search in and by running the randomized search for
more iterations, increasing the probability of finding better hyperparameters.

If we can obtain more data, we believe that researching online learning
options would also be a useful undertaking.

Since the PCA reduction did not seem to generate useless data, it is also
worth investigating the results that can be obtained using less features, since
fewer measurements should always be helpful in practice.
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