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AN INFEASIBLE INTERIOR-POINT METHOD FOR THE

CARTESIAN P∗(κ) SECOND-ORDER CONE LINEAR

COMPLEMENTARITY PROBLEM WITH ONE CENTERING

STEP

BEHROUZ KHEIRFAM

Abstract. In this paper, we present a new full step infeasible interior-
point algorithm for the Cartesian P∗(κ) linear complementarity problem
over second-order cones. The algorithm uses only full Nesterov and Todd
steps. Each (main) iteration of the algorithm consists of one so-called
feasibility step and only one centering step. The algorithm starts with
a strictly feasible point of a perturbed problem, after an iteration, the
new iterate is still strictly feasible of the new perturbed problem. The
algorithm has the same complexity as the best known infeasible interior-
point methods.

1. Introduction

In this paper, we consider the second-order cone linear complementarity
problem (SOCLCP), which seeks vectors x, s ∈ Rn such that

x ∈ K, s ∈ K, s = A(x) + q, 〈x, s〉 = 0,

where 〈x, s〉 := tr(x◦s) denotes the Euclidean inner product, q ∈ Rn, A : K →
K is a linear transformation, and K ⊆ Rn is the Cartesian product of several
second-order cones, i.e., K = K1 ×K2 × · · · × KN , with

Kj :=
{

(x1, x
T
2:nj

)T ∈ R×Rnj−1 : x1 ≥ ‖x2:nj‖
}
, where x2:nj := (x2; . . . ;xnj )

for each j = 1, . . . , N and
∑N

j=1 nj = n. Since K has finite dimensional, we

can consider matrix representation of the linear transformation A(x) = Mx,
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with M ∈ Rn×n. By Lemma 2.2 in [7] we know that 〈x, s〉 = 0 if and only if
x ◦ s = 0. Therefore, we may rewrite SOCLCP in the following form

x ∈ K, s ∈ K, s = Mx+ q, x ◦ s = 0.(1)

We call SOCLCP the Cartesian P∗(κ)-SOCLCP if the matrix M has the Carte-
sian P∗(κ)-property, i.e., for any κ ≥ 0, the matrix M satisfies

〈x,Mx〉 ≥ −4κ
∑

j∈I+(x)

〈x(j), [Mx](j)〉, where I+(x) = {j : 〈x(j)[Mx](j)〉 ≥ 0}.

The concept of the Cartesian P∗(κ)-property was first introduced by Luo and
Xiu [15] in the general Euclidean Jordan algebra. Actually, it is a straightfor-
ward extension of the P∗(κ)-matrix introduced by Kojima et al. [14]. More-
over, the matrix M with the Cartesian P∗(κ)-property becomes the usual
P∗(κ)-matrix when K is specified to be Rn+, correspondingly, the Cartesian
P∗(κ)-SOCLCP reduces to the P∗(κ)-LCP [15]. Wang and Zhu [25] presented
a primal-dual interior-point algorithm for the Cartesian P∗(κ)-SOCLCP based
on a parametric kernel function. The primal-dual full-Newton step feasible
IPM for linear optimization (LO) was first analyzed by Roos et al. [18]. Dar-
vay [4] proposed a full-Newton step primal-dual path-following interior-point
algorithm for LO which is based on the equivalent algebraic transformation.
Achache [1], Wang and Bai [22, 23] and Wang [24] generalized the results for
LO in [4] to convex quadratic optimization (CQO), second-order cone opti-
mization (SOCO), symmetric cone optimization (SCO) and monotone LCP
over symmetric cone (SCLCP).

The above algorithms enjoy the best known iteration bound. However,
they are all feasible IPMs, which start with a strictly feasible interior point
and maintain feasibility during the solution process. One may distinguish
between feasible IPMs and infeasible IPMs (IIPMs), which start with an arbi-
trary positive point and feasibility is reached as optimality is approached. In
2006, Roos [17] designed the first full-Newton step primal-dual IIPM with the
currently best iteration bound for LO. Following Roos’ contribution, Kheirfam
and Mahdavi-Amiri [11] and Gu et al. [8] respectively extended both versions
of the feasible IPM [18] and IIPM [17] to SCLCP and SCO by using Nesterov
and Todd (NT) direction as a search direction and obtained the same itera-
tion complexity bounds. Kheirfam and Mahdavi-Amiri [12] presented a full
NT-step IIPM for SCLCP based on modified NT directions, and the corre-
sponding complexity results accord with the currently best-known iteration
bound for IIPMs. Based on Darvay’s technique [4] extension to SCO in [23],
Kheirfam [10] presented a full-NT step IIPM for SCO. Recently, Kheirfam [9]
designed and analyzed the full-Newton step IIPM based on a new proxim-
ity measure for P∗(κ) horizontal linear complementarity problem (HLCP). All
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IIPMs mentioned so far consists of one feasibility step and a few - at most
three - centering steps. Recently, Darvay et al. [5] presented an improved
version of an IIPM for LO in [2], in sense that each iteration of the algorithm
consists of one feasibility step and only a centering step.

Motivated by Darvay et al.’s recent work, we present a new full NT-step
IIPM for the Cartesian P∗(κ)-SOCLCP based on the technique introduced in
[5] and prove that each main iteration needs to a feasibility step and one cen-
tering step in order to get a well-defined algorithm. The new algorithm reduces
the searching steps in each iteration and tendering an interesting analysis for
iteration complexity.

The remainder of our work is organized as follows. In Section 2, we
briefly recall the corresponding Euclidean Jordan algebra to second-order
cones. Based on Darvay’s technique, we are providing some new results that
will be used in the complexity analysis of the algorithm. In Section 3, we
introduce the perturbed problem and the new infeasible interior-point algo-
rithm. Then, we provide the complexity analysis of the algorithm and derive
the iteration bound. Finally, some conclusions are given in Section 4.

2. Euclidean Jordan algebra and some results

In this section, we first recall some basic concepts of Euclidean Jordan
algebra [3, 6], and then we provide some results that will be used for the main
purpose of this paper.

A Euclidean Jordan algebra (J , 〈·, ·〉, ◦) (J for short) is an n-dimensional
inner product space over R endowed with a bilinear map ◦ : J ×J → J iff for
all x, y, z ∈ J , x ◦ y = y ◦ x, x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) and 〈x ◦ y, z〉 = 〈x, y ◦ z〉
where x2 := x ◦ x. For any xj = (xj1, x

j
2:nj

), sj = (sj1, s
j
2:nj

) ∈ R × Rnj−1, the

Jordan product of xj and sj is defined as

xj ◦ sj =
(
(xj)T sj ;xj1s

j
2:nj

+ sj1x
j
2:nj

)
.

One can easily verify that (Rnj , ◦) is a Euclidean Jordan algebra, with ej =
(1; 0) ∈ R×Rnj−1 as identity element. In this algebra, the second-order cone
Kj is the cone of square, i.e., Kj = {x2 : x ∈ Rnj} (see, [6]). Given a vector

xj = (xj1, x
j
2:nj

) ∈ R×Rnj−1, let

L(xj) :=

[
xj1 (xj)T2:nj

xj2:nj
xj1Enj−1

]
,

which can be viewed as a linear mapping from Rnj−1 to Rnj−1, where Enj−1

denotes the identify matrix. It is not hard to verify that L(xj)sj = xj ◦ sj



24 BEHROUZ KHEIRFAM

for any xj , sj ∈ Rnj . The eigenvalues of L(xj) are denoted respectively as

λmin(xj) = xj1 − ‖x
j
2:nj
‖ and λmax(xj) = xj1 + ‖xj2:nj

‖. Note that

xj ∈ Kj ⇔ λmin(xj) ≥ 0, xj ∈ intKj ⇔ λmin(xj) > 0,

where intKj denotes the interior of Kj . For any xj ∈ Rnj , P (xj) := 2L(xj)2−
L((xj)2) where L(xj)2 = L(xj)L(xj). The map P (xj) is called the quadratic

representation of xj . Each xj = (xj1;xj2:nj
) ∈ Rnj admits a spectral decompo-

sition, associated with Kj , of the form xj = λmax(xj)c1 + λmin(xj)c2, where
c1, c2 are the associated eigenvectors given by

c1 =
1

2

(
1;

xj2:nj

‖xj2:nj
‖
)
, c2 =

1

2

(
1;
−xj2:nj

‖xj2:nj
‖
)
.(2)

Moreover, tr(xj) = λmax(xj) + λmin(xj) = 2xj1. The natural inner product is
given by

〈xj , sj〉 := tr(xj ◦ sj) = 2(xj)T sj , xj , sj ∈ Rnj .

Hence, the norm induced by this inner product, which is denoted by ‖ · ‖F ,
satisfies

‖xj‖F =
√
〈xj , xj〉 =

√
tr((xj)2) =

√
λmin(xj)2 + λmax(xj)2 =

√
2‖xj‖.

In the sequel, we generalize the above definitions and properties to the case
where N > 1, when the second-order cone underlying K is the Cartesian
product of N second-order cones Kj . For any x = (x1; · · · ;xN ) ∈ Rn with
xj ∈ Rnj , j = 1, . . . , N , the algebra (Rn, ◦) is defined as a direct product of
the Jordan algebras (Rnj , ◦) as

x ◦ s := (x1 ◦ s1; · · · ;xN ◦ sN ).

Obviously, if ej ∈ Kj is the identity element in the Jordan algebra for the jth
second-order cone, then the vector e = (e1; · · · ; eN ) is the identity element in
(Rn, ◦). Moreover, tr(e) = 2N , which is the rank of (Rn, ◦). The matrix L(x)
and the quadratic representation P (x) of (Rn, ◦) can be respectively adjusted
to

L(x) := diag
(
L(x1), · · · , L(xN )

)
, P (x) := diag

(
P (x1), · · · , P (xN )

)
.

Furthermore

λmax(x) = max
1≤j≤N

{λmax(xj)}, λmin(x) = min
1≤j≤N

{λmin(xj)}, ‖x‖2F =

N∑
j=1

‖xj‖2F

tr(x) =
N∑
j=1

tr(xj) =
N∑
j=1

(
λmax(xj) + λmin(xj)

)
:=

2N∑
j=1

λj(x).
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Lemma 2.1. (Corollary 2.14 in [22]) Let x, s ∈ Rn and x+ s = e. If |λmin(s)|
is small enough, then ψ(x+s) ≈ ψ(x)+ψ

′
(x)◦s, where ψ(t) : [0,∞)→ (0,∞)

such that ψ
′
(t) > 0 for all t > 0.

Lemma 2.2. (Lemma 6.1 in [22]) Let x(α) := x+ α∆x and s(α) := s+ α∆s
for all 0 ≤ α ≤ 1. Suppose that x, s ∈ intK. If one has

det
(
x(α) ◦ s(α)

)
> 0, ∀0 ≤ α ≤ ᾱ,

then x(ᾱ), s(ᾱ) ∈ intK.

Lemma 2.3. (Theorem 4 in [20]) Let x, s ∈ K. Then

λmin

(
P (x)

1
2 s
)
≥ λmin(x ◦ s).

Lemma 2.4. (Lemma 30 in [19]) Let x, s ∈ K. Then∥∥P (x)
1
2 s− e

∥∥
F
≤
∥∥x ◦ s− e∥∥

F
.

Luo and Xiu [15] have discussed the existence and uniqueness of the central
path of the Cartesian P∗(κ) symmetric cone linear complementarity problem
(P∗(κ)-SCLCP). As a special case of the Cartesian P∗(κ)-SCLCP, the existence
and uniqueness of the central path of the Cartesian P∗(κ)-SOCLCP could be
similarly obtained. The main idea of IPMs is to replace the last equation in
(1), the so-called complementarity condition, with the parameterized equation
x ◦ s = µe, with parameter µ > 0. So we consider the following system

s = Mx+ q, x ◦ s = µe, x, s ∈ intK.(3)

Throughout the paper, we assume that the Cartesian P∗(κ)-SOCLCP satisfies
the interior-point condition (IPC), i.e., there exists x0, s0 ∈ intK with s0 =
Mx0 +q, then the system (3) has a unique solution (x(µ), s(µ)), for each µ > 0
as the µ-center of the Cartesian P∗(κ)-SOCLCP. The set of µ-centers is called
the central path of the Cartesian P∗(κ)-SOCLCP. If µ −→ 0, then the limit of
the central path exists and since the limit points satisfy the complementarity
condition, the limit yields a solution for the Cartesian P∗(κ)-SOCLCP [26].
Similarly to the LO case [4], we replace the standard centering equation x◦s =
µe by ψ(x◦sµ ) = ψ(e), where ψ(·) is the vector-valued function induced by the

univariate function ψ(t). Then, we consider the following system

s = Mx+ q, ψ
(x ◦ s
µ

)
= ψ(e), x, s ∈ intK,(4)

Applying Newton’s method to the system (4) leads to the following system

M∆x−∆s = 0, ψ
(
x◦s
µ + x◦∆s+∆x◦s+∆x◦∆s

µ

)
= ψ(e).(5)
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Neglecting the term ∆x ◦ ∆s, from Lemma 2.1, we can replace the second
equation of (5) by

ψ
(x ◦ s
µ

)
+ ψ

′(x ◦ s
µ

)
◦
(x ◦∆s+ ∆x ◦ s

µ

)
= ψ(e).

This enables us to rewrite the system (5) as follows

M∆x−∆s = 0, x ◦∆s+ s ◦∆x = µ
(
ψ
′
(x◦sµ )

)−1(
ψ(e)− ψ(x◦sµ )

)
.(6)

Due to the fact that x and s do not operator commute in general, i.e.,
L(x)L(s) 6= L(s)L(x), the above system does not always have a unique so-
lution. To overcome this difficulty, the second equation of the system (4) is
replaced by the following equivalent scaled equation (cf. Lemma 28 in [19])

ψ
(P (w)−

1
2x ◦ P (w)

1
2 s

µ

)
= ψ(e),

where w = P (x)
1
2

(
P (x)

1
2 s
)− 1

2
[

= P (s)−
1
2

(
P (s)

1
2x
) 1

2
]

is the NT-scaling point

of x and s. This scaling point was first proposed by Nesterov and Todd for
self-scaled cones [16]. Now, we replace the second equation of the system (5)
by

ψ
(P (w)−

1
2 (x+ ∆x) ◦ P (w)

1
2 (s+ ∆s)

µ

)
= ψ(e).

Applying Newton’s method again and neglecting the term P (w)−
1
2 ∆x◦P (w)

1
2 ∆s,

from Lemma 2.1, we get

M∆x−∆s = 0,

P (w)
1
2 s ◦ P (w)−

1
2 ∆x+ P (w)−

1
2x ◦ P (w)

1
2 ∆s =

µ
(
ψ
′
(P (w)−

1
2 x◦P (w)

1
2 s

µ )
)−1(

ψ(e)− ψ(P (w)−
1
2 x◦P (w)

1
2 s

µ )
)
.

(7)

In this case, assuming that ψ(t) =
√
t, the system (7) becomes

∆s−M∆x = 0,

P (w)−
1
2x ◦ P (w)

1
2 ∆s+ P (w)

1
2 s ◦ P (w)−

1
2 ∆x =

2
((
µP (w)−

1
2x ◦ P (w)

1
2 s
) 1

2 − P (w)−
1
2x ◦ P (w)

1
2 s
)
.

(8)

We use the following notations:

v :=
P (w)−

1
2x

√
µ

[
=
P (w)

1
2 s

√
µ

]
, dx :=

P (w)−
1
2 ∆x

√
µ

, ds :=
P (w)

1
2 ∆s

√
µ

.(9)

It follows from (9) that the system (8) reduces to

Mdx − ds = 0, dx + ds = pv,(10)
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where M := P (w)
1
2MP (w)

1
2 and pv := 2(e− v). The new search directions dx

and ds are obtained by solving (10) so that ∆x and ∆s are computed via (9).
The new iterates are given by

x̃ := x+ ∆x, s̃ := s+ ∆s.(11)

For the analysis of the algorithm, we define a norm-based proximity measure

δ(v) := δ(x, s;µ) :=
‖pv‖F

2
= ‖e− v‖F .(12)

Defining qv = dx − ds, we have

dx =
pv + qv

2
, ds =

pv − qv
2

, dx ◦ ds =
pv ◦ pv − qv ◦ qv

4
.(13)

Moreover, since M has the Cartesian P∗(κ)-property and ds = Mdx from the
first equation in (10), we obtain

〈dx, ds〉 ≥ −4κ
∑
j∈I+

〈d(j)
x , d(j)

s 〉 ≥ −κ
∑
j∈I+

〈d(j)
x + d(j)

s , d(j)
x + d(j)

s 〉

≥ −κ
N∑
j=1

〈d(j)
x + d(j)

s , d(j)
x + d(j)

s 〉 = −κ
N∑
j=1

∥∥d(j)
x + d(j)

s

∥∥2

F

= −κ
∥∥dx + ds

∥∥2

F
= −κ

∥∥pv∥∥2

F
= −4κδ2.(14)

This implies that

‖qv‖2F = ‖pv‖2F − 4〈dx, ds〉 ≤ 4δ2 + 16κδ2 = 4(1 + 4κ)δ2.(15)

Using (9) and (11), we obtain

x̃ = x+ ∆x =
√
µP (w)

1
2 (v + dx), s̃ = s+ ∆s =

√
µP (w)−

1
2 (v + ds).(16)

Since P (w)
1
2 and its inverse P (w)−

1
2 are automorphisms of K, then x̃ and s̃

belong to intK if and only if v + dx and v + ds belong to intK, respectively.

Lemma 2.5. Let δ(x, s;µ) < 1√
1+4κ

. Then x̃ and s̃ are strictly feasible.

Proof. Using (15) and an argument similar to that described in the proof
of lemma 4.2 [23], the result follows.

According to (9), the v-vector after the step is given by

ṽ :=
P ((w̃)−

1
2 )x̃

√
µ

[
=
P ((w̃)

1
2 )s̃

√
µ

]
,

where w̃ is the NT-scaling point of x̃ and s̃.

Lemma 2.6. (Proposition 5.9.3 in [21]) One has ṽ ∼
(
P (v + dx)

1
2 (v + ds)

) 1
2 .
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Lemma 2.7. Let δ := δ(x, s;µ). Then λmin(ṽ) ≥
√

1− (1 + 4κ)δ2.

Proof. From Lemma 2.6, Lemma 2.3 and (15) it follows that

λmin(ṽ) = λmin

(
(P (v + dx)

1
2 (v + ds)

) 1
2
)
≥
(
λmin

(
(v + dx) ◦ (v + ds)

)) 1
2

=
(
λmin

(
e− qv ◦ qv

4

)) 1
2 ≥

(
1−

∥∥qv ◦ qv
4

∥∥
F

) 1
2 ≥

(
1−
‖qv‖2F

4

) 1
2

≥
√

1− (1 + 4κ)δ2.

This completes the proof.

Lemma 2.8. Let δ := δ(x, s;µ) < 1√
1+4κ

. Then

δ(x̃, s̃;µ) ≤ (1 + 4κ)δ2

1 +
√

1− (1 + 4κ)δ2
.

Proof. Using Lemma 2.7, (15) and an argument similar to that described
in the proof of lemma 4.4 [23], the result follows.

3. Full NT-step IIPM

3.1. The perturbed problem. As usually of IIPMs, we assume that the
Cartesian P∗(κ)-SOCLCP (1) has a solution (x∗, s∗) such that

‖x∗‖∞ ≤ ρp, ‖s∗‖∞ ≤ ρd,(17)

where ρp and ρd are positive. Furthermore, we define

x0 = ρpe, s
0 = ρde, µ

0 = ρpρd,(18)

as the initial starting point. Then, the initial residual as is given r0
q = s0 −

Mx0 − q. For any ν with 0 < ν ≤ 1, we consider the perturbed problem to be

s−Mx− q = νr0
q , x, s ∈ K.(19)

Note that if ν = 1, then (x, s) = (x0, s0) yields a strictly feasible solution of
(19). We conclude that if ν = 1, then (19) satisfies the IPC. More generally,
we have the following result.

Lemma 3.1. Let the Cartesian P∗(κ)-SOCLCP be feasible and 0 < ν ≤ 1.
Then, the perturbed problem (19) satisfies the IPC.

Proof. The proof is similar to the proof of Lemma 17 in [11].
Let the Cartesian P∗(κ)-SOCLCP be feasible and 0 < ν ≤ 1. Lemma 3.1

implies that the perturbed problem (19) satisfies the IPC, for each 0 < ν ≤ 1,
and hence its central path exists. This means that the system

s−Mx− q = νr0
q , x ◦ s = µe, x, s ∈ K,(20)
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has a unique solution, for every µ > 0. It is the µ-center of the perturbed
problem (19). In the sequel, the parameters µ and ν always satisfy the relation
µ = µ0ν. The system (20), can be written as follows:

s−Mx− q = νr0
q , ψ(

x ◦ s
µ

) = ψ(e), x, s ∈ K.(21)

We assume that (x, s) is a strictly feasible solution of (19). We apply Newton’s
approach for (21). In fact, we want the new iterates x+ ∆x and s+ ∆s such
that

s+ ∆s−M(x+ ∆x)− q = νr0
q ,

ψ(x◦sµ + x◦∆s+∆x◦s+∆x◦∆s
µ ) = ψ(e),

x+ ∆x, s+ ∆s ∈ K.

Neglecting the quadratic term ∆x◦∆s and using Lemma 2.1, since s−Mx−q =
νr0
q , we obtain

∆s−M∆x = 0,

x ◦∆s+ s ◦∆x = µ
(
ψ
′
(x◦sµ )

)−1 ◦
(
ψ(e)− ψ(x◦sµ )

)
.

(22)

3.2. A new algorithm. Initially, we have δ(x0, s0;µ0) = 0. In what fol-
lows, we assume that at the start of each iteration, just before the µ-update,
δ(x, s;µ) ≤ τ . So, this is certainly true at the start of the first iteration. Now
suppose that the iterate (x, s) is strictly feasible of (19) for µ = νµ0 and such
that δ(x, s;µ) ≤ τ . We reduce µ to µ+ = (1 − θ)µ and ν to ν+ = (1 − θ)ν,
with θ ∈ (0, 1), and find displacements ∆fx and ∆fs such that

M∆fx−∆fs = θνr0
q ,

P (w)
1
2 s ◦ P (w)−

1
2 ∆fx+ P (w)−

1
2x ◦ P (w)

1
2 ∆fs =

2
((
µP (w)−

1
2x ◦ P (w)

1
2 s
) 1

2 − P (w)−
1
2x ◦ P (w)

1
2 s
)
,

(23)

where w is the NT-scaling point of x and s. It is easily seen that xf := x+∆fx
and sf := s+ ∆fs satisfy the affine equation in (19), with ν = ν+. Then, just
by performing a centering step starting at (xf , sf ) and targeting at µ+-center
of (19) with ν = ν+, we obtain iterates (x+, s+) that are strictly feasible for
(19) with ν = ν+ and δ(x+, s+;µ+) ≤ τ. We define

dfx :=
P (w)−

1
2 ∆fx

√
µ

, dfs :=
P (w)

1
2 ∆fs
√
µ

.(24)

One can easily check that the system (23), which defines the search directions

∆fx and ∆fs, can be written in terms of the scaled search directions dfx and
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dfs as follows

Mdfx − dfs = θν√
µP (w

1
2 )r0

q , d
f
x + dfs = pv,(25)

where M := P (w)
1
2MP (w)

1
2 and pv := 2(e− v). Let p̃v := dfx − dfs . Then, we

have

dfx ◦ dfs =
pv ◦ pv − p̃v ◦ p̃v

4
,(26)

which implies that

‖p̃v‖2F
4

=
‖pv‖2F

4
− 〈dfx, dfs 〉.(27)

A formal description of the algorithm is given as follows.
Infeasible interior − point algorithm
Input :

accuracy parameter ε > 0;
barraier update parameter θ, 0 < θ < 1;
threshold parameter τ > 0;
initialization parameters ρp > 0, ρd > 0.

begin
x := ρpe; s := ρde; µ

0 := ρpρd;
while max

(
µN, ν‖r0

q‖F
)
> ε

(x, s) := (x, s) + (∆fx,∆fs);
µ and ν − update :

µ := (1− θ)µ; ν := (1− θ)ν;
(x, s) := (x, s) + (∆x,∆s);

end while
end.

3.3. Analysis of the algorithm. Let xf = x + ∆fx and sf = s + ∆fs be
the iterates obtained after the feasibility step. Then, by using (24), we have

xf =
√
µP (w)

1
2 (v + dfx), sf =

√
µP (w)−

1
2 (v + dfs ).

Since P (w)
1
2 and its inverse P (w)−

1
2 are automorphisms of K, the iterates

xf and sf belong to intK if and only if v + dfx and v + dfs belong to intK,
respectively. Moreover, pv = 2(e− v) implies that

v ◦ v + v ◦ pv = e− 1

4
pv ◦ pv.(28)
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In what follows, we use the notation ω̄ := 1
2

√
‖dfx‖2F + ‖dfs‖2F . In the next

lemma we give a condition in terms of δ(v) and ω̄, which guarantees the
feasibility of xf and sf .

Lemma 3.2. The iterate (xf , sf ) is strictly feasible if δ(v)2 + 2ω̄2 < 1.

Proof. We define vx(α) := v + αdfx and vs(α) := v + αdfs , for 0 ≤ α ≤ 1.
We thus have

vx(α) ◦ vs(α) = v2 + αv ◦ (dfx + dfs ) + α2dfx ◦ dfs

= (1− α)v2 + α(v2 + v ◦ pv) + α2
(pv ◦ pv − p̃v ◦ p̃v

4

)
= (1− α)v2 + α

(
e− (1− α)

pv ◦ pv
4

− αp̃v ◦ p̃v
4

)
.

It follows that vx(α) ◦ vs(α) ∈ intK holds if∥∥(1− α)
pv ◦ pv

4
+ α

p̃v ◦ p̃v
4

∥∥
F
< 1.

Using the triangle inequality and (27) we obtain∥∥(1− α)
pv ◦ pv

4
+ α

p̃v ◦ p̃v
4

∥∥
F
≤ (1− α)

∥∥pv ◦ pv
4

∥∥
F

+ α
∥∥ p̃v ◦ p̃v

4

∥∥
F

≤ (1− α)
‖pv‖2F

4
+ α
‖p̃v‖2F

4
= δ(v)2 − α〈dfx, dfs 〉 ≤ δ(v)2 + 2ω̄2,

where the last inequality follows due to 0 < α ≤ 1 and the following inequality

−〈dfx, dfs 〉 ≤ |〈dfx, dfs 〉| ≤ ‖dfx‖F ‖dfs‖F ≤
1

2

(
‖dfx‖2F + ‖dfs‖2F

)
= 2ω̄2.

Therefore, the assumption δ(v)2 + 2ω̄2 < 1 implies that vx(α) ◦ vs(α) ∈ intK
for 0 ≤ α ≤ 1. Hence, since x, s ∈ intK, Lemma 2.2 implies that vx(1) =

v + dfx ∈ intK and vs(1) = v + dfs ∈ intK. This completes the proof.
Let

vf :=
P ((wf )−

1
2 )xf√

µ+

[
=
P ((wf )

1
2 )sf√

µ+

]
,

where wf is the NT-scaling point of xf and sf . In the sequel, we denote
δ(xf , sf ;µ+) shortly by δ(vf ).

Lemma 3.3. If δ(v)2 + 2ω̄2 < 1. Then

δ(vf ) ≤ δ(v)2 + 2ω̄2 + θ
√

2N

1− θ +
√

(1− θ)(1− δ(v)2 − 2ω̄2)
.

Proof. The proof of the lemma is similar to the proof of Lemma 12 in
[10].
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Lemma 3.4. Let δ(v) ≤ τ < 1. Then 1− τ ≤ λi(v) ≤ 1 + τ, i = 1, . . . , 2N.

Proof. From δ(v) = ‖e− v‖F ≤ τ , we obtain

(λi(v)− 1)2 ≤ ‖v − e‖2F ≤ τ2, i = 1, . . . , 2N.

This implies the desired result.

Lemma 3.5. If SOCLCP is the Cartesian P∗(κ)-property, then for any a, b̃
the linear system

−Mdfx + dfs = b̃, dfx + dfs = a,(29)

has a unique solution (dfx, d
f
s ) and the following inequality is satisfied:∥∥(dfx, d

f
s )
∥∥
F
≤
√

1 + 2κ‖a‖F +
(
1 +
√

2 + 4κ
)
η(b̃),

where

η(b̃)2 = min
{∥∥(d̃fx, d̃

f
s )
∥∥2

F
: −Md̃fx + d̃fs = b̃

}
= b̃T (MP (w)−1M

T
+P (w))−1b̃.

Proof. The proof of the lemma is similar to the proof of Lemma 3.3 in
[13], and is therefore omitted.

Comparing system (29) with the system (25) and considering a = pv and

b̃ = − θν√
µP (w

1
2 )r0

q in the system (29), we have

‖dfx‖2F + ‖dfs‖2F ≤
(√

1 + 2κ‖pv‖F +
(
1 +
√

2 + 4κ
) θν
√
µ
η
(
− P (w

1
2 )r0

q

))2

≤
(

2
√

1 + 2κτ +
(
1 +
√

2 + 4κ
) θν
√
µ
η(−P (w

1
2 )r0

q)
)2
.(30)

Let (x∗, s∗) be the optimal solution of the Cartesian P∗(κ)-SOCLCP that
satisfies (17) and the algorithm starts with (x0, s0) = (ρpe, ρde). Then,

x∗ − x0 �K ρpe, s∗ − s0 �K ρde,(31)

−P (w
1
2 )r0

q = −P (w
1
2 )(s0 −Mx0 − q)

= −P (w
1
2 )MP (w

1
2 )P (w−

1
2 )(x∗ − x0) + P (w

1
2 )(s∗ − s0)

= −MP (w−
1
2 )(x∗ − x0) + P (w

1
2 )(s∗ − s0).(32)

Now, by using the definition of η(−P (w
1
2 )r0

q), (31) and (32), we have

η(−P (w
1
2 )r0

q)
2 ≤

∥∥P (w−
1
2 )(x∗ − x0)

∥∥2

F
+
∥∥P (w

1
2 )(s∗ − s0)

∥∥2

F

≤ ρ2
ptr(w

−2) + ρ2
dtr(w

2) ≤ ρ2
p

tr(s2)

µλmin(v)2
+ ρ2

d

tr(x2)

µλmin(v)2

≤ ρ2
p

tr(s)2

µ(1− τ)2
+ ρ2

d

tr(x)2

µ(1− τ)2
.(33)
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The third inequality follows by Lemma 4.5 in [8] and the last inequality follows
by (12) and tr(z2) ≤ tr(z)2 for each z ∈ K.

Lemma 3.6. Let (x, s) be feasible for the perturbed problem (19) and let
(x0, s0) = (ρpe, ρde) and (x∗, s∗) be as defined in (17). Then,

tr(x) ≤ 2N(1 + 4κ)ρp(2 + (1 + τ)2), tr(s) ≤ 2N(1 + 4κ)ρd(2 + (1 + τ)2).

Proof. It is easily seen that

νs0 + (1− ν)s∗ − s = M(νx0 + (1− ν)x∗ − x).

From the Cartesian P∗(κ) property of M , we get

〈νx0 + (1− ν)x∗ − x, νs0 + (1− ν)s∗ − s〉

≥ −4κ
∑
j∈I+

(
〈νx0

j + (1− ν)x∗j − xj , νs0
j + (1− ν)s∗j − sj〉

)
≥ −4κ

∑
j∈I+

(
ν2〈x0

j , s
0
j 〉+ ν(1− ν)

(
〈x0
j , s
∗
j 〉+ 〈x∗j , s0

j 〉
)

+ 〈xj , sj〉
)
,

≥ −4κ
N∑
j=1

(
ν2〈x0

j , s
0
j 〉+ ν(1− ν)

(
〈x0
j , s
∗
j 〉+ 〈x∗j , s0

j 〉
)

+ 〈xj , sj〉
)
,(34)

where the second inequality follows by 〈x0, s〉+〈x, s0〉 ≥ 0, 〈x∗, s〉+〈x, s∗〉 ≥ 0
and 〈x∗, s∗〉 = 0. By rearranging the above inequality and using x0 = ρpe, s

0 =
ρde, ‖x∗‖∞ ≤ ρp, ‖s∗‖∞ ≤ ρd and 〈x, s〉 = µ〈v, v〉 ≤ 2Nµ(1 + τ)2, we obtain

〈x0, s〉+ 〈x, s0〉 ≤(1 + 4κ)
(
ν〈x0, s0〉+ (1− ν)

(
〈x0, s∗〉+ 〈x∗, s0〉

)
+

1

ν
〈x, s〉

)
≤(1 + 4κ)

(
2Nνρpρd + 4N(1− ν)ρpρd + 2Nρpρd(1 + τ)2

)
≤(1 + 4κ)2Nρpρd

(
2 + (1 + τ)2

)
.

Therefore, 〈x, s0〉 ≤ (1 + 4κ)2Nρpρd
(
2 + (1 + τ)2

)
which implies the result.

Using Lemma 3.6, (33), (30) and µ = νρpρd, we obtain

‖dfx‖2F + ‖dfs‖2F ≤
(

2
√

1 + 2κτ + 2
√

2Nθ(1 + 4κ)
(
1 +
√

2 + 4κ
)2 + (1 + τ)2

1− τ

)2
.

Therefore, by the definition of ω̄, we get

ω̄ ≤
√

1 + 2κτ +
√

2Nθ(1 + 4κ)
(
1 +
√

2 + 4κ
)2 + (1 + τ)2

1− τ
.(35)

In this stage, we choose τ = 1
16(1+4κ) and θ = 1

27N(1+4κ)2
. From (35) it follows

that ω̄ < 1
2
√

1+4κ
. Moreover, δ(v)2 + 2ω̄2 < 1

256(1+4κ)2
+ 1

2(1+4κ) < 1, which
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implies that the iterate (xf , sf ) is a strictly feasible solution of (19) with
ν = ν+. The next lemma gives an upper bound for δ(vf ).

Lemma 3.7. Let δ(v) ≤ τ . Then, δ(vf ) < 0.3363
1+4κ .

Proof. From Lemma 3.3 we have

δ(vf ) ≤ δ(v)2 + 2ω̄2 + θ
√

2N

1− θ +
√

(1− θ)(1− δ(v)2 − 2ω̄2)

≤ τ2 + 2ω̄2 + θ
√

2N

1− θ +
√

(1− θ)(1− τ2 − 2ω̄2)
.

Now, using τ = 1
16(1+4κ) , θ = 1

27N(1+4κ)2
and ω̄ < 1

2
√

1+4κ
, we get

δ(vf ) <
( 1

16(1+4κ))2 + 2( 1
2
√

1+4κ
)2 +

√
2N

27N(1+4κ)2

1− 1
27N(1+4κ)2

+
√

(1− 1
27N(1+4κ)2

)(1− ( 1
16(1+4κ))2 − 2( 1

2
√

1+4κ
)2)

≤
1

1+4κ

(
1

162
+ 1

2 +
√

2
27

)
26
27 +

√
26
27

(
1− 1

162
− 1

2

) ≤ 0.3363

1 + 4κ
.

This implies the desired result.

Lemma 3.8. Let (x+, s+) be the iterates obtained by a main iteration of the
algorithm and δ(v) ≤ τ . Then δ(v+) := δ(x+, s+;µ+) < 1

16(1+4κ) .

Proof. Since the iterate (x+, s+) is obtained by a main iteration of the
algorithm, thus x+ = xf + ∆x, s+ = sf + ∆s. Using Lemma 3.7, we have

δ(vf ) <
0.3363

1 + 4κ
<

1√
1 + 4κ

,

which applying Lemma 2.5 for (19) with ν = ν+ implies that x+ and s+ are
strictly feasible. Now, we use Lemma 2.8 for (19) with ν = ν+ and we obtain

δ(v+) ≤ (1 + 4κ)δ(vf )2

1 +
√

1− (1 + 4κ)δ(vf )2
<

1

16(1 + 4κ)
.

This completes the proof.
In each main iteration, both the duality gap and the norm of the residual

are reduced by the factor 1− θ. Hence, the total number of main iterations is
bounded above by

1

θ
log

max{(x0)T s0, ‖r0
q‖F }

ε
.

Since every main iteration consists of two inner iterations, we may state the
main result of the paper.
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Theorem 1. If (1) has an optimal solution (x∗, s∗) such that ‖x∗‖∞ ≤ ρp and
‖s∗‖∞ ≤ ρd, for some ρp, ρd > 0, then after at most

54N(1 + 4κ)2 log
max{(x0)T s0, ‖r0

q‖F }
ε

iterations, the algorithm finds an ε-optimal solution of the Cartesian P∗(κ)-
SOCLCP.

4. Conclusions

We proposed and analyzed a new full Nesterov-Todd step infeasible interior-
point method for the Cartesian P∗(κ)-SOCLCP based on the technique intro-
duced in [5]. We have shown that in each iteration the new algorithm needs
a feasibility step and one centering step in order to prove that the algorithm
is well defined. We derived the complexity bound for the algorithm which
coincides with the currently best-known iteration bound for IIPMs.
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