STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume LIX, Special Issue 1, 2014
10th Joint Conference on Mathematics and Computer Science, Cluj-Napoca, May 21-25, 2014

VISUALIZATION TECHNIQUES OF COMPONENTS FOR
LARGE LEGACY C/C++ SOFTWARE

MATE CSEREP AND DANIEL KRUPP

ABSTRACT. C and C++4 languages are widely used for software develop-
ment in various industries including Information Technology, Telecommu-
nication and Transportation since the 80-ies. Over this four decade, com-
panies have built up a huge software legacy. In many cases these programs
become inherently complicated by implementing complex features (such
as OS kernels or databases), and consisting several millions lines of code.
During the extended development time, not only the size of the software
increases, but a large number (i.e. hundreds) of programmers get involved
in the project. Mainly due to these two factors, the maintenance of these
software products becomes more and more time consuming and costly.

To handle the above mentioned complexity issue, companies apply soft-
ware comprehension tools to help in the navigation and visualization of
the legacy code. In our article we present a visualization methodology
that assists programmers in the process of comprehending the functional
dependencies of artifacts in a C++ source. Our novel graph represen-
tation not only reveals the connections between C/C++ implementation
files, headers and binaries, but also visualizes the relationships between
larger software components — e.g directories —, and provides a method for
architecture compliance checking. The applied technique does not require
any modification or documentation of the source code, hence it solely relies
on the compiler generated Abstract Syntax Tree and the build information
to analyze the legacy software.

1. INTRODUCTION

One of the main task of code comprehension software tools is to provide
navigation and visualization views for the reusable elements of the source code,
because humans are better at deducing information from graphical images
[3, 12]. We can identify reusable software elements in C/C++ language on

Received by the editors: May 1, 2014.

2010 Mathematics Subject Classification. 68N99.

1998 CR Categories and Descriptors. 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling — Object hierarchies.

Key words and phrases. code comprehension, software maintenance, static analysis, com-
ponent visualization, graph representation, functional dependency.

59

60 MATE CSEREP AND DANIEL KRUPP

many levels (see Figure 1). On a smaller scale, functions provide reusable
implementation of a specific behavior. The next level of modularity in C++
are classes, where a programmer can collect related functions and data that
belong to the same subject-matter. Header files compose the next level, where
related functions, variables, type declarations and classes (in C++ only) can be
grouped into a semantic unit. Finally, related header files (possibly contained
in a directory) can form the interface of a reusable binary component, a library.

Contains

Function

FIGURE 1. Modularity in the C++ language

State of the art software comprehension and documentation tools imple-
mented visualization methods for many of these modularization layers. On
the function level call graph diagrams can show the relations between the
caller and the called functions [14], while on the class level, one can visual-
ize the containment, inheritance and usage relations by e.g. UML diagrams.
On the file level, header inclusion diagrams help the developers in the code
comprehension process. [13]

We argue that the state of the art in file and module level diagrams are
not expressive enough to reveal some important dependency relationships of
the implementation among header files and directories containing source code.

In this paper, we describe a new visualization methodology that exposes
the relations between implemented and used header files and the source file
dependency chains of C/C++ software. In this article we also present that
our approach identifies the usage and implementation relationships between
directory level components.

This paper is structured as follows. In Section 2 the literature of the state
of the art is reviewed with special focus on static software analysis. Section 3
describes which important views are missing from the current software com-
prehension tools, and in Section 4 we present novel views that can help C and
C++ programmers to better understand legacy source code. Then in Section 5
we demonstrate our result by showing examples on real open-source projects.
Finally in Section 6 we conclude the paper and set the directions for future
work.

2. RELATED WORK

Researchers have proposed many software visualization techniques and
various taxonomies have been published over the past years. These tools ad-
dress one or more of three main aspects (static, dynamic, and evolutional) of

VISUALIZATION TECHNIQUES OF COMPONENTS FOR C/C++ SOFTWARE 61

a software. The visualization of the static attributes focuses on displaying the
software at a snapshot state, dealing only with the information that is valid
for all possible executions of the software, assisting the comprehension of the
architecture of the program. Conversely, the visualization of the dynamic as-
pects shows information about a particular execution of the software, therefore
helps to understand the behavior of the program. Finally, the visualization
of the evolution — of the static aspects — of a software handles the notion of
time, visualizing the alternations of these attributes through the lifetime of
the software development. For a comprehensive summary of the current state
of the art see the work of Caserta et al.[4].

The static analysis of a software can be executed on different levels of
granularity based on the level of abstraction. Above a basic source code level,
a middle — package, class or method — level, and an even higher architecture
level exists. In each category a concrete visualization technique can focus
on various different aspects. Some of the most popular and interesting new
visualization techniques are described below and a summary of categorization
is shown on Table 1 for them.

Kind Level Focus Techniques
Line Line properties Seesoft
Class Functioning, Metrics | Class BluePrint
Organization Treemap
Time T
Dependency
Visualization)
Architecture Structure Matrix
Relationship UML Diagrams
Node-link Diagrams
3D Clustered Graphs
Visualizing Evolution

TABLE 1. Categorization of visualization tools

The most simple, code line centered visualization has an abstraction level
similar than the source code itself. An example for such a technique is SeeSoft
[6, 1]. This visualization method is a miniaturized representation of the source
code lines of the software, where a line of code is represented by a colored line
with a length proportional to the length of the code line and colors can stand

62 MATE CSEREP AND DANIEL KRUPP

for variety of mapping — e.g. the corresponding control structures. Indentation
is preserved, hence the structure of the source code stays visible even when a
large volume of code is displayed.

The class centered visualization techniques focus on the behavior or the
metrics (e.g. about the cohesion) of a class, which helps in understanding the
inner functioning of a class alone, or in the context of its direct inheritance
hierarchy. As an example the class blueprint visualization technique [9, 5]
displays the overall structure of a class, the purpose of methods within it and
the relationship between methods and attributes. The information conveyed
by it is otherwise often hard to notice because it would require the line by line
understanding of the entire class.

Visualizing the architecture consists of depicting the hierarchy and the re-
lationships between software components. It is one of the most frequently ad-
dressed topics in the software visualization field, as object-oriented programs
are usually structured hierarchically both by the recursive package/module
containment and by the fact that classes are structured by methods and at-
tributes. Therefore most of the visualization techniques tackles the archi-
tectural level. One aspect is to focus on the organization like the well-known
treemap method [8, 11], which recursively slices a box into smaller boxes (both
horizontally and vertically) for each level of the hierarchy.

Our article focuses on assisting the code comprehension through visual-
izing the relationships between architectural components of a software. This
category not only contains various prevalent and continuously improved vi-
sualizing techniques like the UML diagrams [7], but also recently researched,
experimental diagrams like the three dimensional clustered graphs [2]. This
technique aims to visualize large software in an integral unit, by generating
graphs in a 3D space and grouping remote vertices and classes into clusters.
The visibility of the inner content of a cluster depends dynamically on the
viewpoint and focus of the user who can traverse the whole graph.

Our novel solution uses the classical node-link diagram in two dimensional
space for visualization, which was formerly used at lower abstraction levels
primarily.

3. PROBLEMS OF VISUALIZATION OF C/C++ MODULARITY

Modularity on the file level of a software implementation in C/C++ is
expressed by separating interfaces and definition to header and implementation
files. This separation allows the programmers to define reusable components
in the form of — static or dynamic — libraries. Using this technique, the user
of the library does not need to have knowledge about the implementation of
it in order to use its provided services. Interfaces typically contain macro and

VISUALIZATION TECHNIQUES OF COMPONENTS FOR C/C++ SOFTWARE 63

type definitions, function and member declarations, or constant definitions.
Implementation files contain the definition of the functions declared in the
headers.

Separation of these concerns is enforced by the C/C++ compiler, prepro-
cessor and linker infrastructure. When a library is to be used, its header file
should be included (with using the #include preprocessor directive) by the
client implementation or the header files. Source files should almost never! be
included in a project where the specification and implementation layers are
properly separated. Unfortunately C/C++ does not enforce naming conven-
tions to the header and implementation files (like e.g. Java does). Thus, based
on a name of a file, it is not possible to find out where the methods of a class
are declared or implemented. Furthermore, the implementation of the func-
tions declared in a header file can be scattered through many implementation
files that makes the analysis even more difficult.

When a programmer would like to comprehend the architecture of a soft-
ware, the used and provided (implemented) interface of a library component
or the implementers of a specific interface should quickly able to be fetched.

Problem (File dependencies). Let us analyze the commonly presented header
inclusion graph of a fileset in Figure 2. We assume that 1ib.h is an interface of
a software library and that there are many user of this component, thus many
files includes this header. If the programmer would like to understand where
the functions declared in the header are implemented, the header inclusion
graph is not helpful, since it does not show which C/C++ files only use, and
which implement the 1ib.h interface.

Includes Includes Includes Includes

component1.cc component2.cc component3.cc component4.cc

FIGURE 2. Implementation decision problem between compo-
nent(s) and an interface.

LA few exceptions may exist, i.e. in some rare cases of template usage.

64 MATE CSEREP AND DANIEL KRUPP

We propose an Interface diagram that is similar to the well-known header
inclusion graph, but refines the include relation into uses and provides rela-
tionships. For this purpose we defined that a C/C++ file provides a header
file, if it contains its implementation, while it only uses it if the mentioned
file refers to at least one symbol in the header, but does not implement any
of them. A proper and precisely defined description of this view is given in
Section 4.1.

Problem (Directory-based dependencies). Similar views are of great interest
also on a higher, module level. For example we can examine the directory
containment graph in Figure 3. It is a very basic question from a software de-
veloper to identify the dependency relations between the modules of a project,
e.g. whether modulel is used by module2 and module3 or not. To extract this
information it is necessary to generalize the file level dependency relationships
discussed beforehand.

Subdir

Subdir

Subdir

FIGURE 3. Dependency decision problem between modules.

In this paper we set forward views that code comprehension software tools
can provide to unveil this hidden information.

4. DEFINITIONS OF RELATIONSHIPS BETWEEN COMPILATION ARTIFACTS

In this section first we introduce the commonly used basic terms of rela-
tionships defined between the C/C++ source files and the binary objects (see
Figure 4), then present our more complex relationship definitions to describe
the connections between the components of a software at a higher abstraction
level.

VISUALIZATION TECHNIQUES OF COMPONENTS FOR C/C++ SOFTWARE 65

Definition (Relations between source files). At the level of the abstract syn-
tax tree the main artifacts of a C/C++ source code are the user defined sym-
bols?, which can be declared, defined or referred/used by either the source
files (.c/.cc) or the header files (.h/.hh). A C/C++ symbol might have
multiple declarations and references, but can be defined only once in a se-
mantically correct source code. To enforce the separation of the specification
and implementation layer, header files should mainly consist of declarations,
whose definitions are in the appropriate source files.?> From our perspective
only those C/C++ symbols are important, which are declared in a header file
and are defined or referred by a source file.

C/C++ Function Symbol

Defines
Declares
Refers

Includes

(uses, provides) ~|

Compiled from

(contains) Includes

Stat links (contains)

Dynamic links
(contains)

FIGURE 4. Relations between compilation artifacts.

Definition (Relations between binaries). The source files of a project are
compiled into object files, which are then statically linked into shared objects

2From our viewpoint only the function (and macro) symbols and their declaration, defi-
nition and usage are significant.

3In some cases, headers may contain definition and source file may also contain forward
declarations as an exception.

66 MATE CSEREP AND DANIEL KRUPP

or executable binaries. Shared objects are linked dynamically into the executa-
bles at runtime. To extract this information and visualize the relationship of
binaries together with the relations declared between the C/C++ files, the
analysis of the compilation procedure of the project is required beside the
static analysis of the source code.

For the purpose of the presented visualization views in this paper the differ-
ent kind of binary relationships is irrelevant, therefore they will be collectively
referred as the contains relation henceforward (see Figure 4).

4.1. File-based classification. The basic include relationship among the
source and header C/C++ files have already been introduced, however in
order to solve the first problem raised in Section 3, the definitions of the pro-
posed uses and provides relations have to be separated.

Definition (Provides relationship from source ¢ to header h). We say that
in a fileset a source file ¢ provides the interface specified by the header file h,
when ¢ includes h and a common symbol s exists, for which h contains the
declaration, while ¢ consists the definition of it.

Definition (Uses relationship from source ¢ to header h). Similarly to the
previous provides relationship, we state that in a fileset a source file ¢ uses the
interface specified by the header file i, when ¢ includes, but does not provide
h and a common symbol s exists, which c refers and h contains the declaration
of it.

Figure 4 shows the illustration for the above mentioned definitions. Based
on the idea of the already introduced Interface diagram, which shows the im-
mediate provides, uses and contains relations of the examined file, we defined
the following more complex file-based views.

The nodes of these diagrams are the files itself and the edges represent the
relationships between them. A labeled, directed edge is drawn between two
nodes only if the corresponding files are in either provides, uses or in contains
relationship. The label of the edges are the type of their relationship and they
have the same direction as the relation they represent.

Definition (Used components graph of source ¢). Let us define the graph with
the set of nodes IV and set of edges E as follows. Let S be the set of source
files which provides an interface directly or indirectly used by c. N consists of
¢, the elements of S and the files along the path from ¢ to the elements of S.
Binaries containing any source file in S are also included in N. E consists the
corresponding edges to represent the relationships between the nodes in V.

Intuitively we can say if source ¢ is a used component of ¢, then ¢ is using
some functionality defined in t.

VISUALIZATION TECHNIQUES OF COMPONENTS FOR C/C++ SOFTWARE 67

Definition (User components graph of source ¢). Let us define the graph with
the set of nodes N and set of edges E as follows. Similarly to the previous
definition, let S be the set of source files which directly or indirectly uses the
interface(s) provided by c. N consists of ¢, the elements of S and the files along
the path from c to the elements of S. Binaries containing any source file in S
are also included in N. FE consists the corresponding edges to represent the
relationships between the nodes in N.

Intuitively we can say if source t is a user component of ¢, then c is pro-
viding some functionality used by t.

4.2. Directory-based classification. Directory hierarchy in a C/C++ pro-
ject carries very important architectural information. This is the most com-
monly used technique for modularizing the source code (think of the Linux
kernel modules for example). Many times the build process also follows this
modularity, since in a recursive Makefile based build system, the Makefiles are
written per directory, many times linking the compiled binaries into a single
executable or reusable library. Thus the directory boundaries are frequently
the same as the library boundaries.

Files within a module are usually strongly coupled, they implement fea-
tures that are closely related. Hence for understanding a large legacy software,
it is vital to know how the modules are interconnected. To define these con-
nections we use the relationships we defined for files.

Definition (Module). A module is a directory tree which contains at least
one C/C++ source code file. Please note, that from this definition it follows
that a module can contain other modules. We say that module A and B are
separate modules if A is not a sub-module of B and B is not a sub-module of

A.

Definition (Implements relationship from module A to B). We say that a
module A implements another module B if module A and B are separate and
A contains at least one implementation file ¢ which which provides a header
h which is in B.

Intuitively we can say if module A implements module B, then module A
implements at least one of the services of module B.

Definition (Depends on relationship from module A to B). We can say that
module A depends on module B if module A and B are separate , A does not
implement B and A contains at least one implementation file ¢ which uses a
header h contained by B.

Intuitively we can say if module A depends on module B, then module A
is using the services of module B.

68 MATE CSEREP AND DANIEL KRUPP

The illustration of the above definitions are depicted in Figure 5. Using
these relationships we are able to visualize the internal architecture of a module
and its external relationships by defining the following graph diagrams.

Provides

Contains Contains Contains Contains

Implements Depends On

(A) The implements relationship. (B) The depends on relationship.

FIGURE 5. Relationships between modules.

The nodes of a directory level graph diagram are the modules according
to the definitions above, while the edges represent the relationships between
the modules. A labeled, directed edge is drawn between two nodes only if the
corresponding modules are in either subdirectory, depends on or implements
relationship. The labeling and directing of the edges has the same definition
as for file level views.

Definition (Internal architecture graph of module M on level n). Let us define
the graph with the set of nodes N and set of edges F as follows. N consists
of M and its n level sub-modules S and all the sub-modules of M that the
elements of S depends on or implements. E consists of subdirectory, depends
on, implements relationships between modules that correspond to nodes in V.

By examining the Internal architecture diagram it is easy to reveal which
sub-modules are central, or in other words most commonly used in the ana-
lyzed module. This diagram also shows at which rate the implementation of
a specific module containing interfaces is scattered through among other in-
ternal modules, hence a programmer can start by investigating the directories
that contain the most commonly used interfaces when the understanding of a
whole subsystem is required.

Definition (Implemented external modules graph of module M). Let us de-
fine the graph with the set of nodes N and set of edges E as follows. A module
oisin N if o is M or M implements o so that o is not a sub-module of M. E
consists of the corresponding implements edges.

This diagram shows whether the examined module is not self contained,
that is, it consist implementation of functions that are declared somewhere

VISUALIZATION TECHNIQUES OF COMPONENTS FOR C/C++ SOFTWARE 69

in a directory that is not contained by the module. In many well structured
projects, if a module provides some interfaces to external users, these header
files are stored in a separate directory from the implementation files. These —
interface — modules will then be implemented by the examined module.

Definition (External user modules graph of module M). Let us define the
graph with the set of nodes IV and set of edges E as follows. A module o is in
N if o is M or o depends on or implements M so that o is not a sub-module of
M. E consists of depends on and implements relationships between modules
that correspond to nodes in N.

This diagram answers the question which external modules are using the
services of module M. In the diagram we also indicate the exact headers
and functions that are used. This way a programmer can distinguish between
header files that are only used within the examined module internally and
which are provided for external use. In poorly structured C/C++ projects
internal and external headers are frequently mixed in a directory and thus
this separation becomes difficult without tool support.

5. EXPERIMENTAL RESULTS

In order to implement the proposed views in Section 3 by the definitions
introduced in Section 4.1 and 4.2, a diagram visualizing tool was created as
part of a larger code comprehension assisting project — named CodeCompass —
developed in cooperation at E6tvos Lorand University and Ericsson Hungary.
The created software provides an interactive graph layout interface, where the
users are not only capable of requesting more information about the nodes
representing files or directories, but they can also easily navigate between
them, switching the perspective of the view they are analyzing.

For demonstration in this paper, the open-source Xerces-C++ XML parser
project[15] was selected, since it is a well-known, large (but not too broad for
the purpose of presentation) legacy C++ software. In this section altogether
five (including three file-based and two module-based) examples for the use of
our tool is shown and information retrievable from them is examined.

Example. Figure 6 displays an Interface diagram, showing the immediate re-
lations of a selected file with other files in the software. As the image shows,
the C++ source file in the middle (XMLReader.cpp) uses/includes several
header files, and the special connection for implementation (providing) is dis-
tinguished from the other ones. This diagram not only present the connections
between C++ source and header files, but also displays that the mentioned
source file was compiled into two object files through the compilation process
of the project.

70

MATE CSEREP AND DANIEL KRUPP

finternal/ XMLReader.o containedby

3 uses .
containedby | RmsEmal MRS ercp futil/XMLEBCDICTranscoder hpp
uses
/1ibXMLReader.o

(/util/BitOps.hpp
Jutil/PlatformUtils.hpp

FIGURE 6. Interface diagram of XMLReader. cpp.

fxercesc/parsers/SAXIXMLFilterImpl.cpp

rovides
sedby
@msmﬂm@
providedby usedby
[srefSAX2Print/S AX2FilterHandlers.cpp fsre/SAX2Print/SAX2Print.cpp
ontainedby ontainedby
fere/SAX2Print/SAX2FilterHandlers.o fere/SAX2Print/SAX2Print.o

FIGURE 7. User components of SAX2XMLFilterImpl.cpp.

VISUALIZATION TECHNIQUES OF COMPONENTS FOR C/C++ SOFTWARE 71

Example. Figure 7 presents the User components diagram of the source file
SAX2XMLFilterImpl.cpp at the top. The goal of this visualization is to deter-
mine which other files and compilation units depends on the selected file. As
the figure shows, the previous source file implements an interface contained
by the SAX2XMLFilterImpl.hpp header. From here with multiple relations
of usage and interface implementation we are able to specify two sources files
which are the users of SAX2XMLFilterImpl.cpp.

frercesc/framework/BinOutputStream.cpp

rovides

fxercesc/framework/BinOutputStream.hpp

UsEs

frercesc/util/XMemory . hpp

providedby

/xercesc/util/XMemory.cpp

/ont unchuncdh}
Ixercescfutllf}(hlemory 0 futil/ libs/XMemory.o

ontainedby

fsrcf libsflibxerces-c-3.1.50

FI1GURE 8. Used components by BinQutputStream. cpp.

72 MATE CSEREP AND DANIEL KRUPP

Example. Parallel to Figure 7, the following example deduces the compilation
artifacts the selected source BinOutputStream.cpp depends on. The Used
components diagram displays (see Figure 8) that the interface specification for
the BinOutputStream. cpp source file is located in the BinOutputStream.hpp
header. This header file uses the XMemory.hpp, which is provided by the
XMemory . cpp source. Hence the implication can be stated that the original
BinQOutputStream. cpp indirectly uses and depends on the XMemory. cpp file.

depends on
xercesc/util/MutexManagers

subdir
depends on xercesc/util/FileManagers
subdir
depends on
-’__:illji__’ futil/MsgLoaders/InMemory
Ixercesc/util/MsgLoaders
subdir
[srefxercesciutil subdir —
subdir [xercescfutil/Transcoders
subdir
implements
Fxercesc/utilregx
futilfTranscoders/IconvGNU
depends on
depends on
subdir : } o
/:I—JEL" futil/NetAccessors/Socket
depends on Ixercesc/util/NetAccessors | depends on

FIGURE 9. The internal dependencies in the util directory.

Example. The last two examples present views on a higher abstraction level,
revealing the relationships between directory modules. Figure 9 shows the
Internal architecture graph of the util module in Xerces. Beyond the depen-
dency relations between the subdirectories, the view emphasizes implemen-
tation relationships. Finally, Figure 10 displays the Ezternal user modules

VISUALIZATION TECHNIQUES OF COMPONENTS FOR C/C++ SOFTWARE 73

graph of sax2 directory, unveiling information about the external usage and

implementation of this module.
fsre/xercesc/parsers |
/samples/sre/SCMPrint \

/samples/src/SA X 2P rint

implements

depends on

depends on

Y Y

__depends on
-

J/sref xercescisax2 fsamples/sre/S AX2Count

depends on
\ S

Jsamples/sre/PSVIWTiter

Frercesc/framework/psvi

fsrefxercesc/internal \

F1GURE 10. The external users of the sax2 directory.

6. CONCLUSIONS AND FUTURE WORK

Assisting code comprehension in large legacy software projects is an im-
portant task nowadays, because through the extended development time of-
ten a huge codebase is built up and the fluctuation among programmers also
becomes significant. Since humans are better at deducing information from
graphical images than numerical data, it is a recognized method to support
the (newcomer) developers with visualization views to understand the source
code. In this paper we discussed what kind of architectural views are missing
from current code comprehension tools, regarding the relationships between
different type of compilation artifacts. We defined our novel graph view as a
solution addressing this problem, and demonstrated the practical use of our
technique through examples on a large legacy software. The new visualization
techniques were found helpful and applicable for legacy software in supporting
code comprehension.

74 MATE CSEREP AND DANIEL KRUPP

Future work will include the examination of how the information retrieved
by our definition rules can be used in the field of architecture compliance check-
ing. Software systems often impose constraints upon the architectural design
and implementation of a system, for example on how components are logically
grouped, layered and upon how they may interact with each other. In order
to keep the maintainability of a software system through a long development
time with a large programmer team, it bears extreme importance that the de-
sign and implementation are compliant to its intended software architecture.
Due to the complexity of large software systems nowadays, guaranteeing the
compliance by manual checking is impossible, hence automation is required,
which is a not completely solved issue until today [10].

REFERENCES

[1] T. Ball, S. Eick, Software visualization in the large, Computer, 29 (1996), pp. 33-43.

[2] M. Balzer, O. Deussen, Level-of-detail visualization of clustered graph layouts, Proceed-
ings of the 6th International Asia-Pacific Symposium on Visualization, (2007), pp. 33—
140.

[3] I. Biederman, Recognition-by-components: a theory of human image understanding, Psy-
chological review, 94 (1987), pp. 115-147

[4] P. Caserta, O. Zendra, Visualization of the static aspects of software: a survey, IEEE
Transactions on Visualization and Computer Graphics, 17 (2011), pp. 913-933.

[5] S. Ducasse, M. Lanza, The Class Blueprint: Visually Supporting the Understanding of
Classes, IEEE Transactions on Software Engineering, 31 (2005), pp. 75-90.

[6] S. Eick, J. Steffen, E. Sumner, Seesoft-A Tool for Visualizing Line Oriented Software
Statistics IEEE Transactions on Software Engineering, 18 (1992), pp. 957-968.

[7] C. Gutwenger, M. Jiinger, K. Klein, J. Kupke, S. Leipert, P. Mutzel, A new approach for
visualizing UML class diagrams, Proceedings of the 2003 ACM Symposium on Software
Visualization, (2003), pp. 179-188.

[8] B. Johnson, B. Shneiderman, Tree-maps: A space-filling approach to the visualization of
hierarchical information structures Proceedings of the 2nd Conference on Visualization,
(1991).

[9] M. Lanza, S. Ducasse, A categorization of classes based on the visualization of their
internal structure: the class blueprint. OOPSLA, 1 (2001), pp. 300-311.

[10] L. Pruijt, C. Koppe, S. Brinkkemper, On the accuracy of architecture compliance check-
ing support: Accuracy of dependency analysis and violation reporting, IEEE 21st Inter-
national Conference on Program Comprehension, (2013), pp. 172-181.

[11] B. Shneiderman, Tree Visualization with Tree-maps: 2D Space-filling Approach, ACM
Transactions on Graphics, 11 (1992), pp. 92-99.

[12] 1. Spence, Visual psychophysics of simple graphical elements, Journal of Experimental
Psychology: Human Perception and Performance, 16 (1990), pp. 683—692

[13] Doxygen Tool: http://www.stack.nl/~dimitri/doxygen/

[14] Understand Source Code Analytics & Metrics, http://www.scitools. com/

[15] Xerces-C++: http://xerces.apache.org/xerces-c/

EO6TVOS LORAND UNIVERSITY, ERICSSON HUNGARY
E-mail address: mcserep@caesar.elte.hu, daniel.krupp@ericsson.com

