
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIX, Special Issue 1, 2014
10th Joint Conference on Mathematics and Computer Science, Cluj-Napoca, May 21-25, 2014

UTILISING THE SOFTWARE METRICS OF REFACTORERL

TO IDENTIFY CODE CLONES IN ERLANG

VIKTÓRIA FÖRDŐS AND MELINDA TÓTH

Abstract. Code clones, the results of “copy&paste programming”, are
special types of bad smells. They have a negative impact on software
development and maintenance lifecycle. The usual way to detect bad smells
is to calculate software metrics. RefactorErl is a source code analysis
and transformation tool for Erlang; it provides several software metrics to
measure the complexity of the source code, and finds structures that violate
some existing requirements or standards, or points out bad smells based
on the results of them. In this paper we introduce an efficient, parallel,
software metric based clone detection algorithm, which utilises software
metrics of RefactorErl in an unusual way, for the functional programming
language Erlang. We have successfully evaluated it on various open-source
projects.

1. Introduction

Code clones are unwanted phenomena in the source code of several soft-
ware. Although it is straightforward to create a new instance of an already
existing source code fragment by copying, to identify them manually in an
industrial scale software is complicated, time consuming and sometimes im-
possible. Therefore tools that support clone identification are highly desired
in the software development and maintenance lifecycle.

Although several duplicated code detectors exist [7, 12, 18], only a few
of them concentrate on functional programming languages [6, 8, 11]. The
main goal of our work is to give an effective clone detector for the functional
programming language Erlang [2].

Various techniques [17] have been developed to identify code clones. The
general model of these algorithms is to measure the similarities in the source

Received by the editors: May 1, 2014.
2010 Mathematics Subject Classification. 68W40, 68W10.
1998 CR Categories and Descriptors. D.2.8 [Software engineering]: Metrics – Software

science; D.1.3 [Programming techniques]: Concurrent Programming – Parallel program-
ming .

Key words and phrases. software metrics, clone detection, Erlang, static analysis, bad
smell, RefactorErl, accurate result.

103



104 VIKTÓRIA FÖRDŐS AND MELINDA TÓTH

code. This can be expressed by the similarity of the tokens, syntax or seman-
tics.

RefactorErl [1, 5, 19] is a static source code analysis and transformation
tool for Erlang. It analyses the source code and calculates lexical, syntactic and
semantic information about Erlang programs. RefactorErl provides several
metrics to point out bad smells and to check coding conventions.

In this paper we describe how we can utilise the metrics of RefactorErl
to describe the lexical, syntactic and semantic structure of different source
code parts. We introduce an algorithm to identify code clones based on the
similarity and equality of these metric values.

2. Related Work

Various clone detection approaches have been proposed. The simplest
algorithm is the line-based detection where the recurrences of source code lines
are detected. This technique is not common.

The most commonly used techniques are token and syntax based methods
[9, 3]. Some of the algorithms transform the source according to their charac-
teristics over an abstract alphabet, and perform the clone detection on either
this representation, or on a suffix-tree built from the representation. This
technique is used by Wrangler [11] and the previous, unstable, unfinished pro-
totype within RefactorErl. Others build a sequence database from the source
code and use fingerprints for detection of clones [16].

Clone IdentifiErl [8] is a component of RefactorErl. It introduces an
AST/metric based clone detection algorithm for Erlang.

Mayrand et al. use a metric based approach to identify code clones [15].
They group the used metrics into four points of comparison and define the
cloning level (from exact copy to distinct functions) based on them. Although
some metrics are general enough to apply this theory on functional languages
as well, the method can not be applied on Erlang programs. The presented
metrics do not characterise the language sufficiently.

3. Motivation and RefactorErl

RefactorErl is a source code analysis and transformation tool for the dy-
namically typed strict functional programming language Erlang. The main
goal of the tool is to support effective software development and maintenance
through refactorings and code comprehension assistance.

The tool supports more than twenty refactoring transformations, and pro-
vides several features to aid code comprehension:

• dependency analysis and visualisation,
• semantic query language to retrieve semantic information,



USING SOFTWARE METRICS TO IDENTIFY CODE CLONES IN ERLANG 105

• investigation tracking,
• dynamic call analysis,
• data-flow detection,
• bad smell detection, etc.

The main features of the tool can be reached through a web-based inter-
face, an interactive or a scriptable console interface or an editor plugin (Emacs
or Vim).

RefactorErl provides more than thirty metrics to the users [10]. Software
metrics characterise and describe some properties of the language elements.
Once a language entity is similar to another language entity, the values of
the measured metrics should be the same or similar. Therefore our aim is to
utilise the metrics of RefactorErl to help the users to identify code clones in
the software.

3.1. Erlang. Erlang was designed to implement highly concurrent, distribu-
ted, fault-tolerant systems with soft real-time characteristics. Although the
dynamic nature of the language makes static program analysis complicated, a
tool to identify relations in the source code statically is desired.

The language is declarative and functional. Pattern matching, higher-
order functions, recursions, list comprehensions and other nice properties of
functional languages are present in Erlang, but the language is not pure: func-
tions may contain side-effects and sequencing.

An Erlang function is built from its function clauses describing the dif-
ferent ways of execution based on pattern matching and guards. A func-
tion clause is built from an expression sequence. The expressions in the se-
quence are called top-level expressions. Expressions can be simple expressions
(e.g. infix, send, function call) or branching expressions (e.g. case,

if, receive, try).
The definition of the factorial function with two function clauses is shown

in Erlang source 1.

factorial(0) -> 1;

factorial(N) when N > 0 ->

N1 = fact(N-1),

N1*N.

Erlang source 1: The definition of function factorial/1

3.2. Representation. To calculate metrics, the source code has to be anal-
ysed at first. RefactorErl has an asynchronous parallel semantic analyser
framework to handle the initial analysis, to build and to store the calculated



106 VIKTÓRIA FÖRDŐS AND MELINDA TÓTH

information. RefactorErl represents the source code in a three layered graph
(called a Semantic Program Graph). The lexical layer is built from the to-
kens of the source code. After the preprocessor has finished, the syntax layer,
containing the abstract syntax tree, is constructed. Later several semantic
analysers build the semantic layer of the graph (e.g., module and function
references, variable binding structure).

Information gathering is possible through graph traversing. RefactorErl
provides well-defined querying interfaces. The algorithm presented in this
paper uses information from the Semantic Program Graph to calculate the
metrics and to reach the corresponding language elements.

4. Metric Based Clone Detection

In this section, we introduce a new algorithm for clone detection. Our
algorithm, designed to be efficient and parallel, combines both some existing
techniques and a novel filtering system. To our current knowledge, these
techniques have never been used in Erlang.

Instead of designing another syntax-based algorithm, we have utilised soft-
ware metrics to determine the similarity between code fragments to produce
the initial clones. The set of initial clones can contain both irrelevant and false
positive clones, so it is narrowed down by the filtering system. The filtering
system applies another, stricter groups of metrics to determine the result set
by filtering out useless clone pairs.

4.1. Producing clone candidates. One of the most important decisions
that has to be made is the determination of the size of the smallest detectable
clone. Due to the high abstraction level of Erlang, the algorithm deals with
functions as units to select clones. We have observed that neither function
clauses nor top-level expressions are large enough structures to characterise
clones properly by software metrics.

Every function that has been loaded into RefactorErl is combined with
every other function to form pairs. The set of clone candidates consists of
these function pairs, and has the following cardinality for N functions:

N ∗ (N − 1)

2

The algorithm determine the set of initial clones from this set.

4.2. Determining initial clones. Before we detail the first phase of our
algorithm and show how software metrics can be used to measure similarity,
we take a look at the topic of similarity in general.



USING SOFTWARE METRICS TO IDENTIFY CODE CLONES IN ERLANG 107

4.2.1. Similarity. It can be said that two elements are similar to each other, if
the values of their examined attributes are nearly equal to each other; and that
the state of being similar depends on the studied features. Thus by changing
the examined features, separate items from the same set can become similar
to or absolutely different from each other. As described later, we can benefit
from this vagueness. We have decided to determine the similarity among clone
candidates by software metrics.

4.2.2. Software metrics. RefactorErl provides several ready-to-use software
metrics and a Semantic Program Graph that is rich in information and easy
to query. By gathering information from the Semantic Program Graph, not
only lexical and syntactic but also semantic attribute based software metrics
can be calculated. Each metric can be used to characterise separate features
of code fragments. In general, one metric cannot characterise a code fragment
completely, but several of them can. Thus, the more metrics are used, the
more precise the result is.

Description Maximum
deviation

Number of alphanumeric characters located inside comments. 10
Number of comment lines inside the definition form
of the function. 5
Number of unique macro applications. 2
Number of non-empty lines. 5
Average length of variable names. 3
Number of function clauses. 1
Number of guarded function clauses. 1
Number of such tokens that form the body of the function. 50

Table 1. List of metrics belonging to the Programming Style aspect

4.2.3. Aspects. Our chosen metrics can be grouped together by considering
which aspect of the source code they characterise. We have formed 3 groups,
called aspects, which are the following:

• Programming style: The Programming style metrics, shown in Ta-
ble 1, characterise not only the layout of the source code, but also
the programming style in which the application has been written. For
instance, the average length of variable names is one such metric.
• Expression: In Erlang only expressions exist, they are the main build-

ing blocks of Erlang programs. Due to their significant dominance, we
have dedicated a separate aspect to them. These metrics, shown in



108 VIKTÓRIA FÖRDŐS AND MELINDA TÓTH

Description Maximum
deviation

Number of top-level expressions. 5
Number of function calls. 5
Number of unique function calls. 2
Number of infix operator applications. 5
Number of clauses contained by branching expressions. 5
Number of guarded clauses contained by branching
expressions. 4
Number of variable bindings. 4
Number of such bound variables that have no reference. 5
Number of fun expressions (lambda expressions). 2
Number of unique record references. 3
Number of expressions that have side-effects. 2

Table 2. List of metrics belonging to the Expression aspect

Table 2, are used to measure several features of expressions, because
the way the expressions are constructed and used are absolutely de-
scriptive. For example, the number of unused variables belongs to this
aspect.
• Flow of control : Nearly any problem can be solved in several separate

ways, so the way the control is defined is also an expressive aspect. This
aspect, whose metrics are listed in Table 3, covers all of the control
structures that can be used in Erlang. For example, the number of
recursive calls or the number of started processes belong to it.

These aspects are independent from each other, and they describe the
lexical, syntactic and semantic properties of the source code, respectively. The
more aspects the elements of a clone candidate are found to be similar in, the
more certain their connections are.

4.2.4. Arbitrators. We have assigned each aspect to be examined by separate
arbitrators. Each arbitrator is responsible for judging each candidate as de-
scribed below, after the necessary assumptions are defined.

Let Metrics be the set of metrics whose elements need to be evaluated by
the arbitrator. Let A and B be the elements of a clone candidate on which
the metrics are evaluated.



USING SOFTWARE METRICS TO IDENTIFY CODE CLONES IN ERLANG 109

Description Maximum
deviation

Number of such sequential or decision nodes that appear
in the control flow graph of RefactorErl. 10
Number of control related decisions. 2
Number of recursive structures. 2
Number of exit points. 2
Number of computational nodes. 8
Average cardinality of nested branching expressions
of top-level expressions. 2
Number of independent, maximised-length paths in
the control flow graph of RefactorErl. 10
Number of message passings. 2
Number of started processes. 1
Number of raised exceptions. 2

Table 3. List of metrics belonging to the Flow of control aspect

If the arbitrator has detected the maximum amount of similarity between
the elements of a clone candidate, then its vote is promising.

∀M ∈Metrics(M(A) = M(B)) =⇒ vote = promising

If the arbitrator has pointed out that the elements of a candidate are resem-
bling to each other without being identical, then its vote is perhaps. To define
it, we need to introduce a new function that assigns the maximum deviation to
the given metric. The exact deviations of metrics, shown in Table 1, Table 2
and Table 3, are determined based on our empirical studies.

MaxDev :: Metrics 7→ N+

The vote is perhaps, if the computed metric values of the elements of the
investigated clone candidate differ from each other less than the corresponding
maximum value.

∀M ∈Metrics(|M(A)−M(B)| ≤MaxDev(M) ) =⇒ vote = perhaps

If the arbitrator has found no similarities between the elements of a clone
candidate, then its vote is impossible.

∃M ∈Metrics(|M(A)−M(B)| > MaxDev(M) ) =⇒ vote = impossible



110 VIKTÓRIA FÖRDŐS AND MELINDA TÓTH

4.2.5. Evaluating votes. By considering the votes of the arbitrators, 33 combi-
nations can occur as a result for each clone candidate, but exactly one of them
holds for each candidate at a time. However, we have found only four combi-
nations of them (shown in Table 4) useful, which we are able to determine and
also to categorise the initial clones with. Every clone candidate that does not
belong to any of these four categories, is dropped; all of the remaining clone
candidates form the set of initial clones.

Category Flow of Control Programming Style Expression

Cat1 promising promising promising
Cat2 promising perhaps promising
Cat3 promising impossible promising
Cat4 promising impossible perhaps

Table 4. Categories of initial clones based on the votes of arbitrators

Why have we found only these four combinations useful? We first observe
that only promising votes are present in the Flow of Control column. All of the
metrics of Flow of Control aspect try to characterise the semantics of functions
based on their control flow graphs, which are available within RefactorErl. If
the semantics of two functions differ from each other, then we consider that
these functions are likely to solve separate problems.

Furthermore, only the Programming Style column contains all of the pos-
sible votes. This is motivated by the following observations. Each programmer
has his/her own style that is preserved by the source code. Although, all of
the attributes of this aspect vanish after the source code has been compiled,
we consider this aspect meaningful, because we have observed that usually
when making clones both comments and the programming style in which the
copied function has been written are preserved.

We also observe that no impossible votes can be seen in the Expression
column. By considering that the main building blocks of Erlang programs are
expressions, it follows that two functions built up from different expressions
cannot form a clone.

An interesting but useless combination is when only the Programming
Style is promising (identical), and the other votes are impossible. In this case,
we have two functions, probably written by the same programmer, who either
has a very unique style or no knowledge of the coding conventions.

For the Flow of Control aspect, the constraint that all of the values of
these metrics must be equal to each other seemed too strict for selecting ini-
tial clones, so we have tried another solution. Specially, we modified the
circumstances under which a promising vote can be given as defined below.



USING SOFTWARE METRICS TO IDENTIFY CODE CLONES IN ERLANG 111

∀M ∈Metrics(|M(A)−M(B)| < MaxDev(M)∗0.3 ) =⇒ vote = promising

This rule allows a smaller deviation, that depends on the original deviation.
Contrary to our expectations, we observed that the cardinality of the initial
clones becomes at least two times larger, but the growth of the result set is
infinitesimal, thus we rejected this attempt.

4.3. Narrowing down the set of the initial clones. We have observed
that syntax-driven algorithms produce fewer initial clones than our algorithm,
but these algorithms can overlook some clones, because they have strict addi-
tional constraints that are not included in our algorithm. The constraints may
originate from some information loss caused by flattening down the syntax-tree
or from an over-emphasis on syntactic structure.

Considering our algorithm, it is likely to happen that the set of initial
clones contains function pairs whose structures are different from each other,
because the selection of initial clones is metric-driven. Thus an efficient filter-
ing system is desired to narrow down the set of initial clones.

4.3.1. False positive and irrelevant clones. First, we discuss the difference be-
tween false positive and irrelevant clones. False positive clones are such clones
that are not real clones in fact, whilst irrelevant clones are real clones, but
they are absolutely useless. Exemplars of both kinds of clones are shown in
Figure 1.

False positive clone Irrelevant clone

f(List) -> 1+length(List).

g() -> self() ! message.

new_cg() -> #callgraph{}.

new_plt() -> #plt{}.

Figure 1. Exemplars of false positive and irrelevant clones

Clone detection algorithms usually focus only on false positive clones dur-
ing filtering, and do not deal with irrelevant clones. Our goal was to construct
an algorithm that highlights only important clones, so we have tried to filter
out clones that are likely to serve no useful purpose. We have observed that
the complete result of clone detection can be ruined by a huge amount of ir-
relevant clones, because the user is not capable of distinguishing important
clones from irrelevant clones while he/she is being swamped with worthless
details.

Our filtering system makes up the second phase of the algorithm, which
again uses arbitrators to remove both irrelevant and false positive clones. We
note that this filtering system completely differs from the filtering system that



112 VIKTÓRIA FÖRDŐS AND MELINDA TÓTH

we introduced our previous algorithm [8]. The only thing common in these
filtering systems is their purpose; both filter out false positive and irrelevant
clones.

4.3.2. Arbitrators. The arbitrators introduced in the first phase have different
tasks in the second phase; they have to vote on each initial clone. An arbitrator
votes true, if the arbitrator regards the clone as an important clone, otherwise
it votes false. The arbitrator only votes on those initial clones that did not
receive an impossible vote from this arbitrator in the first phase. Thus, the
conditions being examined on an initial clone depend on the poll result of the
first phase. If all of the involved arbitrators vote true, then the initial clone
appears in the result set of the algorithm, otherwise it is dropped.

Why are not all of the arbitrators involved in the poll? We might lose
some important clones, if all of the arbitrators poll about all of the clones.
To understand the reason, consider votes of Cat4 in Table 4. In this category
the forming elements of an initial clone were found to be written in different
programming styles, thus it is likely that the vote of the Programming style
arbitrator would be negative again. However, this negative vote should be not
taken into account, because this clone has been accepted into the set of initial
clones, for which the vote of Programming style was disregarded.

4.3.3. Forming votes. The votes of the arbitrators are determined by evaluat-
ing all of the conditions of their condition sets. Every condition is an ordered
pair, whose elements are a characterising function and a binary predicate. Ev-
ery characterising function queries and characterises some lexical, syntactic or
semantic property (etc. number of tokens) of the given function as defined
below.

PropertyFun :: Function 7→ Property

Each binary predicate assigns a boolean value to every given pair of prop-
erties. The assigned value depends on the condition in which the binary pred-
icate is defined.

PredicateFun :: Property × Property 7→ {true, false}
Let Conds denote the condition set that needs to be evaluated, and let A

and B denote the elements of the examined initial clone. We then formalise
how the vote of an arbitrator is determined as follows.

∀C ∈ Conds(C.PredicateFun(C.Prop(A), C.Prop(B)))⇔ vote = true

Thus, the vote is true if and only if all of the conditions evaluate to true;
otherwise the vote is false.

In the following, we detail the conditions that are currently used to form
the votes of arbitrators. Although any number of conditions can belong to



USING SOFTWARE METRICS TO IDENTIFY CODE CLONES IN ERLANG 113

a condition set, each condition set has a single condition at the moment.
Before we detail the conditions that belong to Flow of Control, Expression
and Programming Style respectively, we detail one special condition set.

4.3.4. Identical Condition set. Considering Cat1 initial clones, it can be easily
seen that identical or nearly identical clones belong to this category. A clone
is considered to be an identical clone, if its forming functions differ from each
other only in identifiers or constants. If the first phase of the algorithm has
detected a real, quite complex identical clone, then this clone should still be
considered as a clone even if none of the conditions used for every other clone
is true. To summarise, it can be said that Cat1 clones are exceptions and are
treated differently than other clones.

In this condition set two conditions exist that are called Identical functions
and Complexity. The Identical functions condition tries to filter out those
clones whose functions differ from each other in terms of something other than
their identifiers and constants. To every given function, this characterising
function assigns a string that is formed as follows. The syntax tree of the
function is flattened down by assigning a separate character to each token
type, except to those tokens that form a function call. We preserve the name
of the called function to filter out those clones that refer to different functions,
because these clones cannot be identical clones. The binary predicate of this
condition is a simple equivalence test, it assigns true to every pair of identical
strings, otherwise it assigns false.

The Complexity condition tries to filter out clones that have at least one
element that is not complex enough. A function is not complex enough, if none
of its function clauses are complex enough. A function clause is not complex
enough, if the depth of its syntax-tree is small. To every given function,
the characterising function assigns the maximum depth value of its function
clauses. Given two depth values, denoted by A and B respectively, the binary
predicate assigns true to them, only if: A > 4 ∧ B > 4

4.3.5. Flow of Control Condition set. In this set, the only condition is the
Ratio of same function calls. It tries to filter out clones whose elements call
mostly separate functions, because the semantics of these clones are likely to
differ from each other. To each function, this characterising function assigns
a set of functions referred to directly from the given function. For every
initial clone the characterising function assigns two sets of functions, which
are denoted by A and B, respectively. The binary predicate assigns true to
the given properties only if the following statement holds:

|A|+ |B| − 2 ∗ |A ∩B|
|A ∩B|

< 0.1



114 VIKTÓRIA FÖRDŐS AND MELINDA TÓTH

4.3.6. Expression Condition set. The only condition that belongs to this set is
Maximum depth of function clauses. It does the same as Complexity condition
does, except that binary predicate is stricter. Given two depth values, denoted
by A and B respectively, the binary predicate assigns true to them, only if:
A > 7 ∧ B > 7

4.3.7. Programming Style Condition set. This set has one condition, namely
Minimum number of tokens. It gets rid of clones that have at least one short
element. To every function, the characterising function assigns the sum of the
number of tokens forming its function clause bodies. Given two token counts,
denoted by A and B respectively, the binary predicate assigns true to them,
only if: A ≥ 20 ∧ B ≥ 20

4.3.8. Filtering system. We now describe the filtering system that uses the
above condition sets. The filtering system works by narrowing down the set
of initial clones to produce the result set of clones by narrowing down the set
of initial clones. We have defined a flexible system that is capable of handling
separate categories of initial clones by utilising arbitrators again.

Each initial clone is analysed as follows based on its category. If the initial
clone is a Cat1 clone, then only the Identical Condition set is evaluated on it,
otherwise the arbitrators poll any clone to which the arbitrator has not given
an impossible vote during the first phase. The vote of each involved arbitrator
is computed by evaluating its condition set. If more than one arbitrator is
involved in the poll, then their votes are summed up by taking the conjunction
of their votes. If the result is true, then the clone appears in the result set of
the algorithm, otherwise it is dropped.

5. Evaluation

5.1. Notes on implementation. The implementation of our algorithm is ex-
tremely specialised for Erlang. The whole algorithm is designed to be efficient
and parallel, because every metric value of a function is calculated in a lazy
and caching way, and the processing is done by separate processes that follow
a work-stealing strategy. To make the application more scalable, the number
of worker processes is determined at run-time, based on the attributes, such
as, the number of available processors, of the computer running the program.

During the first phase of the algorithm, worker processes are responsible
for controlling polls related to clone candidates. Each process gathers an
unprocessed clone candidate and manages the voting among the arbitrators.
Each vote is determined by computing only the necessary amount of software
metric values. The arbitrators, which have been instantiated either in the
same process or in separate processes, share the same cache tables, so the



USING SOFTWARE METRICS TO IDENTIFY CODE CLONES IN ERLANG 115

caching level is maximised to avoid calculating the same metric value twice.
After all of the arbitrators have voted, two cases can happen: the candidate
can become an initial clone or can be ignored during the second phase of the
algorithm.

During the second phase of the algorithm, worker processes control polls
related to unprocessed initial clones. The result of the poll can be determined
by evaluating a logical conjunction chain, which is nested when more than one
arbitrator is involved in the poll. Based on this observation, every conjunc-
tion chain can be computed by short-circuit evaluation. Thus, no pointless
operation is performed.

5.2. Evaluation. Our algorithm performed well on several open-source pro-
jects, including Mnesia [14], Dialyzer [13] and Wrangler [11]. The well-known
Bellon’s benchmark [4] deals with only imperative languages and does not
offer any test projects written in Erlang. Unfortunately, we have not found
any alternatives specialised for Erlang, thus we had to analyse the detected
clones manually. All the clones we found in the result set are considered to be
real clones by us.

We have observed that the result of the algorithm is quite hard to com-
prehend, if a function has several occurrences. Crucially, if a function has N

occurrences then N∗(N−1)
2 pairs are reported by the algorithm. In the case

of Mnesia, the 13 detected cloned occurrences of mnesia:val/1 function were
reported as 78 pairs.

We have noticed that the new implementations of previously existing
features are likely to be created by copy&pase programming (e.g:
refac clone evolution and refac inc sim code modules in Wrangler, or
dialyzer gui and dialyzer gui wx modules in Dialyzer). Some properties
of the test runs are shown in Table 5.

Project Line of Func.s Analysed Initial clones Clones Execution
code (pcs) pairs (pcs) (pcs) (pcs) time (sec)

Dialyzer 17 292 1 481 520 710 20 660 24 65
Mnesia 22 594 1 687 1 418 770 51 773 123 141
Wrangler 51 274 4 037 5 887 596 178 286 466 1 047

Table 5. Properties of test runs

Some interesting clones (found in Mnesia, Wrangler and Dialyzer respec-
tively) are shown below.

First instance (found in mnesia):

%% Local function in order to avoid external function call



116 VIKTÓRIA FÖRDŐS AND MELINDA TÓTH

val(Var) ->

case ?catch_val(Var) of

{’EXIT’, Reason} -> mnesia_lib:other_val(Var, Reason);

Value -> Value

end.

Second instance (found in mnesia_index):

val(Var) ->

case ?catch_val(Var) of

{’EXIT’, _ReASoN_} -> mnesia_lib:other_val(Var, _ReASoN_);

_VaLuE_ -> _VaLuE_

end.

Category: 2

First instance (found in api_refac):

exported_funs(File) ->

{ok, {_, Info}} = wrangler_ast_server:parse_annotate_file(File, true),

case lists:keysearch(exports, 1, Info) of

{value, {exports, Funs}} ->

Funs;

false ->

[]

end.

Second instance (found in api_refac):

defined_funs(File) ->

{ok, {_, Info}} = wrangler_ast_server:parse_annotate_file(File, true),

case lists:keysearch(functions, 1, Info) of

{value, {functions, Funs}} ->

Funs;

false ->

[]

end.

Category: 1

First instance (found in dialyzer_utils):

keep_endian(Flags) ->

[cerl:c_atom(X) || X <- Flags, (X =:= little) or (X =:= native)].

Second instance (found in dialyzer_utils):

keep_all(Flags) ->

[cerl:c_atom(X) || X <- Flags,

(X =:= little) or (X =:= native) or (X =:= signed)].

Category: 4

By comparing the presented algorithm with Clone IdentifiErl, we have ob-
served that the main difference between the presented algorithm and Clone



USING SOFTWARE METRICS TO IDENTIFY CODE CLONES IN ERLANG 117

IdentifiErl originates from the chosen unit. Clone IdentifiErl works with top-
level expressions as units, thus it can detect such clones whose elements form
functions only partially. However, working with top-level expressions has a
deficiency: the problem space of Clone IdentifiErl is larger by orders of mag-
nitude.

6. Conclusion and Future work

In this paper we have described a metric based clone detection algorithm
for Erlang. In the presented methods we have utilised the source code repre-
sentation and the already implemented metrics of RefactorErl. Our algorithm
is efficient and parallel, and introduces a filtering system to eliminate both
false positive and irrelevant clones. We have evaluated our algorithm on the
source code of different open source projects, and compared the algorithm
with Clone IdentifiErl.

We want to further evaluate and improve our techniques. At first, we want
to work out an algorithm which clones can be grouped with to make the result
more comprehensive as this need has been shown above. On the other hand we
are going to further study the results of our analysis and tune the algorithm
by altering the number of used metrics and the parameters.

Acknowledgement

This work has been supported by Ericsson–ELTE-Soft–ELTE Software
Technology Lab. The authors would like to thank Julia Lawall for her useful
advices.

References

[1] RefactorErl Homepage. http://plc.inf.elte.hu/erlang.
[2] Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic

Bookshelf, 2007.
[3] I.D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection using

abstract syntax trees. In Software Maintenance, 1998. Proceedings., International Con-
ference on, pages 368–377, 1998.

[4] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Comparison and Evaluation
of Clone Detection Tools. Software Engineering, IEEE Transactions on, 33(9):577–591,
2007.

[5] I. Bozó, D. Horpácsi, Z. Horváth, R. Kitlei, J. Kőszegi, M. Tejfel, and M Tóth. Refac-
torErl - Source Code Analysis and Refactoring in Erlang. In Proceedings of the 12th
Symposium on Programming Languages and Software Tools, ISBN 978-9949-23-178-2,
pages 138–148, Tallin, Estonia, October 2011.

[6] Christopher Brown and Simon Thompson. Clone Detection and Elimination for Haskell.
In John Gallagher and Janis Voigtlander, editors, PEPM’10: Proceedings of the 2010
ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, pages
111–120. ACM Press, January 2010.



118 VIKTÓRIA FÖRDŐS AND MELINDA TÓTH

[7] James R. Cordy and Chanchal K. Roy. The NiCad Clone Detector. In Proceedings of
the 2011 IEEE 19th International Conference on Program Comprehension, ICPC ’11,
pages 219–220, Washington, DC, USA, 2011. IEEE Computer Society.

[8] Viktória Fördős and Melinda Tóth. Identifying Code Clones with RefactorErl. In Pro-
ceedings of the 13th Symposium on Programming Languages and Software Tools, ISBN
978-963-306-228-9, pages 31–45, Szeged, Hungary, August 2013.

[9] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a multilinguistic token-based code
clone detection system for large scale source code. Software Engineering, IEEE Trans-
actions on, 28(7):654–670, 2002.

[10] R. Király and R. Kitlei. Application of complexity metrics in functional languages.
In Proceedings of 8th Joint Conference on Mathematics and Computer Science, ISBN
978-963-9056-38-1, pages 267–282, Komrno, Slovakia, July 2010.

[11] Huiqing Li and Simon Thompson. Clone detection and removal for Erlang/OTP within
a refactoring environment. In Proceedings of the 2009 ACM SIGPLAN workshop on
Partial evaluation and program manipulation, PEPM ’09, pages 169–178, New York,
NY, USA, 2009. ACM.

[12] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. CP-Miner: a tool for
finding copy-paste and related bugs in operating system code. In Proceedings of the 6th
conference on Symposium on Opearting Systems Design & Implementation - Volume 6,
OSDI’04, pages 20–20, Berkeley, CA, USA, 2004. USENIX Association.

[13] Tobias Lindahl and Konstantinos Sagonas. Practical type inference based on success
typings. In Proceedings of the 8th ACM SIGPLAN Symposium on Principles and Prac-
tice of Declarative Programming, pages 167–178, New York, NY, USA, 2006. ACM
Press.

[14] Haakan Mattsson, Hans Nilsson, and Claes Wikstrom. Mnesia - A Distributed Robust
DBMS for Telecommunications Applications. In PADL ’99: Proceedings of the First
International Workshop on Practical Aspects of Declarative Languages, pages 152–163.
Springer-Verlag, 1998.

[15] J. Mayrand, C. Leblanc, and E.M. Merlo. Experiment on the automatic detection of
function clones in a software system using metrics. In Software Maintenance 1996, Pro-
ceedings., International Conference on, pages 244–253, 1996.

[16] Susan H. Randy Smith. Detecting and Measuring Similarity in Code Clones. IWSC,
2009.

[17] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. Comparison and Evaluation
of Code Clone Detection Techniques and Tools: A Qualitative Approach. Sci. Comput.
Program., 74(7):470–495, May 2009.

[18] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. Winnowing: local algorithms
for document fingerprinting. In Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, SIGMOD ’03, pages 76–85, New York, NY, USA,
2003. ACM.

[19] Melinda Tóth and István Bozó. Static analysis of complex software systems implemented
in Erlang. In Proceedings of the 4th Summer School conference on Central European
Functional Programming School, CEFP’11, pages 440–498, Berlin, Heidelberg, 2012.
Springer-Verlag.

ELTE-Soft Nonprofit Ltd & Department of Programming Languages and
Compilers, Faculty of Informatics, Eötvös Loránd University

E-mail address: [f-viktoria,tothmelinda]@elte.hu


