
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LX, Number 1, 2015

CREATING AN EFFICIENT AND INCREMENTAL IDE FOR

TTCN-3

KRISTÓF SZABADOS

Abstract. In this article we present methods and algorithms for con-
structing an efficient IDE in the sense that the processing costs of re-
analyzing source code after change is minimal. Moreover, we show that
these methods and algorithms can be designed in a way that they support
iterative realization, hence, they fit better to the current trends of iterative
software development life-cycle. We also show how these algorithms can be
built into an existing system and we show measurements on performance
benefits. The proposed methods were validated in the telecommunication
area for compiling TTCN-3 code.

1. Introduction

Nowadays developing a modern Integrated Development Environment (IDE)
has two major requirements: (1) it has to be responsive and (2) developed in
a lean iterative process.
(1) The common way of checking source code for errors is to have a compiler
parse all of the files and run a semantic analysis on the produced data. In
case of modern IDEs this is not feasible, full analysis takes too long on large
projects. An IDE is expected to analyze the project automatically and to
report possible errors instantaneously, irrespective of the size.
(2) The current software development trends favor iterative development in
order to reduce cost. Instead of large development efforts supporting complex
situations, the aim is to fullfill the needs of the user with a lean solution.

This paper is organized as follows. In Section 2 we present earlier works
related to this subject. In Section 3 we introduce the datamodel and its

Received by the editors: April 25, 2014.
2010 Mathematics Subject Classification. 68N20, 68W40.
1998 CR Categories and Descriptors. D.2.3 [Software Engineering]: Coding Tools and

Techniques – Program editors; D.2.6 [Software Engineering]: Programming Environments
– Integrated environments; D.3.4 [Programming Languages]: Processors – Incremental
compilers.

Key words and phrases. Parsing, Integrated Development Environment, Iterative
Development.

5

6 KRISTÓF SZABADOS

operations. Section 4 describes the measurement environment. Section 5
presents the incremental parsing algorithm. Section 6 shows an outlook on
how these methods can be used to speed up the semantic checking. Finally,
Section 7 gives an analysis of the algorithm’s performance, and Section 8
summarizes the results of this paper.

2. Related work

Several articles have already been published on incremental parsing. In
programming languages recognition, languages are typically described by LL(k)1,
LL(*)2, LR(0)3, LR(1), and LALR(1)4 grammars. Research on their incremen-
tal parsing focused mostly on LL [12, 7, 8] and LR parsing [3, 11, 5, 6, 10]
methods. All techniques parse the input text, building the first parse tree,
and update it according to the changes in the input. An important point in
each case is finding the minimal structural units that are affected by the mod-
ifications ([3] for LR(0) and [6] for LR(k) grammars). Incremental parsers use
“re-parse points” where parts of the semantic information could be re-parsed
from the input. These occur close to the update location [7]. Others proposed
approaches for doing incremental parsing with repairing errors coming from
earlier processing as they get resolved later [1]. Wagner et al. [11] describes
a method which does not use error recovery, but utilizes the history of mod-
ifications instead. There are also approaches applying neural networks (see
[2] e.g. uses the Perceptron algorithm). Huang et al. [4] suggested dynamic
programming to enhance incremental processing.

Most of these articles propose parsed syntax trees to enhance the re-parsing
speed. Their aim is to minimize the parsing cost starting from any point in
the tree. To reach this the authors produce parser generators which create
incremental parsers from the Backus-Naur Form (BNF) of their target lan-
guage. In this setup the tree is usually uniform and completely represents the
given text in the file. The algorithms recommended by the authors work on
the same way for each node, can modify any node in the tree and can generate
full results in a single execution.

We propose a different approach. Instead of using a Parse Tree that rep-
resents an identical copy of the text in a tree shaped form, we use an Abstract
Semantic Tree (AST). In an AST the semantic processing can change the

1LL is a top-down parser class for a subset of the context-free grammars. An LL parser
is called an LL(k) parser if it uses k tokens of lookahead

2An LL parser is LL(*) if it uses the minimum lookahead per input sequence [9].
3LR is a bottom-up parser class, reading the input in one direction (typically left to right),

producing a reversed rightmost derivation
4LALR parsers are simplified canonical LR parsers, with reduced language recognition

power, and significantly reduced memory requirements

CREATING AN EFFICIENT AND INCREMENTAL IDE FOR TTCN-3 7

form and order of the information, for example order them alphanumerically,
transform for efficiency or extend with external information if required. The
iterative development approach allows us to implement a tool that generates
the solution stepwise, i.e., it can be developed incrementally until the cost of
further developments overweight its benefits.

We analyzed how the incremental parsing can be used to speed up semantic
checking. A process missing from the articles mentioned earlier.

3. The model

In this section we introduce the model we used to represent data and
modifications.

The Titan IDE, where these algorithms are implemented, supports Testing
and Test Control Notation - 3 (TTCN-3)5 and Abstract Syntax Notation One
(ASN.1) files [13].

3.1. Data representation. Our representation has one node for every mod-
ule (TTCN-3 compilation unit) serving as the local root node of the module.
These local root nodes form a list of nodes, representing the complete set of
semantic information. Modules have subnodes for each top level definition,
and definitions can also have subnodes in a recursive manner. This continues
till the leaf nodes, which represent some semantic terminals.

The AST stores location information in attributes. The region of each
node is textually enclosing the regions of all its subnodes. This means that for
any point in the module, there is a node in the AST, whose textual location
contains that point and has the shortest region of such nodes.

To provide performance benefits the semantic analysis can reorder the ele-
ments of the AST, while keeping their structural information. Where ordering
is not defined by the language, the items are stored in associative containers.

3.2. The model of modifications. Our assumption is that a user can change
the text within a file at any location. Indirectly applying the following modi-
fications to the AST:

• Creating and inserting new subtrees into the AST.
• Deleting subtrees of the AST.
• Merge or divide nodes in the AST6.
• Editing text with no semantic value, does not change the semantic

state, but locations might need to be adapted.

5TTCN-3 [14] is an imperative programming language with testing related extensions and
with syntax and semantics close to imperative languages like C.

6Insertion of terminals can separate a semantic node into several new nodes. Deleting the
closing and opening sings can merge nodes into a new node.

8 KRISTÓF SZABADOS

Changes might also introduce syntactical errors that corrupt parts or the
whole AST. It is also possible that previous syntactical errors were corrected
with a modification of the AST.

We assumed that most of the time users are editing consecutively, working
in logical units. This means that most of the time the same or related nodes
are changed in the AST.

3.3. Re-parse points. To change the AST in a consistent manner, to handle
parsing of the minimal amount of text, and to contain the negative effects of
syntax errors, special nodes have to be located in the AST. A re-parse point
is a node in the AST, whose textual location can be re-parsed as a consistent
entity, based on the information known about the AST and the modification as
a precondition. These AST nodes form a subtree in the BNF of the language.
When the same text representing these nodes is parsed again, the AST has
exactly the same semantic meaning.

4. The measurement environment

In this section we introduce our measurement environment, and our mea-
surements of the full file parsing method.

For performance measurments we used 8 projects (Table 1) of different
sizes and 2 different execution modes:

(1) Client mode simulates the program starting up in an unoptimized en-
vironment. Java VM7 is started in “client” mode. We measured the
first executions of the algorithms.

(2) Server mode simulates an optimized environment. Java VM is started
with the “-server”[15] flag8. The algorithms were run 5 – 10 times
using exactly the same operations before measuring.

To see if the projects and execution modes will give us measurable differ-
ences we measured the first syntax checking, which has to read all text in the
project. We measured (Figure 1) a clear correlation between the execution
time and the amount of text to be processed.

7Virtual Machine
8uses the most aggressive performance optimizations

Table 1. Projects analyzed

project index 1 2 3 4 5 6 7 8

number of modules 4 39 65 68 118 204 567 828

thousand lines of code 28 19 52 66 66 436 1.174 826

CREATING AN EFFICIENT AND INCREMENTAL IDE FOR TTCN-3 9

Figure 1. Full syntax checking performance by lines

5. The incremental parsing algorithm

In this section we present the methods of the incremental processing algo-
rithm and provide performance measurements.

5.1. Collecting changes. In Procedure 1 the processing of syntactic changes
and semantic checking is separated. The consecutive changes are merged (line
2) first to reduce the number of longer running checks. The elements of the
merged list are processed by invoking a syntax check on them. When all
changes are syntactically processed, a single semantic check (line 5) is exe-
cuted.

Our tool collects changes and does calculations as a background thread
to not burden the user interface with heavy processes. Our prototype tool
also waits 1 second after the user has finished working on the text to start
the background processing. This was seen to be efficient in practice. While
the user enters or deletes a consecutive list of characters, the background
processing does not start.

5.2. Refreshing the AST. The generic form of finding the affected nodes is
a recursive algorithm (Procedure 2), invoked with the node to be processed,
and the change that happened to the file.

The algorithm iterates on the child nodes of its actual parameter node.
The locations of children following the change are updated (line 6). When a
change is located inside the child, the algorithm is invoked on it recursively
(line 8). If that fails to contain the change, the algorithm reparses the child
node itself (line 11). Should that fail, or the change be outside the child nodes,
the algorithm backtracks to the previous level of recursion by returning failure.

5.3. Processing an affected node. We created specialized versions of the
generic algorithm for processing certain types of nodes efficiently. To see how
these algorithms interact, see the example in appendix B.

10 KRISTÓF SZABADOS

5.3.1. Processing the file/module root. The module root9 has no parent node
to regress to, if it could not handle the change the whole file has to be re-parsed
(Procedure 3).

5.3.2. Processing semantic lists. Semantic lists10 are elements of the same root
type and follow each other in the text. In these structures ordering is not
assumed, any number of elements can appear or disappear after a change, and
the semantic analyzer can reorder these elements.

The algorithm (Procedure 4) uses two variables, left and right (boundary),
to store the locations of safety boundaries. The invariant of this region is that
nodes outside of it are not affected by the change and the procedure minimizes
this region. It also stores whether the change was already enveloped in a child
node: the variable enveloped is initialized to false.

This algorithm differs from the generic in that, first the smallest interval
to be parsed is measured by checking the nodes against the changed region
(lines 5 – 13). Nodes falling in this region are removed (lines 14 – 18) and the
region is re-parsed (line 18) integrating any new node found. If there were no
errors, the locations of the nodes following the change location are updated.

5.3.3. Processing non-list semantic structures with elements. In semantic struc-
tures containing semantically different sub-nodes11, the ordering and existence
of its sub-nodes is fixed12 and they can not appear or disappear without caus-
ing syntactic errors13. The children of such nodes are processed in the order
of their appearance in the textual representation of the node (Procedure 2).

5.3.4. Processing semantic structures with no elements. In terminating nodes,
without semantic branches either the whole node has to be re-parsed or it can
not be re-parsed, in those cases negative result has to be reported.

9In our implementation this is the TTCN3Module class, which represents the whole of a
TTCN-3 module.

10In our implemetation the Definitions class represents the list of all definitions on the
module level (types, templates, constants, module parameters, functions, altsteps, testcases).
The class StatementBlock represents the consecutive list of statements inside functions,
altsteps, testcases, statement blocks and the control part.

11In our implementation any semantic node that has children, but does not fit in the first
2 categories. For example: the Def Function class representing a function definition.

12Some of the sub-nodes are required to create a syntactically and semantically correct
node, while some can be optional. As an example a function might have a name, formal
parameter list, return clause, body (a statement block).

13In a function definition if any of the name, formalparameter list (as the whole entity),
the runs on and system clauses, or the statement block(as the whole entity) are damaged,
the whole function definition is incomplete.

CREATING AN EFFICIENT AND INCREMENTAL IDE FOR TTCN-3 11

6. Effect on the semantic checking

The incremental parsing algorithms allows improvements on the perfor-
mance of the semantic checking as well. Decreasing the amount of changes on
AST makes caching of previously calculated results possible. The introduction
of version handling for the semantic nodes can provide both safety and perfor-
mance gain. This can be done by assigning a time-stamp, holding the time of
the last semantic analysis to semantic nodes. After the first parsing, all nodes
are time-stamp uninitialized, and nodes are checked semantically. Following
this check, the nodes can have the time-stamp of the actual semantic check
cycle.

A node that was already semantically checked needs to be re-checked only
when the semantic properties of the node, it’s contents or a referenced node
has been changed. As the dependency hierarchy of the modules is known from
the previous semantic evaluation and does not change, it can be used to find
which modules reference changed modules directly or indirectly.

7. Performance Analysis

7.1. Searching for the correct node. Our AST is a tree, where non-leaf
nodes can have different number of child nodes. The root of this tree is the
semantic node representing the module. The depth of this tree can be esti-
mated with O(logM n), where M denotes the branching factor (the children an
internal node has in average) and n denotes the number of nodes. This AST
has a high branching factor, making the tree’s height very small. In modern
programming methodology an embedding of more than 7 levels is usually con-
sidered a serious design fault, in practice the depth of the tree is usually less
than 10.

When the algorithm explores the AST from the root, to the location that
closest approximates the damaged region, it is traversing this B-tree, which
can be estimated to take O(logM n) steps. In the best case, this is the final
location, and it is able to process the changes there. This means the processing
of S

Mk characters, where S denotes the size of the whole file and k denotes the
number of levels descended.

Sometimes it is not able to handle the change on the lowest level, hence
the amount of work done by the tool can be estimated with

f∑
i=logM n

S

M i

where f denotes the level where the change could be handled.

12 KRISTÓF SZABADOS

In the worst case, when the whole module becomes corrupted by the
changes, this means that slightly more work is done as a normal parse does. In
this case it had to parse not only the whole file but also had to parse smaller
parts of it in order to decide that they are not able to contain the damage
done. In the best case only the lowest level of the tree has to be parsed. As
the amount of characters to re-parse decreases significantly on each level of the
tree, the effective work becomes very small. In the average case, the algorithm
finds the node that may contain the damage somewhere in between the corner
cases. In some cases the whole file does not need to be re-parsed, which means
that most probably it doesn’t have to parse more than S/M characters. In
such a case the execution time of the program will decrease by some power of
M .

Since users usually transform syntactically correct text into an other syn-
tactically correct text by very small changes, a valid assumption could be that
the average execution time is close to the one estimated for the best case.

7.2. Memory usage. The described algorithms use only local variables needed
to keep information like numbers for the left and right boundary, data that is
already available in the AST, or can be calculated.

When the re-parsing of the damaged region is done, a part of the AST is
rebuilt. Once this new AST part is inserted into the semantic database, the
old version is removed.

7.3. Implementation. The implementation can be done iteratively. Travers-
ing the tree only to the definition level in the AST already provides a speedup.
In this case, when the algorithm finds that the damaged area is completely en-
veloped by a definition, it re-parses the whole definition. Limiting the amount
of text to be processed from the whole file to a single definition decreases the
original execution time to O(s/m).

Once the algorithm reaches the level of statements and references, the
amount of work has already been decreased to a minimal level. In practice,
when general programming design style guides are followed, this should be no
more than a single line of text. Decreasing the amount of work to below one
line of characters, might not provide any significant benefits14.

Implementation is not limited to procedural methods, our implementation
in Eclipse Titan is done using Object-Orientet constructs.

14For example the list of formal parameters in the FormalParameterList class could also
be treated like a list, but as there are usually only a few formal parameters in a list we choose
to not make them incremental yet.

CREATING AN EFFICIENT AND INCREMENTAL IDE FOR TTCN-3 13

Figure 2. Incremental syntax checking performance by lines

Figure 3. Incremental syntax check speedup

7.4. Measurements. To trigger the incremental syntax checking, we entered
a single space in a randomly choosen module, without changing the semantics.
In this setup: (1) the location to be parsed is determined, (2) the incremental
parser is invoked, (3) some text is processed and the location informations are
adjusted. The amount of characters to be parsed is minimal, minimizing the
text processing overhead of the system.

In all cases the execution time of the incremental syntax analysis stays
below 7 · 10−3 seconds in client, and 3 · 10−3 seconds in server mode (figure 2).
In some cases the execution time goes as low as 9, 23 · 10−4 seconds in server
mode.

Figure 3 displays the speedup measured showing how much this method
improves the performance.

8. Conclusion

In this article we presented an algorithm that makes incremental parsing
of TTCN-3 files possible, reparsing needs only as much text as necessary to
analyze the change. We also demonstrated how this algorithm can be inte-
grated into an existing system. We showed an approach to enhance an existing
semantic checking system in order to take better use of incremental parsing.

14 KRISTÓF SZABADOS

The measurements shows that the algorithm yields reduced parsing times.
With the original method, small modifications triggered the analysis of the
whole file, lasting up to seconds. With the proposed algorithm the execution
of exactly the same test was hardly noticeable for human users.

9. Further work

It is desirable to continue this work, investigating the efficient processing of
the semantic changes. The algorithms described only change states of semantic
entities, whose textual representation changed. This should enable efficiently
processing of the semantic changes.

It would also be desirable to extend this analysis with supporting other
languages. We believe that the algorithms described can be used for efficient
processing of other file formats. This still needs to be checked in practice.

10. Acknowledgements

The authors would like to thank the Test Competence Center of Ericsson
Hungary for supporting this research and open sourcing the Titan project. The
Titan project contains the implementations of the algorithms and is accesible
as Eclipse Titan here: https://projects.eclipse.org/proposals/titan

References

[1] S. P. Abney, Rapid incremental parsing with repair in Proceedings of the 6th New OED
Conference: Electronic Text Research, University of Waterloo, Waterloo, Ontario, 1990,
pp. 19.

[2] M. Collins and B. Roark, Incremental parsing with the perceptron algorithm in Pro-
ceedings of the 42nd Annual Meeting on Association for Computational Linguistics,
ser. ACL 04., Association for Computational Linguistics, Stroudsburg, PA, USA, 2004.
articleno. 111, http://dx.doi.org/10.3115/1218955.1218970

[3] C. Ghezzi and D. Mandrioli, Augmenting parsers to support incrementality Journal
of the ACM, vol. 27, no. 3, ACM, New York, NY, USA, Jul. 1980., pp. 564579,
http://doi.acm.org/10.1145/322203.322215

[4] L. Huang and K. Sagae, Dynamic programming for linear-time incremental parsing in
Proceedings of the 48th Annual Meeting of the Association for Computational Linguis-
tics, ser. ACL 10., Association for Computational Linguistics, Stroudsburg, PA, USA,
2010, pp. 10771086. http://dl.acm.org/citation.cfm?id=1858681.1858791

[5] F. Jalili and J. H. Gallier, Building friendly parsers in Proceedings of the
9th ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, ser. POPL 82. New York, NY, USA, ACM, 1982, pp. 196206.
http://doi.acm.org/10.1145/582153.582175

[6] J.-M. Larchevêque, Optimal incremental parsing ACM Transactions on Programming
Languages and Systems, vol. 17, no. 1, ACM, New York, NY, USA, pp. 115, Jan. 1995.
http://doi.acm.org/10.1145/200994.200996

CREATING AN EFFICIENT AND INCREMENTAL IDE FOR TTCN-3 15

[7] G. Linden, Incremental updates in structured documents, Ph.D. disser-
tation, (1993), Department of Computer Science, University of Helsinki,
https://helda.helsinki.fi/bitstream/handle/10138/21469/abstract.pdf?sequence=2

[8] A. M. Murching, Y. V. Prasad, and Y. N. Srikant, Incremental recursive descent parsing
Computer Languages, vol. 15, no. 4, Pergamon Press, Inc., Tarrytown, NY, USA Oct.
1990, pp. 193204, http://dx.doi.org/10.1016/0096-0551(90)90020-P

[9] T. Par, K. S. Fisher: LL(*): the foundation of the ANTLR parser generator in Pro-
ceedings of the 32nd ACM SIGPLAN conference on Programming language design and
implementation, ser. PLDI’ 11., ACM New York, USA, 2011, pp. 425-436, ISBN: 978-
1-4503-0663-8 doi: 10.1145/1993498.1993548

[10] L. Petrone, Reusing batch parsers as incremental parsers in Proceedings
of the 15th Conference on Foundations of Software Technology and The-
oretical Computer Science. London, UK, Springer-Verlag, 1995, pp. 111123.
http://dl.acm.org/citation.cfm?id=646833.708027

[11] T. A. Wagner and S. L. Graham, History-sensitive error recovery in In preparation.
24/9/1997 17:26 PAGE PROOFS master, 1997.

[12] Li, Warren X., A Simple and Efficient Incremental LL(1) parsing, in pro-
ceedings of the 22nd Seminar on Current Trends in Theory and Practice
of Informatics, SOFSEM ’95 (1995), Springer-Verlag, London, pp. 399–404,
http://dl.acm.org/citation.cfm?id=647005.712013

[13] ITU, Information technology Abstract Syntax Notation One (ASN.1): Spec-
ification of basic notation, International Telecommunication Union, 07 2002.
http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf

[14] ETSI, Methods for Testing and Specification (MTS); The Testing
and Test Control Notation version 3; Part 1: TTCN-3 Core Lan-
guage, European Telecommunications Standards Institute, 04 2012.
http://www.etsi.org/deliver/etsi es/201800 201899/20187301/04.04.01 60/
es 20187301v040401p.pdf

[15] Oracle Inc. Java tuning white paper, (2005), http://www.oracle.com/technetwork/java/
tuning-139912.html

Appendix A. Procedures

Procedure 1 Change processing

1: procedure BackgroundThread(List of changes)
2: List merged ← Merge(changes);
3: for all change element of merged do
4: Syntax check(GetModule(edited file), change);

5: Semantic check(getProject(module));
6: end procedure

16 KRISTÓF SZABADOS

Procedure 2 The simplified algorithm skeleton

1: procedure GenericUpdate(Node node, Interval change)
2: for all child element of node do
3: if child.end < change.start then
4: continue;
5: else if child.start > change.end then
6: RecursiveUpdateLocation(child);
7: else if (child.start < change.start) and (child.end > change.end)

then
8: result ← GenericUpdate(child, change);
9: if result = true then

10: UpdateLocation(child);
11: else if Reparse(child) = false then
12: return false;

13: else
14: return false;

15: return true;
16: end procedure

Procedure 3 The algorithm for module level

1: procedure Update(Module module, Interval change)
2: if (module.start < change.start) and (module.end > change.end) then
3: result ← Update(module, change);
4: if result = true then
5: UpdateLocation(module);
6: return ;

7: ParseFile();
8: end procedure

CREATING AN EFFICIENT AND INCREMENTAL IDE FOR TTCN-3 17

Procedure 4 The algorithm for semantic lists

1: procedure Update(ListNode node, Interval change)
2: Number left ← node.start;
3: Number right ← node.end - 1;
4: Boolean enveloped ← false;
5: for all child element of node do
6: if child.start > change.start then
7: rightBound ← Min(child.start-1, right);
8: else if child.end < change.start then
9: leftBound ← Max(child.end, left);

10: else if (child.start < change.start) and (child.end > change.end)
then

11: result ← Update(child, change);
12: if result = true then
13: enveloped ← true;

14: if ¬ enveloped then
15: for all child element of node do
16: if (child.start > left) and (child.end < right) then
17: Remove(child);

18: enveloped ← Reparse(node, left, right);

19: if ¬ enveloped then
20: return false;
21: else
22: for all child element of node do
23: if (child.end > right) then
24: RecursiveUpdateLocation(child);

25: return true;

26: end procedure

18 KRISTÓF SZABADOS

1 module Example {
2 . . .

3 func t i on demonstrat ion (in i n t e g e r p va lue) runs on

demo component CT

4 {
5 . . .

6 f o r (var i n t e g e r i := 0 ; i <= 10 ; i := i +1) {
7 . . .

8 j := j + i ;

9 . . .

10 }
11 . . .

12 }
13 . . .

14 }

Listing 1. Example TTCN-3 code

Appendix B. Example operation

The example code (Listing 1) contains one function, with one loop and
one statement shown, among any number of other definitions and statements.

If the addition (line 8) is changed to a substraction, the algorithm is called
with the module node (line 1) and the location of the changed chaarcter. The
module level (Procedure 3) forwards processing to the list of definitions, which
determines (Procedure 4) the definition to be checked (line 3). The function
definition checks (Procedure 2) it’s parts and determines, that the statement-
block might be able to handle the change. The statementblock searches the
list of statements (Procedure 4) and finds that the loop statement (line 6)
might handle the change. The for loop checks it’s parts (Procedure 2) and
finds that it’s statementblock needs to be searched. In the statementblock
of the for loop, the statement (line 8) containing the modification is found
(Procedure 4).

At this point the tool needs to parse only a single line. Implementing
the algorithms to reduce this region further can be a business decision, based
on how much the next step in the implementation costs, and how big of an
improvement it would bring.

Ericsson Telecommunications Hungary, H-1117 Budapest, Irinyi J. u. 4-20,
Hungary

E-mail address: Kristof.Szabados@ericsson.com

