
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LX, Number 1, 2015

DEVELOPMENT GUIDELINES FOR OPTIMIZING THE

ENERGY CONSUMPTION OF MOBILE APPLICATIONS

DIANA C. ZOICAŞ

Abstract. The market of mobile devices and the power of mobile com-
putation has increased significantly over the last years. Although the tech-
nology has evolved a lot the main issue of mobile devices is that they are
and will remain severely limited by their battery life. The need to preserve
this critical resource has driven mobile devices operating systems to take
into consideration the power management and has driven the developers
of mobile applications to optimize the energy consumption of the appli-
cations.The two main fields of research in this area are finding solutions
to estimate the energy consumption of an application and finding ways
to determine applications and bugs that lead to energy consumption and
unexpected battery drain.

In this paper we show how we use development guidelines for mobile
applications in order to determine the pieces of code that could generate a
bug and could lead to an abnormal battery drain. We analyze the impact
generated by the wrong usage or the lack of usage of certain development
guidelines on the energy consumption. We show how the development
guidelines and the best practices can be used to ensure that a mobile
application is more efficient, has a better performance and consumes less
energy.

1. Introduction

The market of mobile devices has increased significantly over the last years.
More and more people buy mobile devices due to their usefulness and their
portability. The growth of the market has also lead to an explosion of the
power of mobile computation. Despite of the increased power of mobile com-
putation the main issue of mobile devices is that they are and will remain
limited by their battery life. The increased battery drain which is also called

Received by the editors: May 1, 2014.
2010 Mathematics Subject Classification. 68N30, 68N19.
1998 CR Categories and Descriptors. D.2.4 [Software]: Software Engineering – Soft-

ware/Program Verification; D.2.10 [Software]: Software Engineering - Design.
Key words and phrases. mobile application, energy, energy optimization.

79



80 DIANA C. ZOICAŞ

energy anomaly frustrates users, creates poor press for vendors and can make
mobile devices unusable [8].

The construction of the batteries of the mobile devices was done mainly
taking into consideration the physical size of the battery in order for the
devices to be as small and light as possible and the battery capacity was not
that important. The construction of the batteries has evolved a lot from the
NiCD(Nickel Cadmium) bateries that were used in the 80’s and 90’s and were
very heavy and big to the NiMH(Nickel Metal Hybride) batteries that were
used in the late 90’s, the Lithium Ion batteries that are still used today and
to the new Li-Poly(Lithium Poly Ion) batteries which are not yet widely used
but are lighter and more energy efficient than the other ones used before.
The evolution of the techonlogies used for constructing the batteries is not
enough for the battery life to be better so the improvement of the battery life
is intended to be done in two different ways: software and processor to be
less power-hungry and the devices to be constructed in order to provide the
essentials and no more than that. Intel is trying to come back in the mobile
world with a power-saving technology that will be constructed on a platform
that is already available for the light laptops.

The need to preserve energy has driven mobile devices operating systems
concentrate a lot at the power management. The two main fields of research in
this area are the implementation of tools and techniques to estimate the energy
consumption of different applications and the implementation of tools and
techniques to discover applications and bugs that lead to energy consumption
and unexpected battery drain. A research field that is still under development
is the implementation of tools that would identify the code that could be
improved regarding energy consumption and provide solutions for optimizing
the code.

As a first step in the process of developing such a tool in this paper we are
identifying the development guidelines that need to be followed in order for
the mobile applications to do not generate energy bugs. The energy bugs are
defined as being an error in the system, either application, operating system,
hardware, firmware or external that causes an unexpected amount of high en-
ergy consumption by the system as a whole [1]. We are analyzing some of
the development guidelines that can optimize the energy consumption of a
mobile application. We are focusing on four types of guides: general devel-
opment guidelines, data manipulation guidelines, performance guidelines and
background jobs guidelines. We are identifying the reason for which these
guidelines can improve the energy consumption.



OPTIMIZING THE ENERGY CONSUMPTION OF MOBILE APPLICATIONS 81

2. Background

It happens sometimes that the battery of a mobile device drains very fast.
This drain is caused by energy leaks which can have two causes: hardware
bugs or software bugs.

The hardware bugs can be caused by any defect of a hardware part of
the mobile device. Hardware bugs are bugs that are not related to the imple-
mentation and are caused by some hardware components. The first hardware
bug is related to a faulty battery. This bug is mainly solved by replacing
the battery. Another hardware energy bug is related to the exterior hardware
damage. The SIM card can also cause battery drain in multiple ways. An
external SDCard can also trigger severe battery drain. Another generator of
energy bugs is also an external hardware (phone chargers, external docks used
for recharging or for audio capabilities)

The software bugs can be generated by the operating system that is in-
stalled on the mobile device, by a certain application or by a programming
mistake.The first category of software bugs are the operating system (Android,
iOS, Windows Mobile) bugs that are generated by an update that was done
by the user or by an automatically done update. In most of the cases the so-
lution for this type of bugs is to do a downgrade of the operating system. The
second category of software bugs are the application and framework energy
bugs and the most known bugs of this type are the No-Sleep Bugs [6]. The
application and framework bugs are the bugs that are generated by the imple-
mentation of an application or are generated by the framework that is used
when developing a mobile application. The root cause of these bugs can be
anything from a simple implementation error to complicated reasons like race
condition that prevent the lock release. Another known energy bug is the loop
bug. In this case a part of an application enters a looping state and performs
periodically unnecessary tasks. The third sub-category is the immortality bug.
The behavior of the application is the following: it is killed and it restarts.
The third category of energy bug are the energy bugs triggered by External
Conditions [1]. One of the external conditions that influence the battery drain
is the Wireless Signal Strength [1], Wireless Handovers [1]. Besides the above
energy bugs there are also unknown bugs that were reported but for which
the root cause is unknown. There are a few tools that help the user to narrow
down to suspicious application that generates the energy bugs.

There are some software bugs that are widely known for different operating
system of the mobile devices. For Android there are two main types of energy
bugs: no-sleep bugs and loop bugs. A no sleep bug occurs when the CPU
is waken up by an application but it is never put back to sleep therefore
excesively consuming the energy without providing any functionality [5]. The



82 DIANA C. ZOICAŞ

loop bugs are ocurring when a thread is waiting for a certain event in order
to continue and a variable is used when testing the condition. The thread will
continuously poll the variable until it is changed and therefore it consumes
CPU without doing any work for the user [5]. The power models of Android
and Windows are similar so also the energy bugs from Windows are similar to
the ones from Android. In the iOS system an application can be only in one
of the four states that are definded and the handling of the states is fully done
by the developers [7] so the energy bugs can be caused by the prolonging of
the transition between two states and can be caused only by the developer.

There are more types of No-Sleep Bug and three of these types are No-
Sleep Code Paths, No-Sleep Race Condition and No-sleep dilation [2].

Figure 1. No-Sleep
bugs: code paths

No-Sleep Code Path (Figure
1): The root cause of most of the
bugs is the existence of a code path in
the application that wakes up a com-
ponent but does not put the com-
ponent back to sleep. The first
cause is that the programmer for-
got to do the release through the
code or he has put it on a con-
ditional path but not on all the
paths. Another cause is that the
programmer did put the release code but the code took an unantic-
ipated code path during execution and the release was not executed.

Figure 2. No-Sleep
bugs: race condition

No-Sleep Race Condition:
These bugs were caused by race
conditions in multi-threaded appli-
cations. The power management of
a particular component was carried
out by different threads in the appli-
cation (one thread switches the com-
ponent on and later another thread
should switch it off) and the sequence
of execution was a different one that
expected.

No-Sleep Dilation: the compo-
nent woken up by the application is
ultimately put to sleep by the appli-
cation but only after a substantially
longer period of time than expected
or necessary.



OPTIMIZING THE ENERGY CONSUMPTION OF MOBILE APPLICATIONS 83

In order to develop an application that is energy efficient it is not enough
to have an application that does not generate energy bugs. We have to pay
attention to the implementation that could be enhanced from the energy point
of view. From the previous papers we have seen that most of the research was
concentrated on implementing tools that analyze the code for energy leaks
and that find energy bugs but none of these tools offer also guidelines for the
developer on how to fix the issues that were discovered.

3. Main contribution

Most of the papers related to optimization of the mobile application in
order to reduce the energy consumptions are describing techniques and tools
that help the developers to determine the source code that generates energy
leaks. These tools (ADEL, Carat, eDoctor) help developers to discover the
root cause of the error but they do not offer guidelines on how the develop-
ers should improve the code. Nowadays the developers can find solutions for
optimizing the energy consumption by searching on the web for an optimal
solution, by consulting the specialized forums or by using the previous ex-
perience of the developer. From our point of view it is more important to
implement the mobile application in such a manner that the energy leaks are
reduced to minimum. It is cheaper to write correct and efficient code from
the implementation phase than to re-write the code for optimizing it to re-
duce the energy consumption. This is the reason for which we consider that
it is important to determine development guidelines that can be used by the
developers in order to write correct and efficient mobile applications.Taking
this in consideration, a research field that is still under development is the
implementation of tools that would identify the code that could be improved
regarding energy consumption and provide solutions for optimizing the code.

As a first step in the process of developing such a tool in this paper we
identify the development guidelines that need to be followed in order for the
mobile applications to do not generate energy bugs. We are analyzing some
of the development guidelines that can optimize the energy consumption of
a mobile application. We first try to identify from development guidelines
provided by the different mobile devices operating systems vendors the fields
that could be improved in order for the energy consumption to be reduced to a
minimum. Due to the fact that the Android operating system is the most used
one and the API system is presented more clear, we have tried to focus our
research in this area but keeping also in mind the other operating systems for
mobile devices. The identifcation of the development guidelines to be used for
optimizing the energy consuption we have only taken into consideration the
API that is exposed by the operating systems.We have identified different types



84 DIANA C. ZOICAŞ

of development guidelines that can influence the energy consumption of mobile
applications: general development guidelines, data manipulation guidelines,
performance guidelines and background jobs guidelines. In the future papers
we wil start the implementation of the tool with the automatic identification of
the development guideline that we discovered in this paper. This identification
will be done for each of the discovered development guidelines.

General development guidelines. The first guidelines that should be taken
into consideration when developing a mobile application are the ones for avoid-
ing the coding errors. First of all it is important that the code of the appli-
cation does not produce energy bugs. For each of the No-Sleep bugs there is
a guideline to be used in order to avoid the respective bug. As mentioned in
the above sections, the most important energy bugs are the No-Sleep bugs.

The root cause of the No-Sleep Code Path energy bug, as it can be seen
in Figure 1, is that the resources that are being used are not released on all
the paths so the CPU cannot go back to sleep and it continues to consume
energy. This bug can be avoided by verifying that the code for releasing the
resources that are being used is present in all of the paths of the method that
acquires the respective resource. In the case of Figure 1 the solution would be
to add the code for releasing the resources in the finally block.

The No-Sleep Race Condition energy bug can be present in all the multi-
thread mobile applications. As it can be seen in Figure 2 , the problem occurs
when the handling of the power management for a certain component is done
in different threads. In a normal execution path of the threads the component
would be acquired and released as expected but in some exceptional cases
the path could be different and the resource will not be released. In the case
of No- Sleep Race Condition the developer should pay special attention to
the execution path for the threads [6] and make sure that the components
that were acquired are released no mather the order in which the threads get
executed.

Data manipulation guidelines. One of the important aspects regarding
the functionality and energy consumption is related to data manipulation.
The energy consumed by operations for data manipulation depends on the
number of calls that are done for sending/saving data and on the size of the
data that is being manipulated. In paper [3] it was determined that it is
more efficient sending larger files than sending smaller files. Due to these
findings, a guideline that would optimize the energy consumption would be
to gather smaller data files into one bigger file and send once as much data
as possible. This guideline could also be applied to the HTTP requests. It
is recommended to bundle multiple small requests into one bigger request in
order for the request to be more energy efficient. For verifying that more data



OPTIMIZING THE ENERGY CONSUMPTION OF MOBILE APPLICATIONS 85

is sent at once and not in smaller chuncks we could check that all the calls for
saving the data are gathered in only one call.

Performance guidelines. The performance of an application is directly pro-
portional to the energy consumed by the respective application. If the appli-
cation runs faster it means that the resources are released earlier and the CPU
can enter the sleep state earlier. The code that has a better performance is
consuming in some of the cases more resources than a code which has not
such a good performance. Despite of this fact it was measured that the energy
consumption of a code with a better performance consumes less energy [3].
There are a lot of development guidelines for improving the performance of
an application. The first and most important guideline is to do not create un-
necessary objects. Each of the instantiated objects needs a garbage collection
that consumes energy when it runs so we should check in our tool that if an
object is declared, it is also used in the methods in which it was declared. We
should also check the global variables to be used in the code of the applica-
tion. Another important development guideline, at least on the Android OS,
is to rather use the fields of a class directly than by calling the getters and
the setters [4]. In Android it is much more expensive to call the getters and
setters than the fields directly. When testing both the setters and getters and
the direct access methods it results that the energy consumption decreases by
30% when accessing directly the fields and not via the getters and setters. We
will check in our tool that, when using a certain variable we are accessing it
directly and not via the getters and setters.

Background jobs guidelines. One of the energy consuming tasks within
an application are the background jobs and the optimization for these jobs is
really important. For optimizing the energy consumption of the background
jobs the most important development guideline that should be followed is to
group more background jobs in order to run at the same time. In this way
the resources are acquired at the same time and are released at the same
time and allow the CPU to be in a sleep state for a longer period. Another
development guideline that should be taken in consideration when implement-
ing background jobs is that data for the background jobs should be acquired
though an asynchronous call. In this manner the application will not wait for
a response and it will let at least the screen in a sleep mode.

4. Conclusions and Further Work

The users of the mobile devices tend to reject the applications that are
generating energy leaks in order to benefit as much as possible of the usability
of their mobile devices. Due to this new requirement the investment in finding



86 DIANA C. ZOICAŞ

solutions for optimizing the energy consumption became a very important
research topic. Most of the research that is done for the optimizing the energy
consumption is oriented towards techniques that try to identify where the
energy is lost and which is the amount of the energy that is lost.

From our point of view the research should be oriented towards identifying
the development guidelines and best practices that can lead to the develop-
ment of energy-efficient applications. In this paper we have identified some of
the development guidelines that help mobile application developers to write
applications that do not produce energy bug. We have also identified some
development guidelines that help mobile application developers to implement
applications that will be more energy-efficient. For future work we will in-
vestigate more development guidelines that could lead to an improvement of
energy consumption of mobile application. We will also focus more on the de-
velopment guidelines for Blackberry OS, iOS or Windows Phone OS. We also
would like to implement a tool to check that the implementation of a mobile
application complies to the development guidelines that should be used for
the energy consumption optimization. We would also like for this tool to offer
solutions for improving the pieces of code that are not energy-efficient.

References

[1] Abhinav Pathak, Y. Charlie Hu, Ming Zhang, Bootstrapping Energy Debugging on
Smartphones: A First Look at Energy Bugs in Mobile Devices, Proceedings of the
10th ACM Workshop on Hot Topics in Networks, New York, USA, 2011, Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.232.9209

[2] Abhinav Pathak, Abhilash Jindal, Y. Charlie Hu and Samuel P. Midkiff, What
is keeping my phone awake? Characterizing and Detecting No-Sleep Energy Bugs
in Smartphone Apps, Proceedings of the 10th USENIX Symposium on Networked
Systems Design and Implementation, Lombard, IL, USA, April 2013, Available:
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final198.pdf

[3] Ding Li, William G. J. Halfond, An investigation into Energy-Saving Programming Prac-
tices for Android Smartphone App Development, Proceedings of the 3rd International
Workshop on Green and Sustainable Software (GREENS), Hyderabad, India June 2014,
Available: http://www-bcf.usc.edu/ halfond/papers/li14greens.pdf

[4] Ding Li, William G. J. Halfond, An Investigation into Energy-Saving Programming
Practices for Android Smartphone App Development, Proceedings of the 3rd Interna-
tional Workshop on Green and Sustainable Software (GREENS), Los Angeles, USA
June 2014, Available: http://www-bcf.usc.edu/ halfond/papers/li14greens.pdf

[5] Jack Zhang, Ayemi Musa, Wei Le, A Comparison of Energy Bugs for Smartphone
Platforms, 1st International Workshop on the Engineering of Mobile-Enabled Systems,
San Francisco, USA 2013, Available: http://www.cs.iastate.edu/ weile/docs/le-mobs13-
1.pdf

[6] Panagiotis Vekris, Ranjit Jhala, Sorin Lerner and Yuvraj Agarwal, Towards Verifying
Android Apps for the Absence of No-Sleep Energy Bugs, Proceedings of 2012 Workshop



OPTIMIZING THE ENERGY CONSUMPTION OF MOBILE APPLICATIONS 87

on Power-Aware Computing and systemsHotPower 2012, Hollywood, CA, Available:
http://dl.acm.org/citation.cfm?id=2387872

[7] Shuai Hao, Ding Li, William G. J. Halfond, Ramesh Govinda, Es-
timating Mobile Application Energy Consumption using Program Anal-
ysis, Proceedings of the 2013 International Conference on Soft-
ware Engineering, Pages 92-101, Piscataway, NJ, 2013, Available:
http://www.cs.binghamton.edu/ millerti/cs680r/papers/EstimatingMobileApplication
Energy.pdf

[8] Xiao Ma, Peng Huang, Xinxin Jin, Pei Wang, Soyeon Park, Dongcai Shen, Yuanyuan
Zhou, Lawrence K. Saul and Geoffrey M. Voelker, eDoctor: Automatically Diagnosing
Abnormal Battery Drain Issues on Smartphone, Proceedings of the 10th ACM/USENIX
Symposium on Networked Systems Design and Implementation, Lombard, IL, April
2013, Available: http://cseweb.ucsd.edu/ voelker/pubs/edoctor-nsdi13.pdf

Department of Computer Science, Babeş-Bolyai University, 1 M. Kogălniceanu
St., 400084 Cluj-Napoca, Romania

E-mail address: diana.zoicas@cs.ubbcluj.ro


