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ALGORITHMIC APPROACH IN REORIENTATION OF

COMPARABILITY GRAPHS

SERGIU CATARANCIUC AND NICOLAE GRIGORIU

Abstract. In this article we present methods and algorithms for arcs
reorientation in a transitive orientation of a comparability graph. These
methods are based on special classes of subgraphs called B-stable sub-
graphs. A stable subgraph F of the undirected graph G = (X;U) is called
B-stable if F has no common vertices with any other stable sugraph M of
G or F is proper subgraph of M . Algorithms of the reorientation of arcs
are based on the factorization procedure.

1. Introduction

Sorting still remains a very actual problem in combinatorics and computer
science. Partially ordered sets sorting is a research field with many valorous
results [1], [2]. It is well known that partially ordered set can be presented as
a transitive oriented graph [8].

We use the reorientation of arcs in a transitive orientation of the graph
related to the poset in order to get rearrangement of elements in a partially
ordered set. Methods described in [3] offer solution based on the orienta-
tion of one arc in the graph. In this paper we try to describe a method for
reorientation of a set of arcs.

This article is organised as follows. In Section 2 we describe stable sub-
graphs as basics for manipulation of the transitive orientation of the graph.
In this section we provide an algorithm for the construction of a B-stable
subgraph. In Section 3 we describe a method for reorientation of arcs in a
graph such that the resulting orientation is also transitive. We present two
approaches: minimal reorientation of arcs in graph and reorientation of a given
set of arcs.
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2. Stable subgraphs

Transitively orientable graphs have been studied based on implication
classes [3] and stable subgraphs [9]. In this paper we use the second approach.

Recall that a subgraph F with the set of vertices XF is called stable
subgraph of the graph G = (X;U) [9], XF ⊂ X if ∀x ∈ X \ XF only one of
the following relations holds:

(1) [x, y] ∈ UG, ∀y ∈ XF ;
(2) [x, y] /∈ UG, ∀y ∈ XF .

Definition 1. [4] Graph F = (XF ;UF ) is called B-stable subgraph of the
undirected graph G = (X;U) if F is stable subgraph of G and for every stable
subgraph M of G one of the following conditions is satisfied:

(1) XF ∩XM = ∅;
(2) XF ⊆ XM .

Theorem 1. [4] If F is a B-stable subgraph of the graph G = (X;U) and
x ∈ XG \ XF is a vertex adjacent to the set XF , then for every transitive

orientation
−→
G only one of the following relations holds:

(1) [x, y] ∈
−→
UG,∀y ∈ XF ;

(2) [y, x] ∈
−→
UG,∀y ∈ XF .

Remark 1. If F is a stable subgraph of the undirected graph G = (X;U),
then for every vertex x ∈ XG \ XF so that [x, y] ∈ UG, where y ∈ XF , the
following relation holds:

(1) deg(x) ≥ deg(y).

Remark 2. If F is a B-stable subgraph, then:

(2) deg(x) > deg(y).

Let G = (X;U) be a transitively orientable graph, and F a subgraph of it.

Suppose that
−→
G = (X;

−→
U ) is a transitive orientation of G. We will denote by

−→
F = (XF ;

−→
UF ) the directed subgraph of

−→
G , defined by the subgraph F . The

following relation holds,
−→
U −→

G
=
−→
U −→

G\
−→
F
∪
−→
U −→

F
, where

−→
U −→

G\
−→
F

is the set of all

arcs of the graph
−→
G except for arcs from

−→
F .

We will say that F is independent transitively orientable subgraph of G if

for every transitive orientation
−→
F ∗ of F , the set of arcs

−→
U −→

G\
−→
F
∪
−→
U −→

F ∗ defines

a transitive orientation
−→
G∗ of the graph G. The independent transitively

orientable subgraph F will be called ITO-subgraph.
From the facts mentioned above it means that in any transitive orientation−→

G of the undirected graph G = (X;U) if we change arcs of the subgraph
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−→
F , which in G is ITO-subgraph, then the resulting orientation will be also
transitive.

Lemma 1. The subgraph F of the transitively orientable graph G = (X;U) is
B-stable, if and only if F is ITO-subgraph.

Proof. (=⇒) Suppose that F is a B-stable subgraph. Based on Theorem
1, for all edges in UF we have only one of the following relations:

(1) [x, y] ∈
−→
UG,∀y ∈ XF ;

(2) [y, x] ∈
−→
UG,∀y ∈ XF .

where x ∈ XG \XF . So, the orientation of the edges in UF is not dependent

on the orientation of edges of UG \ UF in a transitive oriented graph
−→
G . So,

F is ITO-subgraph.
(⇐=) Suppose that F is ITO-subgraph. We need to prove that F is a

B-stable subgraph.
The fact that F is ITO-subgraph implies that for every transitie orientation

of F only one of the following relation holds:

(1) [x, y] ∈
−→
UG,∀y ∈ XF ;

(2) [y, x] ∈
−→
UG,∀y ∈ XF .

where x ∈ XG \XF . This property implies that [x, y] ∈ UG where x ∈ XF and
y ∈ XG \XF . So, the subgraph F is stable. Let M be a stable subgraph in
G, and XF ∩XM 6= ∅. Because F is ITO-subgraph the transitive orientation
of the graph A does not have any influence on the orientation of F . This is
possible only if F is subgraph of M . So, the graph F is B-stable.

We present a solution for finding of B-stable subgraph. The task of con-
struction of B-stable subgraph is split in two recursive algorithms. In the first
algorithm we find a stable subgraph. In the second algorithm we check if the
given subgraph is B-stable. The first found B-stable subgraph is returned.
The input graph is presented as an adjacent list. Construction of a stable
subgraph is based on the Depth-First-Search algorithm. For each processed
vertex a special class processed(x) with Boolean values TRUE or FALSE
is attached. The sets E and P that are presented in the StableSubgraph
procedure which is defined in the second algorithm.

In the StableSubgraph function every vertex of the graph G is processed,
and the smallest set of vertexes that satisfy the stable sugraph definition is
returned.

We have a vertex x that is adjacent to the stable subgraph and a vertex y
that is included in the set of vertices of the stable subgraph as input values.
We get a set of vertices that defines a stable subgraph in the output of the
algorithm.
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Algorithm 1 Stable subgraph

1: function StableSubgraph(x, y)
2: for all z /∈ Γ(x) do
3: if Γ(z) = Γ(x) then
4: E ← z
5: end if
6: end for
7: if E 6= ∅ then
8: E ← y
9: end if

10: for all z ∈ Γ(y) do
11: if processed(z) = FLASE & Γ(z) ∪ {z} ⊆ Γ(x) ∪ {x} then
12: processed(z)← TRUE
13: P ← z
14: StableSubgraph(x, z)
15: end if
16: end for
17: if E = ∅ then
18: return P
19: end if
20: return E
21: end function

Theorem 2. Construction of the stable subgraph can be done in O(∆) time,
where ∆ is the maximum degree of a vertex.

Proof. All cycles in the StableSubgraph(x, y) function have Γ(x) items.
Instructions in these cycles run in constant time. It means that for each cycle
we have O(Γ(x)) time. If we chose the maximal degree in graph then time
needed for construction of the potential B-stable subgraph is O(∆).

Further, we present an algorithm for construction of a B-stable subgraph
based on the StableSubgraph(x, y) function, described above. This algorithm
is presented by a recursive function BSS(G). As the previous algorithm this
function is based on the Depth-First-Search algorithm. We find a stable sub-
graph in each level of the graph exploration and check if this subgraph is
B-stable. The first found B-stable subgraph is returned. The adjacency list
of the graph G is considered as input value of the BSS(G) function. Output
of the algorithm is a set of vertices that define a B-stable sugraph. Based on
remark 1 and 2, main idea of the algorithm is to subtract a vertex from the
graph G, and verify if the resulting subgraph is B-stable.
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Algorithm 2 B-stable subgraph

1: function BSS(G)
2: if G is not complete graph then
3: S ← G
4: SORT (S)
5: for all x ∈ XS do
6: processed(x)← TRUE
7: P ← ∅& G← ∅
8: G← StableSubgraph(x, x)
9: if G 6= S then

10: BSS(G)
11: end if
12: end for
13: end if
14: return G
15: end function

Theorem 3. Construction of the B-stable subgraph can be done in O(n∆)
time, where n and ∆ are respectively the number and the maximum degree of
vertices of the graph G.

Proof. The algorithm of the processing of the potential B-stable subgraphs
uses the recursive procedure BSS(G). This procedure also explores the graph
G using the Depth-First-Search technique.

Graph G is sorted in a descending order based on the degree of the vertices.
In the procedure BSS(G) each vertex of the graph is explored. So, for each
iteration the StableSubgraph(x, x) function is called. As it is proved in the
Theorem 2 the StableSubraph(x, x) procedure can be executed in O(∆) time.
As a result, we obtain a B-stable subgraph in O(n∆) time, if we use the
BSS(G) procedure, where n is the number of vertices of the graph G and ∆
is the maximum degree of a vertex.

Remark 3. Because the StableSubgraph algorithm reduces graph dimension
on each iteration, and BSS algorithm stops when graph does not support any
changes the BSS function terminates in a finite number of iterations.

Remark 4. Based on remark 2 and lemma 1 we can observe that algorithm
2, returns a B-stable subgraph or the whole graph.

As it was mentioned in the lemma 1 a transitively orientable graph can
have more than one orientation. In the next section there will be described a
method for reorientation of arcs in a given transitive orientation.
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3. Reorientation of a comparability graph

Let F0 be a B-stable subgraph of the G. We denote by G/F0 the graph
obtained from the graph G by the following rules:

(1) the subgraph F0 is replaced with the vertex xF0 ;
(2) all edges [x, z], ∀x ∈ XF0 , z ∈ XG \XF0 , are replaced with the [xF0 , z].

The graph G/F0 is called the graph factor that corresponds to the B-
stable subgraph F0. The operation of obtaining the graph factor G/F0 is called
factorization [5].

If the graph G1 = G/F0 also contains a B-stable subgraph F1, then we
can get a new graph factor G1/F1 from G1 using the factorization procedure.
If this graph also contains a B-stable subgraph then we could repeat the same
procedure until we get a graph factor that does not contain any B-stable
subgraphs. We can obtain a sequence of undirected graphs:

(3) G,G1 = G/F0, G
2 = G1/F1, . . . , G

k = Gk−1/Fk−1

with the properties:

(1) Fi is a B-stable subgraph in the graph Gi, where 0 ≤ i ≤ k − 1,
(consider that G0 = G);

(2) the graph Gk = Gk−1/Fk−1 does not contain B-stable subgraphs.

The sequence (3) is called complete sequence of graph factors of the
graph G.

Reconstruction of the transitive orientation gives the solution for many
theoretical and practical problems (see [2], [7]). It is very important to set
some specific conditions in order to get the new transitive orientation based
on the existing one. We can reorient one arc to achieve a new transitive
orientation by using implication classes [6]. In many cases it is necessary to
consider reorientation of a set of arcs. Further we will use B-stable subgraphs
and factorization procedure in order to accomplish this task.

Definition 2. If F = (XF ;UF ) is a B-stable subgraph of the transitively
orientable graph G, then the set of edges UF is called the internal factor defined
by the subgraph F .

Let F be a B-stable subgraph of the graph G. Internal factor defined by
F is denoted as IF .

Remark 5. If transitively orientable graph G = (X;U) does not contain any
B-stable subgraphs then the set of edges UG defines the internal factor of the
graph G.

Let F be a B-stable subgraph of the transitively orientable graph G and IF
is an internal factor defined by the subgraph F , then the next remark holds.
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Remark 6. If [x, y] and [s, t] are two arcs that are contained in the internal
factor IF defined by the B-stable subgraph F , then the transitive orientation
defined by the arc [x, y] is the same as the transitive orientation defined by the
arc [s, t].

Definition 3. Let x ∈ XG \XF , where F is a B-stable subgraph of the transi-
tively orientable graph G, is a vertex adjacent to the set XF . Then, the set of
edges [x, y], ∀y ∈ XF is called the external factor defined by the subgraph F .

Let F be a B-stable subgraph of the graph G. External factor defined by
F is denoted as EF .

Remark 7. If F is a B-stable subgraph of graph G, and EF is an external

factor defined by F , then for every transitive orientation
−→
G , where x ∈ XEF

and y ∈ XF only one of the following relations is satisfied:

(1) [x, y] ∈ EF ;
(2) [y, x] ∈ EF .

It means that all arcs in an external factor have the same direction.

3.1. Minimal reorientation.

Lemma 2. If EFi is an external factor defined by the B-stable subgraph Fi

then there is an internal factor IFj defined by a B-stable subgraph Fj so that
EFi ⊆ IFj , 1 ≤ i ≤ k − 1, i + 1 ≤ j ≤ k.

Proof. Let xFi be a vertex obtained in the factorization operation of the
graph G/Fi, and [xFi , xs] is an edge of the external factor EFi . If the vertex xFi

is not contained in another B-stable subgraph, then it can be part of the last
graph factor in the complete sequence G,G1 = G/F0, G

2 = G1/F1, . . . , G
k =

Gk−1/Fk−1. By the Remark 7 the edge [xFi , xs] is part of the set UG/Fk
.

Lemma 3. If Fi is a B-stable subgraph of G and EFi ⊂ IFi then EFi forces
the transitive orientation of the internal factor IFi.

Next, we present an algorithm for the reorientation of minimal amount
of arcs in a given transitive orientation. We use the MinimalReorientation
function. We use the complete series of graph factors G1, G2, . . . , Gk and the

current transitive orientation
−→
G of the graph G as the input values for this

function. New transitive orientation
−→
G′ of the graph G is the output of the

MinimalReorientation function.

Theorem 4. A new transitive orientation of the graph G using the function
MinimalReorientation can be done in O(k∆) time, where k is the length of
the complete sequence of the graph factors and ∆ is the maximal degree of a
vertex in the graph.
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Algorithm 3 Minimal Reorientation of arcs in a comparability graph

1: function MinimalReorientation(G1, G2, . . . , Gk,
−→
G)

2: i← 1
3: repeat
4: Fi ← BSS(Gi)
5: i← i + 1
6: until UFi <> ∅
7:

−→
G′ ←−

−−−→
Gi/Fi

8: Reorientation of the arcs in the
−→
Fi

9: while i > 0 do
10: i← i− 1

11:
−→
G′ ←−

−−−→
Gi/Fi

12: end while
13: return

−→
G′

14: end function

Next, we present a method for reorientation of given arcs in a transitive
orientation of the graph G.

3.2. Reorientation forced by a given set of arcs. Let G = (X;U) be a

transitively orientable graph, and
−→
G = (XG;

−→
UG) is a transitive orientation of

it. The direction of arcs in the subset
−→
EG ⊂

−→
UG, 2 < |

−→
EG| < |

−→
UG|, needs to

be reversed. A new transitive orientation
−→
G′ = (XG;

−→
U ′G) so that

←−
EG ⊂

−→
U ′G,

where
←−
EG = {[x, y]|[y, x] ∈

−→
EG}, should be defined.

We can obtain the set
←−
EG by the reversing of the arcs in

−→
EG. The resulting

orientation is also transitive. Next, we present the necessary steps for the

reconstruction of the orientation that contains all arcs from
←−
EG.

We need to apply the factorization procedure on the set
←−
EG. Let [x, y] be

an arc from
←−
EG. If x ∈ XF , where F is a B-stable subgraph, then we replace

the arc [x, y] with the resulting arc [x′, y] from the factorization procedure of
the subgraph F . If the whole arc is part of the factorized subgraph, then this
arc is replaced with the new vertex x′.

We describe an algorithm for the reconstruction of the transitive orienta-

tion forced by the given set of arcs
←−
EG based on the idea mentioned above.

This algorithm explores the sequence of the complete graph factors. The
exploration of the sequence is done in both directions. In the forward explo-

ration a new set
←−
EGi/Fi

is attached for each graph factor. When the sequence
of the graph factors is explored backwards, then the new transitive orientation
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is created based on the set of arcs that forces the orientation. We use the func-
tion ForcedReorientation. The complete sequence of the graph factors, set←−
EG and orientation

−→
G are considered as the input values for the function. New

orientation of the graph is the output of the ForcedReorientation procedure.

Algorithm 4 Reorientation of arcs forced by a set of arcs

1: function ForcedReorientation(G1, G2, . . . , Gk,
←−
EG,
−→
G)

2: i← 1
3: while Gi <> Gi−1 do
4:

−−−−→
EGi/Fi

← Factorization of
−−−−−−−→
EGi−1/Fi−1

5: i← i + 1
6: end while
7: while i > 0 do
8: Construction of the

←−−−−
EGi/Fi

9:
−→
G′ ←

−−−→
Gi/Fi

′

10: i← i− 1
11: end while
12: return

−→
G′

13: end function

Theorem 5. The run time of the algorithm used for the reorientation of the
transitive orientation forced by a given set of arcs is O(k∆), where k is the
number of graph factors in the complete sequence and ∆ is the maximal degree
of a vertex in the graph.

4. Conclusions

In this paper we presented algorithms for reorientation of arcs in com-
parability graphs. These algorithms are based on B-stable subgraphs and
the factorization procedure. We can describe comparability graphs by using
the factorization procedure of the B-stable subgraphs. Also, B-stable sub-
graphs can be used in calculation of number of the transitive orientations in
a comparability graph. We consider two cases for the accomplishment of the
comparability graph reorientation: minimal amount of arcs reorientation and
reorientation of a specified set of arcs in a given transitive orientation. We
proved that both algorithms run in polynomial time.
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