
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LX, Number 1, 2015

TOWARDS SAFER PROGRAMMING LANGUAGE

CONSTRUCTS

ÁRON BARÁTH AND ZOLTÁN PORKOLÁB

Abstract. Most of the current programming languages inherit their syn-
tax and semantics from technology of the 20th century. Due to the back-
ward compatibility, these properties are still unchanged, however newer
technologies require different language constructs and different semantics.
Instead of redefining the programming language, the developers enhance
the language with new library functions, or they add some – occasionally
ambiguous – elements to the syntax. Some languages provide very loose
syntax, which is harmful, because it leads to critical errors. In other case
the interleaving ”normal” code and exception handling code can obfuscate
the developer itself and the subsequent developers.

This paper highlights several aspects of language elements such as basic
and potentially unsafe elements of the syntax, control flow constructs, el-
ements used in const-correctness, type-system, elements of multiparadigm
programming – generative and functional –, capabilities of embedding a
DSL, parallelism support, and taking account of branch prediction. These
aspects determine the usablity, safety and learnability of a language. This
paper also gives recommendation for a new and safe experimental pro-
gramming language.

1. Introduction

Current mainstream object-oriented languages contain several problematic
constructs which potentially lead to critical errors. Most of the errors came
from the loose syntax or not proper semantics. In our work and research
we saw a lot of harmful codes, and we intended to give recommendations to
extend the coding style or to design a new programming language in order to
avoid malicious constructs.

Received by the editors: May 1, 2014.
2010 Mathematics Subject Classification. 68N15.
1998 CR Categories and Descriptors. D.3.3 [Software]: Programming Languages – Lan-

guage Constructs and Features.
Key words and phrases. programming languages, compilers, syntactical vulnerabilities,

semantical vulnerabilities, compiler techniques, safe language.

19

20 ÁRON BARÁTH AND ZOLTÁN PORKOLÁB

The programming languages have been created in order to reduce assembly
errors and to increase the abstraction level. The early languages (e.g. COBOL,
LISP, ALGOL, FORTRAN [18, 11]) introduced higher abstraction level, but
in this early age, languages were imperfect – they contain many serious is-
sues in syntax and semantics. After the fundamental paradigms invented, the
structure of the programming languages started to lose their major gaps in
syntax and semantics. And the C programming langauge has beed released
[9] in this era.

Nowadays, most of the programming langauges contain syntactic and se-
mantic legacy from the early programming langauges, however, the basic con-
cept is obsolete. The modern processors and computers are designed to execute
multiple tasks at the same time, but the early languages did not support that.
Because of the huge existing code bases, the developers of the programming
languages – for example the C++ – keep the language to be backward compat-
ible. This decision can be debated, and the backward compatibility precludes
important security and safety changes in the language.

Our research is based on the alpha version of our experimental program-
ming language, which is currently contains intention to be a syntactically and
semantically safe language. The research aims to improve our language, fur-
thermore identify and highlight the vulnerabilities of the current programming
languages. This paper includes but not limited to the presented finding.

This paper is organized as follows: In Section 2 we present critical syn-
tactical errors in current mainstream programming languages, we give recom-
mendations about const-correntness and we analyze the loop constructs with
examples. In Section 3 we describe main semantical features, we highlight
vulnerabilities of the type-system (like infinite loop caused by improper com-
parisons or unwanted implicit casts) and exceptions (injecting the rarely used
exception handler codes into the normal control-thread can mislead the devel-
opers and makes the code less understandable), furthermore, we discuss the
necessity of the multiparadigm languages (generative and functional language
elements, implementing uncommong data structures). Section 4 is about the
extended features for support present technologies, e.g. embedding a domain-
specific language or writing multithread programs – while staying only at the
language features. In Section 5 we overview code generation, like the usage of
built-in branch prediction in the programming languages and in the modern
CPUs. In Section 6 we shortly brief our experimental programming language.
Finally, in Section 7 we describe our development plans. Our paper concludes
in Section 8.

TOWARDS SAFER PROGRAMMING LANGUAGE CONSTRUCTS 21

2. Syntactical elements

The syntax of a programming language is its face, and it can be judged by
the programmers. Because the programmers are the users of the programming
languages, it is important to keep the syntax as clear, pure and intelligible as
possible. Adding loose elements to the syntax can be very harmful, because
the reason of some critical errors can be attributable to the loose syntax.

In the following we discuss some syntactical vulnerabilities and improve-
ments.

2.1. Permissive syntax. Recently, articles appeared on the Internet about
a mistake in a source code belongs to Apple Inc. [23] The reason of the error
is a mistakenly duplicated line containing only the goto fail; statement –
that is why this error called as goto fail. This error resulted a serious security
leak.

Two problems can be identified in the source code in Figure 1. First, in
the then branch of the if statement we can see only a single statement instead
of nested inside a block statement, i.e. came from the permissive syntax of
the C programming language. Second, a proper coding style should avoid the
use of unconditional jump statements.

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;

goto fail; // duplicated line here

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

Figure 1. The affected lines of the goto fail error.

Using block statements in every branches of the if, for and while state-
ments is not without precedent – many coding styles require the block state-
ment for reason. Furthermore, adding empty lines makes the code more legible.
Although, the block delimiters and empty lines stretch the code, they provide
more benefits, e.g. making it more readible.

Applying the recommendations, there is an improved version of the code as
can be seen in Figure 2. At this point, the duplicated goto fail; statement
does not affect the code at all. Even the duplicated line will be ignored by
the compiler, so there is no overhead at runtime. Furthermore, the duplicated
line is a dead code, so the compiler can detect it, and the programmer can get
diagnostics message.

Note that, this feature exists in other languages influenced by the C pro-
gramming language: C++ [20], C# [1], and Java [4]. In C++, the goto state-
ment is also available. However, C# and Java do not have goto statement

22 ÁRON BARÁTH AND ZOLTÁN PORKOLÁB

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

{

goto fail;

goto fail; // duplicated line here

}

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

Figure 2. Transformed version of the error handling.

(as its classical meaning), but the block statement is not required – this can
lead to similar error like goto fail. Using the break; statement is attainable a
similer problem.

Because the loose part of the syntax caused the goto fail error, we rec-
ommend mandatory block statements in the coding style. Even better if the
programming language does not allow standalone statement after if, for and
while. The syntax of our experimental language requires block statement after
the concerned control statements. This is a nice way to avoid errors which are
undetectable by the compiler.

2.2. Constant variables. In declaration of variables or parameters the pro-
grammer should take into account of constness. In C++, the const-correctness
deals with which variables or objects are mutable and which are immutable [6].
This is a compile-time construct, so it has to be noted in the source code. The
most common way to express the constness is to tag the type with a modifier.
In C++, is frequent to pass function arguments as const or as const-reference.

C++ uses the const qualifier to make a variable or an object read-only.
C# and Java provides a similar mechanism to express constness. Using the
final qualifier in Java makes the variable unassignable, thus the variable must
be initialized in the declaration. Note that, the content of a final variable
is still modifiable. In C#, the readonly keyword has the same effect as the
final in Java. Furthermore, C# introduced the const qualifier, which has
an effect similar to the #define in C++. However, this feature has some
shortages, for example parameters can not be marked as const.

As we have seen, in current mainstream languages the default behaviour
is the mutable. Notable counter-example the C++11 lambda functions [8],
where the default is the const mode. The lambda is a syntactical sugar, and
compiled as embedded structs. By default, the generated functor is a constant
member function. This is also an example, where a new syntax element do
not have to be backward compatible with earier elements. Since it is a new
language construction in C++, it uses a safer approach.

TOWARDS SAFER PROGRAMMING LANGUAGE CONSTRUCTS 23

The Version 2 of the D programming language supports two different as-
pects of constness. A variable can be mutable and immutable, the view of a
mutable variable can be const, and the view of an immutable variable can be
const as can be seen in Figure 3 [21].

m u t a b l e

c o n s t

i m m u t a b l e

Figure 3. constness relationships in D programming language.

Unfortunately keeping the const-correctness of the code is not simple. In
C++, almost all code can be compiled without using any const qualifier. And
based on the fact that programmers do not want to write more than necessary,
the const will not be placed everywhere where needed. An other problem is
to teach and to account const-correctness.

Let approach this problem from a totally different aspect: do not require
const qualifier for immutable variables, but require the mutable qualifier for
variables and arguments which can be modified. Using this technique, the
compiler will enfore to keep the const-correctness of the code. At this point,
the programmer can forget only the mutable qualifier, but the compiler will
calling to account the missing qualifier. Therefore, the code will be more safer
thanks to the inverted psychology – programmers can not neglect mandatory
keywords.

Parameters 236
By value 87
Constant 105
Mutable 44

Figure 4. Function parameter analysis of TinyXML.

Might arise the question that more or less keywords must be used in the
code. An analysis about TinyXML 4 can be seen in Figure 4 – the rate of the
constant function arguments is about a half to the total number of arguments.
However, the analysis showed, the parameters passed by value is relevant. This
implies that, the number of mutable arguments (total number of arguments -
constants - by value) is less than half of constant arguments. Based on this
analysis, using our suggestions half of qualifiers are required, and the compiler
will check the const-correctness (via requiring the mutable qualifier instead of
const).

24 ÁRON BARÁTH AND ZOLTÁN PORKOLÁB

2.3. Control flow. Sometimes the programmer needs to understand someone
else’s code. It is a great help if the artifacts belong together are collected in
one group. The most common issue in this topic is the while and the for

loops. Almost every programming language supports at least two different loop
construction, and the while and the for loops are sufficiently widespread.

The key problem with a common while loop is the loop-variable. Three
activities can be identified: the initializing-, the role in the loop-condition-,
and the stepping of the loop-variable. These pieces can be scattered into the
statements of the while loop. Obviously, the code is obfuscated, and this is
only the programmer’s fault.

This implies the problem: how to force the programmer to use the proper
loop construction. Take an example from a C++ code: given a variable of
std::vector<int> [12, 2, 15], print its the content to the standard output.
Strive to use only the language features. The first construction in Figure 5
can easily mislead the programmer who would like to understand the code.

int idx = 0;

while(idx<vec.size())

{

std::cout << vec[idx] << std::endl;

++idx;

}

Figure 5. A poor implementation of iterating an array.

Therefore, gather the related pieces together: use the for statement and
place the three parts next to each other. The new construction in Figure 6 is
completely understandable, but not the best solution, because the code uses
the indexing operator, thus the code is less portable.

for(unsigned int idx=0;idx<vec.size();++idx)

{

std::cout << vec[idx] << std::endl;

}

Figure 6. An other implementation of iterating an array.

The modified code satisfy the portability requirement, because the it can
be generalized easily. Unfortunately, the code became larger and more com-
plex as can be seen in Figure 7. This piece of code uses the the iterators of
std::vector<int>. This is not so comfortable, and must be replaced with a
better construction.

TOWARDS SAFER PROGRAMMING LANGUAGE CONSTRUCTS 25

for(std::vector<int>::const_iterator

it=vec.begin(),end=vec.end(); it!=end; ++it)

{

std::cout << *it << std::endl;

}

Figure 7. Using the iterators of std::vector<int>.

The final solution came from the idea that why the programmer should
write a simple iteration again and again every time, while the construction is
quite the same. Also, writing more code means more possibility to make a
mistake. The related code can be generated automatically by the compiler.
The C++11 standard [20] introduced the foreach mechanism, and its usage
and the final version of the code can be found in Figure 8. The foreach
mechanism is available in other languages such as Java, C#, go, python, etc.

for(int x : vec)

{

std::cout << x << std::endl;

}

Figure 8. A safe implementation of iterating an array.

This is quite good and safe solution, because the programmer wrote what
container has to be iterated, and not how the container has to be iterated. We
recommend that to use the foreach mechanism where possible, and avoid the
fragile and misunderstandable constructions.

2.4. Summary. As can be seen above, restricting the syntax can improve the
code. It is important to declare additional rules in the coding conventions, for
example ”use braces in all control statements”. In case of designing a new
language, it is a good start to require explicit compound statements to avoid
malicious contructs. Also, the need of the goto statement must be considered
– high-level languages rarely support it.

Based on the presumption, that programmers are lazy, the usage of the
reversed philosophy of the constness improves the quality as can be seen above.
Even if the changed syntax may result longer code, the quality improvements
are more beneficial.

26 ÁRON BARÁTH AND ZOLTÁN PORKOLÁB

3. Semantical elements

The following section describes the used type-systems in programming
languages. The aim is to uncover the vulnerabilities of the constructs, and
give a safer alternative implementation. We used these alternatives in our
experimental programming language.

3.1. Type-system. There are two different approach of the type-systems.
The first is the completely dynamic type-system, where the variables do not
have types in the source code. This type-system is commonly used in script
languages and in some functional languages, for example in Erlang [17]. The
dynamic type-system is a new opportunity for freedom, but understanding
the code (i.e. static analysis) is much harder. The second is the static type-
system, which is widespread in imperative- and object-oriented programming
languages. The static type-system is used to express the intended type for
every variable. It helps to understand the code. This also implies an additional
check by the compiler. In the following we assume that, the programming
language uses static type-system.

Even the static type-system is fairly safe, problems are hidden inside.
For example, the implicit cast mechanism is sometimes useful, but it can
result very harmful situations, such as infinite loops, and hardly followable or
unpredictable code behaviour.

In the C++ language we can define constructors with one parameter.
Without the explicit keywords these contructors can be called implicitly as
conversion. Thus, the compiler can create, for example, complex object from
a single integer. Moreover, C++ classes can also define conversion operators,
and classes can be converted to primitive types without explicit cast. These
features can mislead the programmer who wants to understand the source.

// [1]

std::vector<int> vec;

for(int i=0;i<vec.size();++i) { /* ... */ }

// [2]

unsigned int x = 0xffffffffu;

if(-1 == x) { /* ... */ }

Figure 9. Comparison of signed and unsigned integers (C++).

In C++, semantically wrong comparisons can be written, but the compiler
indicates only a warning – however, there are major semantical errors. The
code in Figure 9 contains two semantical errors. The first piece is a common
error: comparing a signed and an unsigned integer can outcome bad result.

TOWARDS SAFER PROGRAMMING LANGUAGE CONSTRUCTS 27

The compiler will show a warning for this part. The second piece is worse than
the first one, because checking the equality of an unsigned an signed value is
meaningless. The problem is that, the representation of the largest unsigned
value (0xffffffffu) and the minus one are the same. The compiler accepts
the code, the condition of the if statement is true, but no warnings and no
errors are generated.

The origin of these problems is that the signed and unsigned intergers
have different domain, although the half of the domains overlap. There are
two solutions for this problem. For example, the Java programming language
does not introduced unsigned integers. Still the implicit casts can ruin a Java
program as well: the code can be seen in Figure 10 is an implicit infinite loop.
Another solutions is not to allow comparisons between different types at all –
our experimental language uses this solution.

// Valid code in Java, C++, and C#

for(char ch=’\0’;ch<70000;++ch) { /* ... */ }

Figure 10. Infinite loop caused by implicit cast.

3.2. Multiparadigm support. The languages which support multiparadigm
programming are more flexible, because the programmer can use the proper
paradigm for the specific task. The most conspicuous is the C++11 standard,
because of support for generic programming (especially template metapro-
gramming) [7], object-oriented programming, and functional programming.
In C++, the functional programming is observable in the template metapro-
gramming, and in the lambda expressions.

The highligthed feature is the lambda expressions: introduced as a useful
feature, but it can easily go wrong. Basically, the lamba are used to replace
unnecessary boiler-plate codes with a compact syntax. Due to these lamba are
very sematic, the compiler can generate the affected embedded structs – the
result is the same, but with a safer syntax. However, when the programmer
writes larger lamba, the understandability of the code is heavily decreasing.

Furthermore, the union contruction of the C++ can be connected with
the algebraic data types from functional languages. Although, the union can
be implemented with abstract class and derived classes, it needs a massive
amount of code. The task is to store different values, and to handle them
as uniform. Staying as close to the language features as possible, we do not
take account the Any from the boost library. There is a huge problem with
the union construction: it is possible to ”cast” a character to a pointer at
any time without any compiler feedback. However, the algebraic data types
are much safer than the union, and it is a closed type. The common tuple

28 ÁRON BARÁTH AND ZOLTÁN PORKOLÁB

type (for example in Erlang) is an open type, the programmer can create a
completely new variant of a tuple without modifying the type declaration –
but not with the algebraic data types.

Consequently, the algebraic data types could be a powerful feature in C++.
This gave the inspiration to us, to implement the algebraic data types in our
experimental language.

The generics in Java programming language is a syntactical sugar intro-
duced to help the programmer to write type-safe collections and type-safe
classes [5, 4]. Most of the Java programs before JDK 1.5 contained massive
amount of basically unnecessary casting, and a ClassCastException could
be thrown. However, after the program passed the static analisys phase, the
compiler omit this type-info from the class file – this itechnique is called type-
erasure.

3.3. Exceptions. As mentioned above, understandibility and clear-looking
code is important. Another critical topic is the exception handling. The ex-
ception is raised or thrown when an exceptional event happened – for example:
program ran out of memory, or an index is out of range. The program must
be prepared to handle the exceptions, but these parts of the code may not
executed at all. However, some languages, like Java, C#, and C++, allow
– and requires – interleaving of ”normal” and exception handler code. Thus,
the train of thought have breaked many times, and the programmer can follow
the code hardly. This effect appears most frequently in Java and C#.

The idea of the solution came from the Eiffel programming language [14].
The Eiffel supports exception handler code only at the end of the function. In
the exception handler code the programmer can write the retry instruction
to restart the execution of the function.

If the exception handler code is placed at the end of the function, the
programmer will enforced to write shorter functions – which is good, because
large functions are hardly understandable. Although, in Java, is very unusual
and uncomfortable to write the exception handler codes only at the end of the
function. However, this technique is a nice way to keep the code organized.
Our experimental language uses this technique for placing exception handlers
in order to keep the understandability of the source code.

3.4. Summary. Based on the presumption, that programmers tend to write
the possible minimal code, the loose static type-system can be very harmful.
The implicit casts and mixed exception handlers can decrease performace and
the understandability. Using a strict static type-system and a strict exception
handler syntax results a clear code and improves the code quality.

TOWARDS SAFER PROGRAMMING LANGUAGE CONSTRUCTS 29

4. Extended features

Nowadays, it is a requirement to a programming language to support spe-
cial features, for example embedding a domain-specific language, or writing
parallel programs. It is important to use only the features provided by the
language, and work without any external tool (script for preprocessing, third
party tool) or library in order to keep the portability of the code [16].

Moreover, it is certain optimization to use the features provided by the
compiler to implement a domain-specific language or a parallel program, be-
cause the compiler is used to know the best solutions for the specific platform.

There are many ways to embed a domain-specific language (DSL) into an
existent language [19]. We used the type-system and the operator overloading
mechanism to create DSLs. The reason was obvious: the compiler can check
all of the expressions, and discover any problematic statement – using only the
strong static type-system. The usage of the operators is a convenient feature,
because the syntax of the created DSLs are similar to the original language.

In a lot of programming languages the support of parallelism is not part
of the language. For example, C, C++, and Pascal can handle threads with
library functions. An other example is the C# and Java languages, because
these provide a Thread class, and the programmer can easily write multi-
threaded algorithms. Not that, the Thread class is not considered as a library,
because this is the part of the basic runtime library, and no C#, nor Java
program can be executed without it.

There are more possible ways to implement the thread model in a virtual
machine [10]: all the threads are an operating-system thread, or some of them
are mapped to an OS thread, maybe none of them. Our virtual machine uses
a dynamic virtual-thread mapping mechanism – run the thread on the first
idle OS thread (in the virtual machine’s terminology, the OS threads are the
”processors”). Due to this approach, creating a new thread inside the virtual
machine does not require massive amount of resources.

4.1. Summary. Using a multiparadigm or easily extendable language can
keep portability of the code, because no external tools are required. Concur-
rent programming is essential in modern software technology, therefore the
language support of multithreading is important. This trend can be observed
in the C++ programming language, since the C++11 standard introduced the
threads in the standard library.

5. Code generation

The native programs can be accelerated by the features of the CPU, for
example the branch prediction or return address prediction. These features are

30 ÁRON BARÁTH AND ZOLTÁN PORKOLÁB

built-in into a modern processor to speed up the execution. The results can be
seen in Figure 11. The related codes aim the branch prediction feature of the
compiler and the CPU. The programs compiled without any optimizations
(but using built-in branch predition). This is used to enable runtime CPU
optimizations.

B1,
t r u e

B1 ,
fa lse

B2 ,
(i & 0) = = 0

B2 ,
(i&0) !=0

B2 ,
(i & 2) = = 0

9 . 7 4 3 s 9 . 9 1 1 s

1 0 . 6 9 4 s

1 1 . 7 4 1 s 1 1 . 8 9 8 s

Figure 11. Results of the branch prediction test.

void sum(bool cond)

{

int sum1 = 0, sum2 = 0;

for(unsigned int i=0;i<0xffffffffu;++i)

{

if(cond) { ++sum1; }

else { ++sum2; }

}

}

Figure 12. Code used in B1 test (C++).

Note that, the type and the value of the sum variables in codes in Figure
12 and in Figure 13 is not relevant.

However, the codes above after minor changes (upper limit is decreased to
0x7fffffff) has been used in Java programs too, but the Java compiler and
the Java Virtual Machine (JVM) uses massive optimizations. Therefore, there
are no difference at runtime with the code in Figure 12. Interesting results
came from the code in Figure 13, because when the condition is potentially
true (condition is (i & 0x0)==0), the Java optimized the whole loop out –

TOWARDS SAFER PROGRAMMING LANGUAGE CONSTRUCTS 31

void sum()

{

int sum = 0;

for(unsigned int i=0;i<0xffffffffu;++i)

{

if(<COND>) { ++sum; }

}

}

Figure 13. Code used in B2 test (C++).

resulting almost zero time in execution. But, when the condition is not trivial,
the execution of program took 3.152 seconds.

It follows that, there are benefits to compile to a virtual machine like
JVM, because more runtime optimizations can be applied. Note that, the
measurement above is artifical, and may not appear in product code.

5.1. Summary. There is several ways of program portability. First, compil-
ing the same code on multiple platforms, and the compiled executable performs
the same actions – as the C and C++ languages. Second, compile the source
code once, and use the same executable on multiple platforms. This tech-
nique requires a virtual machine, or a higher level compiler (JIT). There are
arguments in favor of both techniques.

6. Welltype

Our experimental programming language is called Welltype1. Welltype
is a strongly typed imperative programming language, which is based on C
and C++ languages, also influenced by Ada and Eiffel languages. The main
concept is to minimalize errors caused by typos, type mismatches, unclear
control structures, etc. This is ensured via the strict and clear syntax, and the
strong static type-system. Some language constructions cause more verbose
source code, but the langauge prefers safety over compact code. For example
our language handles assignments as statements instead of expressions, like
C-style languages to avoid unwanted side effects at assignment.

This programming language is designed to include all recommendation in
this paper, and we rendered an example language to show that our findings
can be used in practice. The prototype implementation of this programming
language is available at http://baratharon.web.elte.hu/welltype.

1The Welltype is an intentionally wrong abbreviation.

32 ÁRON BARÁTH AND ZOLTÁN PORKOLÁB

6.1. Permissive syntax. Our language is invulnerable to the goto fail error,
since requires braces in every control statement constructions, such as if,
while, do-while, and for, also there is no goto statement in the language.
These restrictions are aim the clear and structured programs.

6.2. Constness. The Welltype language uses the reversed constness philos-
ophy described earlier. All object parameters are passed as immutable ref-
erences, but the mutable modifier can be placed to make the content of the
parameter mutable.

6.3. Type-system. In order to keep the type-system clear, our language uses
strong static type-system. This implies that, there is no automatic type cast-
ing, and implicit object creation. Therefore, all function calls and assignments
can be validated by the programmer, since it is based on the static types and
the validation is a straightforward algorithm. Every expressions and literals
have exactly one type at compile-time, and that type can be converted only
explicitly.

6.4. Multiparadigm support. We are working on to introduce the algebraic
data types and the generics in our programming language.

6.5. Exceptions. Our programming language supports an Eiffel-like excep-
tion handling: the exception handler can be placed at the end of the function,
therefore the exception handler will not interleave with the ”normal” logic.

6.6. Extended features. The preceding version of the Welltype language
was used to implement embedded domain-specific languages (eDSL). We find
out, the implemented operator overloading mechanism is adequate for several
features, for example implementing DSLs [3].

7. Future work

Based on the findings described in this paper, we will improve the alpha
version of our experimental language. The most important intention is the
make the syntax and the sematics as safe as possible, and to detect the most of
the errors. We will analyse the modified syntax and semantics of our language
to find out the attainable vulnerabilities.

In order to ensure about the recommendations we made, we intended to
make a personal survey with programmers and non-programmers as well. The
survey will consists of two parts: writing a program individually to test the
constructions of the language, and adding a new feature into an existent code
to test the comprehensibility of the language. By way of comparison, we will
use beside our language C++ or Java.

TOWARDS SAFER PROGRAMMING LANGUAGE CONSTRUCTS 33

8. Conclusion

In this paper we inspected the safety of different aspects in programming
language, for example syntax, semantics, extended features and code genera-
tion. We discovered that, the originate of many vulnerabilities and harmful
elements is the legacy of the 20th century and sometimes the backward com-
patibility. We have given recommendations to avoid harmful constructs and
to keep the safety and understandability of the code.

The analysis started with the syntactical elements, and we can see that,
many problem can be traced back to the loose syntax of the language. This
is mainly occur in C programming language and other languages with the
similar syntax. In other hand, the proper accessibility notations of the objects
(variables or parameters) have added value – in C++, means const-correctness.
Due to the permissiveness of the compiler, the semantically missing const

qualifiers will not be reported. However, the reversed approach can eliminate
the problem, and provides more compile-time checks.

The next step was the analysis of the semantical elements. The main
aspects was the deficiency of the type-system, e.g. in C++, C# and Java,
the programmer can easily write infinite loops without any compiler feedback.
The cause of this unfortunately problem is the implicit casts. In our experi-
mental language there are no implicit casts to avoid these kind of errors. We
showed that, the exception handlign in mainstream object-oriented languages
can break the normal execution thread in the source code, causing harder
understandability.

We discussed the opportunity and features of embedding a domain-specific
language into an existing host language. In our experimental language we
prefer to use the type-system and the operator overloading mechanism instead
of external, third party tools. Because our language does not support implicit
casts, there are no chance to break the DSL’s types unintentionally. An other
perspective is about writing multithread program with langauge support only.
For example, in C and C++ there is no language support to handle threads.

Finally, we tested the basic built-in branch prediction mechanism in the
compiler, and runtime impacts by a modern CPU. We experienced that, the
compiler assumes that, the condition of the branch is always true – including
if, for, and while statements. It implies that, the programmer should take the
branch prediction into account.

References

[1] Albahari, J. and Albahari, B.: C# 4.0 in a Nutshell: The Definitive Reference, O’Reilly
Media, 2010

[2] Austern, M. H.: Generic Programming and the STL: Using and Extending the C++
Standard Template Library, Addison-Wesley, 1998

34 ÁRON BARÁTH AND ZOLTÁN PORKOLÁB

[3] Baráth, Á., Porkoláb, Z.: Domain-Specific Languages with Custom Operators, To ap-
pear in proceedings of The 9th International Conference on Applied Informatics, 2014

[4] Bloch, J.: Effective Java (2nd Edition). Prentice Hall PTR, NJ, USA, 2008
[5] Bracha, G., Odersky, M., Stoutamire, D., Wadler, P.: Making the Future Safe for

the Past: Adding Genericity to the Java Programming Language. In OOPSLA ’98
Proceedings of the 13th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, Pages 183–200, ACM New York, NY, USA, 1998

[6] Cline, M. P., Lomow, G. and Girou, M.: C++ FAQs, Pearson Education, 1998
[7] Czarnecki, K., Eisenecker, U. W.,: Generative Programming: Methods, Tools and Ap-

plications, Addison-Wesley, 2000
[8] Järvi, J., Freeman, J.: C++ lambda expressions and closures. Science of Computer

Programming 75.9 (2010): 762-772.
[9] Kernighan, B. W., and Ritche, D. M.: The C programming language. Vol. 2. Englewood

Cliffs: prentice-Hall, 1988
[10] Manson, J., William P., and Sarita V.: The Java memory model. Vol. 40. No. 1. ACM,

2005
[11] Metcalf, M., Ker Reid, J., and Cohen, M.: Fortran 95/2003 Explained. Vol. 416. Oxford:

Oxford University Press, 2004
[12] Meyers, S., Effective C++, Third Edition, Addison-Wesley, 2005
[13] Meyers, S. Effective STL - 50 Specific Ways to Improve Your Use of the Standard

Template Library, Addison-Wesley, 2001
[14] Meyer, B.: Object-Oriented Software Construction, 2nd Edition, Prentice Hall, 1997
[15] Pataki, N., Szűgyi, Z., Dévai, G.: C++ Standard Template Library in a Safer Way , In

Proc. of Workshop on Generative Technologies 2010 (WGT 2010), pp. 46–55.

[16] Porkolab, Z., Sinkovics, Á.: Domain-specific Language Integration with Compile-time
Parser Generator Library. In Proceedings of the Ninth International Conference on Gen-
erative Programming and Component Engineering, Pages 137–146, ACM New York, NY,
USA, 2010

[17] Laurent, S- St.: Introducing Erlang, O’Reilly Media, 2013
[18] Schach, S. R.: Object-oriented and classical software engineering. Vol. 6. New York:

McGraw-Hill, 2002

[19] Sinkovics, Á, Porkoláb, Z.: Domain-Specific Language Integration with C++ Tem-
plate Metaprogramming. Formal and Practical Aspects of Domain-Specific Languages:
Recent Developments. IGI Global, 2013. 32-55. Web. 30 Apr. 2014. doi:10.4018/978-1-
4666-2092-6.ch002

[20] Stroustrup, B. The C++ Programming Language, 4th Edition, Addison-Wesley, 2013
[21] const(FAQ) - D Programming Language. http://dlang.org/const-faq.html#const
[22] TinyXML, http://www.grinninglizard.com/tinyxml2
[23] Vulnerability Summary for CVE-2014-1266. http://web.nvd.nist.gov/view/vuln/

detail?vulnId=CVE-2014-1266

Department of Programming Languages and Compilers, Faculty of Infor-
matics, Eötvös Loránd University

E-mail address: {baratharon|gsd}@caesar.elte.hu

