
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LX, Number 1, 2015

USING CONCERN SPACES TO MEASURE REQUIREMENTS

SIMILARITIES

CĂLIN EUGEN NICOLAE GAL-CHIŞ

Abstract. The software artefacts are crucial during the development cy-
cle of a software product and tracing them is important to the development
process. The model used, the requirements document, and the code, are
artefacts that can be updated or reused in different projects. Different
types of notations are used to add traceability to artefacts, providing ver-
satility in searching, indexing, updating, or retrieving them.

MultiCoS is an approach based on separation of concerns (SoC) in mul-
tiple spaces. The concern spaces are defined by grouping concerns by
common interest. The relationships between concerns and different types
of entities empowers the concern to provide a degree of meaning to an
entity. Defining and using concerns to properly describe software artefacts
can add semantic to documents such as the specifications document, re-
quirements document, project documents, and to other artefacts such as
code files or modules. Given this, the concerns and their relationships can
provide traceability to higher level entity spaces, such as the application
model, the views, and the design documents of a software application.

The MultiCoS metamodel is presented here in a case study, reusing web
applications artefacts in the software development cycle. In addition to
other tracing methodologies, MultiCoS can add semantic value to artefacts
and can strengthen the relationships to concerns or between artefacts by
taking into account similarity coefficients.

In contrast to other methodologies, MultiCoS supports complex trac-
ing systems by creating multiple relationships of different degrees between
entities, based on the value of a concern, a subunitary value that measures
the impact of a concern to an entity.

1. Introduction

Aspect Oriented Software Development (AOSD) [10] methodologies and
Separation of Concerns (SoC) [15] approaches in software development are

Received by the editors: May 1, 2014.
2010 Mathematics Subject Classification. 68N30.
1998 CR Categories and Descriptors. D.2.1 [Software Engineering]: Require-

ments/Specifications – Methodologies; D.2.13 [Software Engineering]: Reusable Software
– Domain engineering .

Key words and phrases. Concern Spaces, Requirements Engineering, similarities metric.
35

36 CĂLIN EUGEN NICOLAE GAL-CHIŞ

supporting and controlling the development process, in a way that provides
a better understanding of the relations between concerned entities. Such a
need is mentioned early in software development [3]. Leaded by the relations
between concerned entities, the programmers can understand the impact of
their work in the final product, and the stakeholders can trace easier how
product specifications and requirements were implemented into the software
product. MultiCoS separation of concerns approach offers a solution on coping
with complexity and with cross-cutting concerns, also being able to provide
support for code reusability and reverse engineering.

In terms of requirements specification, in the initial stages of the software
development, every approaches is providing and using their own proprietary
methods of describing the relations and dependencies between requirements.
In addition to providing a method for managing requirements that is suitable
to be used with any approach, MultiCoS can add a list of attributes to the
requirements. These attributes are providing meaning to the requirements in
the context of the software development process. Later in the development
process, these atributes can also be used to describe artefacts such as the
project documents, the code and other entities interacting with the software
product. In fact, these attributes are the concerns, and these concerns are
grouped into concern spaces by their matter of interest.

Some concern spaces will address generic attributes, while others will be
specific. A set of default Concern Spaces can be used to properly describe the
basics related to the software developement process. Other standard libraries
of concern spaces are meant to describe different aspects of the software prod-
uct and of the parties involved in the software development process. Custom,
new concerns can be created and used as needed to fully describe the desired
attributes, and concern spaces can be set to encapsulate these new concerns.

In this paper we will show that, while there are certain modelling ap-
proaches using concerns to describe specific entities and relations in the soft-
ware development process, the MultiCoS approach uses a general-purpose con-
cern modelling capability to support the software development process in var-
ious aspects and also provides a proper environment for code reusability or
software reengineering.

In Section 2 will be presented the existing methodologies based on different
approaches using separation of concerns. In Section 3 the MultiCoS approach
will be presented, with the primitives used here regarding Concern Spaces,
a mapping function used to relate different artefacts and entities to Concern
Spaces. This paper’s main contribution: a metric and a process that will
be used over the mappings to determine artefacts similarities, will also be
introduced in Section 3. In Section 4, a Study Case will be conducted. In the
end, there will be presented the directions for further work and the conclusions.

USING CONCERN SPACES TO MEASURE REQUIREMENTS SIMILARITIES 37

2. Related Work

The main venues related to this research paper are the methodologies based
on SoC and AOSD. They have introduced the core principles of the concerns
and have also presented the goal of using them into the development process.

The need of formalizing the concern spaces is observed in [9]. In the
same paper, the relation between concern spaces and units is expressed using
graphs, and, for this purpose, a tool is provided to visualize the graphs. To use
all the concerns in spaces, even when some concerns do not apply to certain
units, the author is proposing to map the units using a default null. Also, the
author debates if the relation between concerns and units, should be with no
restrictions, should be an injective relation or a surjective relation (for each,
the units space is the function domain).

SoC is used in terms of organizational concepts, instead of programming
concepts in [1]. Using this approach, the authors are focusing on closing
the semantic gap between a software system and their operational environ-
ment. Tropos, the methodology they use in software development, is based on
modelling early requirements using concepts. Tropos comes with five concern
spaces classes: actors, resources, hard goals, soft goals and tasks.

The software concerns are modeled in Cosmos [16]. The primitives of
this approach are concerns, relationships and predicates. There are two large
concern categories in Cosmos: Logical and Physical. The logical ones are
used to describe concepts related to a system or artefact (examples, issues,
features, properties), while the physical ones are pointing to entities of the
system or to software artefacts that can be related to logical concerns. There
are five logical concern categories: clasifications, classes, instances, properties
and topics used to express concerns like functionality, behaviour, performance,
robustness, state, coupling, configurability, usability, size, and cost. The ”real
world” entities of a system: hardware, software, subsystems, services are part
of the Physical Concerns. They are divided in three categories in Cosmos: in-
stances, collections (as collections of instances or collections of subcollections)
and attributes (attributes of instances or collections).

The ModelSoC approach [8] applies SoC to all artefacts, referring initially
to documents, models and code. They use their own hyperspace model for
a multi-dimensional SoC in order to trace data reused in other models. The
Reuseware framework has been provided as a tool to relate the information
available during the development process to a concern space and generate
different views and a final version of the system. The multiple dimensions are
applied here to artefacts, and not to concerns.

In another approach [14], hyperspaces are used to create a SoC on multi-
ple levels. The units are separated on means of different facets of a concern,

38 CĂLIN EUGEN NICOLAE GAL-CHIŞ

providing support to an efficient remodularization processes. As envisioned in
this approach, concerns are flexible, being capable of interactions and over-
lappings. Still, not all entities can be related to hyperspaces, limiting the
approach to just some entities.

Another paradigm [17], emphasizes the role of the software artefacts and
supports the modelling and implementation process of the artefacts. The
approach separates cross-cutting concerns in multiple dimensions by using
operations of composition and decomposition. The approach is extended in
[6] and is part in all stages of software development, providing support for
flexible and traceable artefacts.

Requirements are modeled by using SoC in [2]. The application model
is transformed, being divided into chunks. When the transformation of the
model is completed, the SoC is used to model and transform requirements in
an iterative, complete manner and link them to the application.

The Multi Dimensional SoC approach [12] is used in dealing with require-
ments. The traditional approach of representing requirements using view-
points, use-cases is dropped in favor to a conceptualized approach that treats
equally functional and non-functional requirements. The requirements space is
viewed from two logical perspectives, the system space and the meta-concern
space. The System Space consists of all existing requirements, so when dis-
cussing an application, the application requirements are already included in
the System Space. The concerns in the concern space are typical sets of con-
cerns that can be found in various systems. The relation used to map concerns
from the Concern Space to requirements of the System Space in an injective
function.

The ARCaDE (Aspectual Requirements Composition and Decision Sup-
port) approach [11] treats PREView concerns as aspects and separates them
when dealing with the requirements. The approach supports concern and
candidate aspects identification and specification. Also, candidate aspects are
composed with the cross-cutting viewpoints.

The Aspect-Oriented Software Development with Use Cases approach [7]
handles cross-cutting concerns using Use Cases as overlays on top of classes.
The technique proposed manages the cross-cutting concerns individually and
composes them to obtain the solution system. The approach is influenced by
AspectJ and HyperJ vocabulary.

3. MultiCoS Approach

The MultiCoS concept was introduced in [4] and was extended with the
approach and the primitives in [5]. MultiCoS is based on the approach pre-
sented in [12]. Compared to other methodologies based on aspect oriented or

USING CONCERN SPACES TO MEASURE REQUIREMENTS SIMILARITIES 39

based on SoC, the current approach offers versatility, applying concerns on
any type of entities, logical or physical, to humans and technology involved
in the project, to artefacts including, but not limited to project documents,
requirements and code. In the following, we will present the primitives of
the approach and the mappings that can be established using the primitives.
Then, the main contribution of this paper will be presented: a metric to cal-
culate the similarity of different entities. The similarity will be established
by similarity indices, which are calculated using mappings performed to the
entities over some common Concern Spaces.

The benefits of the proposed approach over the similar existing ones is
that this approach, as will be proved next, can be used with any concern
related approach, providing a general-purpose concern modelling capability,
that brings the possibility to compare approches, using the primitives of the
MultiCoS. Being a generic approach, MultiCoS can be applied to a wide range
of situations, not related only with software development.

Primitives. The primitives used are: concern, concern space, entity, en-
tities space, concern value, multispace.

• The Concern Space is a group of concerns with cohesion, reffering to/
describing similar properties of certain type of entities. The Concern
Space sets a range of values to their concerns [0, max value]. The
concern space has to include at least one concern (dimension).
• The Concern is one of the dimensions in a concern space. A concern

has the goal to describe the attributes of an entity by assigning a corre-
sponding value from the range to the relation. The relation expresses
how much the entity is concerned of a descriptor of its attributes,
quantifying the importance of the concern to the entity.
• The Entity is an object that can be described using a mapping to differ-

ent concerns in one or more concern spaces. Examples of entities are:
requirements, artefacts, users, software modules, technologies, client
specifications, even other abstract objects like concern spaces.
• The Entities Space is a collection of entities with cohesion, such as the

requirements space, viewpoints space, developers space. Sometimes is
referred as System Space.
• The Concern Value describes the strength of the relation between a

concern and an entity. The value reflects the weight of a concern to the
entitiy, compared to the other dimensions of the same concern space.

Mappings For every entity, there is a vector from each Concern Space
that is associated with the entity, expressing the relation of the entity to the
Concern Space. This association can be expressed as a function with the

40 CĂLIN EUGEN NICOLAE GAL-CHIŞ

entity and the concern space as the arguments, and with the associated vector
of concerns as a result. Let e be an entity in the system space E, S a concern
space with n dimensions and f a mapping function that describes the relation
between the entity e and the dimensions in the concern space S. Given this,
we can write that:

(1) f(e, S) = v,

where e ∈ E, v ∈ Rn , and v is the vector with the position coordinates of the
entity e in the concern space S.

The concern space S is described using the following format:
S = (id, name, description, list of concern dimensions,max value)
The id is a unique identification label, name is the unique name of the

concern space, the list of concern dimensions is the list of the n concerns of
the space. An entity can be assigned a value for a dimension in the space in
the range [0, max value]. max value is the maximum value an entity can get
for any dimension in the space, and is a positive, non-zero value.

In [5] was demonstrated that the MultiCoS approach can be used to rep-
resent the concern-entity relation in other methodologies based on separation
of concerns. The unitary notation provided can replace the primitives used in
other investigated methodologies, which makes easier to compare the method-
ologies. Also meaning is added to the process represented and can be related
to a wide range of meta systems.

ModelSoC approach [8] is extended from the hyperspace model intro-
duced in [14]. The approach is applied on Model-Driven Software Develop-
ment (MDSD), where the models of the system are the artefacts presented in
different formats (views). During the process, the model is composed using
DSMLs (Domain-Specific Modelling Languages) and delivered to five different
viewpoints (such as diagrams, documents, code) by 12 different composition
systems (controllers). These composition systems are: (usecase, participation,
exchange, flow, trigger, factory, class, dataclass, associate, typebind, app, se-
curity [8]. The relation between viewpoints and composition systems, can be
expressed in MultiCoS terms, using the compositioon systems as concerns and
the viewpoints as entities.

S0 = (0, Composition Systems, Composition Systems of concerns, (use-
case, participation, exchange, flow, trigger, factory, class, dataclass, associate,
typebind, app, security), 1)

The mapping function f using entities from the ViewPoint System Space
as the first argument and the Concern Space S0 as the second will give us the
following coordinates for the entities in the S0 concern space:

f(OpenOffice, S0) = (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
f(UML use case, S0) = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

USING CONCERN SPACES TO MEASURE REQUIREMENTS SIMILARITIES 41

f(V alue F low, S0) = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)
f(UML class, S0) = (0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0)
f(Java, S0) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
We can notice that for each entity above, in the mapping vector there is

more than one non-zero value, meaning that the concerns with non-zero values
impact the entity on a certain degree. Concerns which impact different entities
are potentially cross-cutting concerns in relation with the entities.

Metrics We can consider that entities are similar, if the f function gives
close vectors for entities in concern spaces. A metric will be used to measure
the similarity of two entities.

Let there be two entities a, b in the entity space E, a, b ∈ E, and a concern
space S1, with n dimensions. In first place we will measure the similarity of
the two entites, a and b, regarding the value of the f function for the two
entities in the concern space S1.

For each dimension i in the concern space S1, we will calculate dsi, the
dimension similarity coefficient, based on three values, two values are ai and
bi, the entities’ corresponding values in dimension di and the max value set
for the concern space S1.

(2) dsi = 1− |ai − bi|
max value

Given that, for two null values, ai = bi = 0, we get di = 1, meaning maximum
similarity, we will exclude such dimension similarity coefficients from further
calculations, taking into consideration that the lack of a particular property
for two entities can not lead to a strong similarity. Let us consider to have
p1 dimension similarity coefficients for which ai, bi are not both null values,
p1 6 n1. These p1 dimension similarity coefficients will be considered valid.

The space similarity coefficient ss, of two entities a, b over a concern
space S1 is the average of the p1 valid similarity coefficients out of the n1

dimensions in the concern space S1.

(3) ss1 =

p1∑
e=1

dse

p1

The multispace similarity coefficient, ms, of two entities a, b over a set of
k concern spaces S1, ..., Sk is the average of the space similarity coefficients
of all k spaces in the concern spaces selection with respect to the number of

42 CĂLIN EUGEN NICOLAE GAL-CHIŞ

dimensions.

(4) ms =

k∑
j=1

ssj

k

All these coefficients: dimension similarity (2), space similarity (3), multi-
space similarity (4), are taking subunitary values in the range of [0,1], where
0(zero) represents the weakest similarity for two entities (no similarities), while
1 represents the strongest similarity (identical entity concerns).

To conclude this section, the main advantage of the MultiCoS approach is
tracing entities with similar concerns, and the ability to search entities that
are matching specific concern profiles in a certain measureable level.

4. Case study MultiCoS

A Case Study using the MultiCoS approach was conducted. The scenario
is that a web application had to be developed. Beside the regular resources
provided in order to develop the product, a web application already developed
is available with all its artefacts marked up using the MultiCoS approach.
This means the existing web application has at least three system spaces (Re-
quirements Space, Documents Space, Code Space) connected to each other
by conceptual bindings, based on their relations to the Concern Spaces in the
application. The goal is to reuse documents and code from the existing web
application to support the development of the new one.

Being established this, we will consider two different web applications, Ap-
plication A, already developed, called Read-eng, an ecommerce web-application
selling books, and, Application B, required to be developed, Target-Ear, a
multimedia web-application for listening music online.

In the Application A, Read-eng, the user can search and view books in
store, he can add/remove books in the shopping cart, and he can start the
process of buying the books if he is logged in. In the Application B, Target-
Ear, the user can search and listen to individual song, he can add/remove song
in a playlist, and he can play the playlist only if he is logged in.

The applications are quite different, from services provided, to the po-
tential customers. Still, there are certain functionalities we can relate in the
two applications. So, users in both applications can search for content, can
open/view an item (book/song), can manage a list of items, and they both
can use the items in the list for the intended purpose in case they are logged.

In the following, the functionalities of the two applications are written
as requirements. The requirements in each application will form a separate
Requirements Spaces. Using their value of the f function in the concern
spaces, we will relate the requirements in the two applications, establishing

USING CONCERN SPACES TO MEASURE REQUIREMENTS SIMILARITIES 43

conceptual bindings between certain requirements. When such relations are
being established, using a similar process, relations can be created between
the entities from the Document Space and from the Code Space in the two
applications. The way the requirements are set in the Table 1 gives the reader
the impression that requirements are similar. We will check if requirements
are similar using MultiCoS aproach.

Table 1. The Requirements Spaces of the applications A and B

Aplication A Requirements Space Application B Req. Sp.
id Requirement id Requirement
RA1 Search book RB1 Search song
RA2 View book RB2 Listen song
RA3 Add book to shopping cart RB3 Add song to playlist
RA4 Remove book from shopping cart RB4 Remove song from playlist
RA5 Login RB5 Login
RA6 Logout RB6 Logout
RA7 Create account RB7 Create account

RA8
Logged user can buy items

in shopping cart
RB8

Logged user can listen
songs in playlist

Some concern spaces considered for this case study are meant to describe
standard properties of different entity types in any type of software systems,
others are specific to web applications.

In the last column of Table 2 we notice that Concern Spaces can be in-
cluded in multispaces collections based on the type of entities they can con-
cern. Concern Spaces 1, 2, 3, 4, 9, 10, 11 can be applied on entities of r type
(r = requirements), Concern Spaces 1, 2, 4, 5, 7, 8, 10 can be applied on
entities of c type (c = code).

Knowing this, two requirements, or two snippets of code can be searched
for being similar. Considering requirement RA8 from application A and re-
quirement RB8 from application B, we will establish the value of f function
for each one of them in the concern spaces and we will calculate the space
similarity coefficient for each space and the multispace similarity coefficient.

As we can see, in Table 3, the multispace similarity coefficient for RA8 and
RB8 is not very high, just 0.627. This happens due to low space similarity
coefficients on concern spaces S9, S10, S11, S4, as the two requirements do
concern different activities (buy vs. play), they are involved differently in
the MVC context, they are linked differently to the NFR, and they involve
different actions to the DB. Still, given the high values of ss1 and ss2, some
artefacts used in the process are similar and can be reused.

A different kind of situation occurs considering the code that implements
RA3 and RB3.

44 CĂLIN EUGEN NICOLAE GAL-CHIŞ

Table 2. Samples of Concern Spaces used in MultiCoS

id Concern Space:m* Concern Dimensions for
S1 Type of user:1 Admin, superuser,user, guest r,c**
S2 Info Source:1 Database, user, hostmachine, application r,c

S3 Prioritization:10
Value to Customer, Value to Business,

Implementation Cost, Ease of
Implementation, Time to Implement

r

S4 DB Action type:1 Create, Read, Update, Delete, Static r,c
S5 Navigation type:1 Get, Post, Header, Hyperlink, State c

S6 App type:10
Integrated system, Eshop, Multimedia,

Ubiquitos, Social
t,h

S7 Serv. side lang.:1 Python, Php, ASP, Ruby, Perl, .NET, C# c

S8 Data format:1
DB, text, XML, UML, HTML, CSV,

richtext, DOM, xls
c,t,a

S9 Activity details:1
add to list, remove from list, view details,

buys, plays, logs
r,c,u

S10 MVC:10 Model, View, Controller r,c,t
S11 NFR:10 sleekdesign, loadspeed, volatility, security r,t
*m=max value
**r=requirements, c=code, t=technology, a=artefacts, u=user, h=architecture

Table 3. The multispace similarity coefficient for require-
ments RA8 and RB8

Concern

Space
Requirement RA8 Requirement RB8

Space
similarity
coefficient

S1 f(RA8,S1) = (0,1,1,0) f(RB8,S1) = (0,1,1,0) ss1 = 1
S2 f(RA8,S2) = (0,1,0,1) f(RB8,S2) = (0,1,0,1) ss2 = 1
S3 f(RA8,S3) = (5,10,9,9,8) f(RB8,S3) = (10,9,9,8,9) ss3 = 0.84
S4 f(RA8,S4) = (1,0,1,0,0) f(RB8,S4) = (1,1,0,0,0) ss4 = 0.33
S9 f(RA8,S9) = (0,0,0,1,0,1) f(RB8,S9) = (0,0,1,0,1,1) ss9 = 0.25
S10 f(RA8,S10) = (8,0,10) f(RB8,S10) = (5,8,10) ss10 = 0.37
S11 f(RA8,S11) = (7,5,2,10) f(RB8,S11) = (9,10,6,5) ss11 = 0.60

multispace similarity ms=0.627

The high multispace similarity coefficient obtained in Table 4, indicates
that the code implementing requirement RA3 in application A: ”add book to
shopping cart” can be reused to implement the requirement RB3 in application
B: ”add song to playlist”. The high value of the coefficient calculated indicates

USING CONCERN SPACES TO MEASURE REQUIREMENTS SIMILARITIES 45

Table 4. The multispace similarity coefficient for code imple-
menting requirements RA3 and RB3

Concern

Space
code for req. RA3 code for req. RB3

Space
similarity
coefficient

S1 f(RA3,S1)=(0,1,1,1) f(RB3,S1)=(0,1,1,1) ss1 = 1
S2 f(RA3,S2)=(1,0,0,1) f(RB3,S2)=(0,1,0,1) ss2 = 1
S4 f(RA3,S4)=(0,1,1,0,0) f(RB3,S4)=(0,1,1,0,0) ss4 = 1
S5 f(RA3,S5)=(0,1,1,0,0) f(RB3,S5)=(0,1,1,0,0) ss5 = 1
S7 f(RA3,S7)=(0,1,0,0,0,0,0) f(RB3,S7)=(0,1,0,0,0,0,0) ss7 = 1
S8 f(RA3,S8)=(1,0,1,0,1,0,0,0,0) f(RB3,S8)=(1,0,1,0,1,0,0,1,0) ss8 = 0.75
S9 f(RA3,S9)=(1,0,0,0,0,0) f(RB3,S9)=(1,0,0,0,0,0) ss9 = 1
S10 f(RA3,S10)=(8,5,7) f(RB3,S10)=(6,5,6) ss10 = 0.9

multispace similarity ms=0.969

that the two snippets of code have the same semantic, even they are not
identical, and the applications they serve are quite different. Given this, the
code of the application A can be reused, with small adjustments, in developing
a new one, the application B.

5. Further work and conclusions

The current approach and the metric presented can be extended to calcu-
late similarity coefficients for applications and for different types of systems.
A framework under development have to be completed to support this ap-
proach. Investigating and determining proper concern spaces can extend the
work of Poshyvanyk et all in [13]. One goal of the approach is to add semantic
to the entities using Concern Spaces. The process of mapping entities in the
concern spaces using the function f is a non-automatic process, performed by
a person, based on his/her considerations, and might be different from one
person to another one. As the similarity coefficients are calculated based on
these mappings they can have slightly different value. The way the coefficients
are calculated and the fact that their values are in the [0,1] range can relate
the work presented here to fuzzy mathematics.

Acknowledgements: This work was possible with the financial support of
the Sectoral Operational Programme for Human Resources Development 2007-
2013, co-financed by the European Social Fund, under the project number
POSDRU/107/1.5/S/76841 with the title Modern Doctoral Studies: Interna-
tionalization and Interdisciplinarity.

46 CĂLIN EUGEN NICOLAE GAL-CHIŞ

References

[1] Castro J., Kolp M., and Mylopoulos J. Towards requirements-driven information systems
engineering: the Tropos project - Information Systems 27 (2002) 365-389.

[2] Chen X.., Liu Z.., Mencl V., Separation of Concerns and Consistent Integration in Re-
quirements Modelling. Macao, China, 2007.

[3] Dijkstra, E. A Discipline of Programming. 0-13-215871-X. Prentice-Hall 1976, pp 15-25.
[4] Gal-Chis C.E.N., A Multi-Dimensional Separation of Concerns of the Web Application

Requirements, Studia Universitatis Babes-Bolyai, Inf., V. LVIII, nr. 3, 2013, pp 29-40.
[5] Gal-Chis C.E.N., Modeling Concern Spaces Using Multi Dimensional Separation of Con-

cern International Journal of Computers and Techology Vol 11, No 2 : IJCT 2013, pp
2302-2313.

[6] William Harrison W., Ossher H., Tarr P. General Composition of Software Artifacts, Pro-
ceedings of Software Composition Workshop 2006, March 2006, Springer-Verlag, LNCS
4089, pp 194-210.

[7] Jacobson I., Ng P.W., Aspect-Oriented Software Development with Use Cases, Add.-W.,
2004.

[8] Jendrik J., Uwe A. Concern-Based (de)composition of Model-Driven Software Develop-
ment Processes, Model Driven Engineering Languages and Systems 2010 pp 47-62.

[9] Kaminski P. Applying Multi-dimensional Separation of Concerns to Software Visualiza-
tion - Workshop on Advanced Separation of Concerns, ICSE 2001.

[10] Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J.-M. Loingtier, J.
Irwin. Aspect-Oriented Programming, in: Proceedings of the 11th European Conference
on Object-Oriented Programming (ECOOP 1997), Jyvskyl, Finland, Lecture Notes in
Computer Science 1241, Springer-Verlag, pp 220-242.

[11] Moreira A., Rashid A., Arajo J., Modularization and Composition of Aspectual Re-
quirements, in 2nd Aspect-Oriented Software Development Conf., Boston, USA, 2003.

[12] Moreira A., Rashid A., Arajo J., Multi-Dimensional SoC in RE. IEEE, 2005.
[13] Poshyvanyk, D., Gethers, M., and Marcus, A., Concept Location using Formal Concept

Analysis and Information Retrieval, ACM Transactions on Software Engineering and
Methodology (TOSEM), 21(4), 2012.

[14] Ossher H., Tarr P. , MultiDimensional SoC and the Hyperspace Approach, 2002.
[15] http://trese.cs.utwente.nl/taosad/separation of concerns.htm.
[16] Sutton Jr., S. M., Rouvellou, I. Modeling of Software Concerns in Cosmos. 1st Interna-

tional Conference on Aspect-Oriented Software Development, Enschede, NL, April, 2002.
[17] Tarr, P., H. Ossher, W. Harrison, S.M. Sutton Jr. (1999): N Degrees of Separation:

Multi- Dimensional Separation of Concerns, in: Proceedings of the 21st International
Conference on Software Engineering, Los Angeles, California, USA, IEEE Computer
Society Press, pp107-119.

Faculty of Mathematics and Computer Science, Babes-Bolyai University,
Cluj-Napoca

E-mail address: calin.gal-chis@ubbcluj.ro

