
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVIII, Number 3, 2013

HEURISTIC ALGORITHMS FOR SOLVING THE

BI-DIMENSIONAL TWO-WAY NUMBER PARTITIONING

PROBLEM

LEVENTE FUKSZ(1), PETRICĂ POP (2), AND IOANA ZELINA (2)

Abstract. The bi-dimensional two-way number partitioning problem is a
generalization of the classical number partitioning problem, where instead
of a set of integers we have a set of vectors of dimension 2 that have to
be divided into two subsets so that the sums of the vectors in the subsets
are equal or almost equal for both coordinates. This work presents three
heuristic algorithms for solving the problem. The algorithms are analyzed,
implemented and tested on randomly data instances.

1. Introduction

The number partitioning problem (NPP) is a well known combinatorial
optimization problem defined as follows: given a finite set of n integers S =
{a1, a2, ..., an}, find a partition of S into two subsets S1 and S2 such that it
minimizes the difference of the sums of the elements in the subsets:∣∣∣∑

i∈S1

ai −
∑
i∈S2

ai

∣∣∣→ min.

This difference is called discrepancy and the partitions with the property
that the discrepancy is 0 or 1 are called perfect partitions.

The NPP is a difficult problem belonging to the the class of NP-hard prob-
lems [3] and therefore it is difficult to be solved in both theory and practice.

Received by the editors: April 22, 2013.
2010 Mathematics Subject Classification. 90C27, 68T15.
1998 CR Categories and Descriptors. G.2.1 [Mathematics of Computing]: Discrete

mathematics – Combinatorial Algorithms; I.2.8 [Computing Methodologies]: Artificial
intelligence – Problem Solving, Control Methods and Search.

Key words and phrases. heuristic algorithms, number partitioning problem, bi-
dimensional two-way number partitioning problem.

This paper has been presented at the International Conference KEPT2013: Knowledge
Engineering Principles and Techniques, organized by Babeş-Bolyai University, Cluj-Napoca,
July 5-7 2013.

17

18 LEVENTE FUKSZ, PETRICĂ POP, AND IOANA ZELINA

The problem finds interesting applications in public key encryption, schedul-
ing problems, minimization of the VLSI circuit size, choosing up fair sides in
a ball game, etc.

There are several ways to solve the NPP in exponential time in n: the
most naive algorithm would be to cycle through all the subsets of n numbers
and for every possible subset S1 and for its corresponding complementary
S2 = S \ S1 calculate their sums. Obviously, this algorithm is impracticable
for large instances, since its time complexity is O(2n). A better exponential

time algorithm which runs in O(2n/2) was described by Horowitz and Sahni
[5].

There have been proposed several heuristic algorithms in order to provide
high-quality solutions for the NPP: the set differencing heuristic introduced
by Karmarkar and Karp [7], a Simulated Annealing algorithm described by
Johnsonn et al. [6], genetic algorithm by Ruml et al. [11], GRASP by Arguello
et al. [1], Tabu Search by Glover and Laguna [4], memetic algorithm by
Berretta et al. [2], etc.

Kojic [8] described a generalization of the NPP called the multidimen-
sional two-way number partitioning problem (MDTWNPP), where instead of
numbers we have a set of vectors and we are looking for a partition of the
vectors into two subsets such that the sums per every coordinate should be
as close as possible. Kojic provided an integer programming formulation and
tested the model on randomly generated sets using CPLEX. The obtained
experimental results show that the MDTWNPP is very hard to solve even in
the case of medium instances. Recently, Pop and Matei [10] introduced an
efficient memetic algorithm for solving the MDTWNPP.

In this work we confine to the case when the vectors have dimension two
and the aim of this paper is to describe three heuristic approaches: a greedy
algorithm and a novel use of genetic algorithms with the goal of solving the
bi-dimensional two-way number partitioning problem and a hybrid GA-VNS
heuristic that combines the use of genetic algorithms (GA) and Variable Neigh-
borhood Search (VNS). The results of preliminary computational experiments
are presented and analyzed.

2. Definition of the bi-dimensional two-way number partitioning
problem

Given a set of n bi-dimensional vectors:

S = {vi | vi = (vi1, vi2), i ∈ {1, ..., n}}
then the bi-dimensional two-way number partitioning problem (BTWNPP)
consists in splitting the elements of S into two sets, S1 and S2 such that

HEURISTICS FOR BI-DIMENSIONAL TWO-WAY NUMBER PARTITIONING 19

1. S1 ∪ S2 = S and S1 ∩ S2 = ∅;
2. the sums of elements in the subsets S1 and S2 are equal or almost

equal for both coordinates.

If we introduce the variable t that denotes the greatest difference in sums
per coordinate, i.e.

t = max

{∣∣∣∑
i∈S1

vij −
∑
i∈S2

vij

∣∣∣ : j ∈ {1, 2}
}

then the objective function of the BDTWNPP is to minimize t.
Defined in this way, we can observe that the BDTWNPP is a special case

of the multidimensional two-way number partitioning problem introduced by
Kojic [8], where the vectors are bi-dimensional.

The BDTWNPP is NP-hard, as it reduces when the vectors have dimension
one to the NPP, which is known to be an NP-hard problem.

Next we define the bi-dimensional multi-way number partitioning problem
(BDMWNPP) as a generalization of BDTWNPP where a set of vectors is
partitioned into a given number of subsets rather than into two subsets.

Let again S be a set of n bi-dimensional vectors and p ∈ N, p ≥ 2, then
the bi-dimensional multi-way number partitioning problem consists in splitting
the elements of S into p subsets, S1, S2, ..., Sp such that

1. S1 ∪S2 ∪ ...∪Sp = S and Si ∩Sj = ∅, for all i, j ∈ {1, ..., p} and i 6= j;
2. the sums of elements in the subsets S1, S2, ..., Sp are equal or almost

equal for both coordinates.

In particular, if the set of vectors is partitioned into two subsets we get
the BDTWNPP. For partitioning into more than two subsets, the objective
function to be minimized is the greatest difference between maximum and
minimum subset sums for both coordinates.

Introducing the variable t denoting the greatest difference between maxi-
mum and minimum subset sums per every coordinate, i.e.

t = max

{∣∣max
{∑
i∈Sl

vij : l = 1, p
}
−min

{∑
i∈Sl

vij : l = 1, p
} ∣∣ j ∈ {1, 2}}

then the objective function of the BDMWNPP is to minimize t.
Example Let S = {(1, 4), (2, 9), (7, 2), (5, 5), (3, 7), (4, 10), (3, 2)} and we

want to partition its elements into two subsets S1 and S2. We can do this
partition in several ways, some candidates are:

• S1 = {(1, 4), (2, 9), (7, 2)}, S2 = {(5, 5), (3, 7), (4, 10), (3, 2)}, then the
sums are (10, 15) and (15, 24), the difference between the maximum
and minimum values per coordinates is (5, 9) and therefore t = 9;

20 LEVENTE FUKSZ, PETRICĂ POP, AND IOANA ZELINA

• S1 = {(1, 4), (2, 9), (7, 2), (5, 5)}, S2 = {(3, 7), (4, 10), (3, 2)}, then the
sums are (15, 20) and (10, 19), the difference between the maximum
and minimum values per coordinates is (5, 1) and t = 5;
• S1 = {(1, 4), (4, 10), (7, 2)}, S2 = {(5, 5), (3, 7), (2, 9), (3, 2)} then the

sums are (12, 16) and (13, 23), the difference between the maximum
and minimum values per coordinates is (1, 7) and t = 7;
• S1 = {(1, 4), (2, 9), (7, 2), (3, 7)}, S2 = {(5, 5), (4, 10), (3, 2)}, then the

sums are (13, 22) and (12, 17), the difference between the maximum
and minimum values per coordinates is (1, 5) and t = 5;

Therefore, the minimum of the maximal elements of the listed candidates
is in the second and fourth cases with min t = 5.

3. Heuristic algorithms for solving the bi-dimensional two-way
number partitioning problem

3.1. The Greedy algorithm. For the number partitioning problem, the ob-
vious greedy heuristic is to sort the numbers in decreasing order, place the
largest number in one of the two subsets and then place each of the remaining
numbers in the subset with the smallest sum.

However, for the two-way number partitioning problem, there are two sums
for each subset. In this case, each time we need to put a pair in one of the two
existing subsets, we have to analyze both possibilities and then choose the one
which gives the smallest difference.

For the given example, S = {(1, 4), (2, 9), (7, 2), (5, 5), (3, 7), (4, 10), (3, 2)},
we put (1, 4) in S1 and (0, 0) in S2. The current sub-sums are (1, 4) respec-
tively (0, 0). To put (2, 9) in one of the two subsets, we calculate the sub-sums
and we obtain (3, 13)|(0, 0), respectively (1, 4)|(2, 9). In the first case the dif-
ference is max{|3 − 0|, |13 − 0|} = 13 and in the second case the difference
is max{|1 − 2|, |4 − 9|} = 5. Therefore, (2, 9) goes in S2 and we have the
sub-sums (1, 4)|(2, 9). For (7, 2) we have the sub-sums (8, 6)|(2, 9), respec-
tively (1, 4)|(9, 11) with the smallest difference t = 6 so (7, 2) goes in S1.
For (5, 5), the sub-sums are (13, 11)|(2, 9), respectively (8, 6)|(7, 14) with the
smallest difference t = 8 and (5, 5) goes in S2. For (3, 7), the sub-sums are
(11, 13)|(7, 14) respectively (8, 6)|(10, 21) with the smallest difference t = 4
and (3, 7) goes in S1. For (4, 10), the sub-sums are (15, 23)|(7, 14) respectively
(11, 13)|(11, 24) with the smallest difference t = 9 and (4, 10) goes in S1. For
(3, 2), the sub-sums are (18, 25)|(7, 14) respectively (15, 23)|(10, 16) with the
smallest difference t = 7 and (4, 10) goes in S2. We obtain then the partition
S1 = {(1, 4), (7, 2), (3, 7), (4, 10)}, S2 = {(2, 9), (5, 5), (3, 2)}, the sub-sums are
(15, 23) and (10, 16) and the smallest difference is t = 7. We can rewrite the

HEURISTICS FOR BI-DIMENSIONAL TWO-WAY NUMBER PARTITIONING 21

sequence as (1, 4)|(0, 0), (1, 4)|(2, 9), (8, 6)|(2, 9), (8, 6)|(7, 14), (11, 13)|(7, 14),
(15, 23)|(7, 14), (15, 23)|(10, 16) and the smallest difference t = 7.

Each time we put a pair in one of the two subsets we have to perform 11
computational steps: 8 additions and 3 comparisons, so we perform (n−1)×11
computational steps for a set with n pairs. For our example, we perform
6 × 11 = 66 computational steps. If both current subsumes in one of the
subsets are smaller or equal to the sub-sums in the other subset and the
pairs are pairs of positive integers, then we can put the next pair directly
in the subset with the smallest sub-sums. In this case, we perform only 4
additions and 3 comparisons instead of 8 additions and 3 comparisons. For
our example, we put (7, 2) directly in S1 because both subsumes in S1, (1, 4) are
smaller than those in S2, (2, 9). The number of computational steps becomes
7 + 7 + 11 + 11 + 11 + 7 = 54.

The suboptimal solution provided by the greedy heuristic algorithm de-
pends on the order the pairs in the set S are chosen.

If we sort the pairs in S in decreasing order according to the second com-
ponent, we obtain S = {(4, 10), (2, 9), (3, 7), (5, 5), (1, 4), (3, 2), (7, 2)}. The se-
quence that describes the greedy algorithm becomes: (4, 10)|(0, 0), (4, 10)|(2, 9),
(4, 10)|(5, 16), (9, 15)|(5, 16), (9, 15)|(6, 20), (9, 15)|(13, 22), (12, 17)|(13, 22) and
the smallest difference is t = 5. The subsets are S1 = {(4, 10), (5, 5), (3, 2)}
and S2 = {(2, 9), (3, 7), (1, 4), (7, 2)}. The number of computational steps is
7 + 7 + 7 + 11 + 11 + 7 = 50. In this case the solution is better and the number
of computational steps is smaller than in the previous case.

3.2. The genetic algorithm. The Genetic Algorithms (GA) were introduced
by Holland in the early 1970s, and were inspired by Darwins theory. The idea
behind GA is to model the natural evolution by using genetic inheritance to-
gether with Darwins theory. GA have seen a widespread use among modern
metaheuristics, and several applications to combinatorial optimization prob-
lems have been reported. Next we give the description of our genetic algorithm
for solving the BDTWNPP.

Representation
In order to represent a potential solution to the BDTWNPP, we used a

binary representation where every chromosome is a fixed size (n-dimensional
vector) ordered string of bits 0 or 1, identifying the set of partition as assigned
to the pairs. This representation ensures that the set of vectors belonging to
the set S is partitioned into two subsets S1 and S2.

Initial population
The construction of the initial population is of great importance to the

performance of GA, since it contains part of the building blocks the final
solution is made of, which is then combined by the crossover operator.

22 LEVENTE FUKSZ, PETRICĂ POP, AND IOANA ZELINA

We considered a novel method for generating the initial population: par-
tially randomly and partially based on the problem structure. In this case,
we pick randomly a number q ∈ {2, ..., n} and then for the pairs belonging to
{2, ..., q} the genes are generated randomly and the other pairs are partitioned
iteratively such that by adding each pair we reduce the greatest difference in
sums per coordinate.

The fitness value
GAs require a fitness function which allocates a score to each chromosome

in the current population. Thus, it can calculate how well the solutions are
coded and how well they solve the problem. In our case, the fitness value of
the BDTWNPP, for a given partition of the pairs into two subsets is given by
the corresponding greatest difference in sums per coordinate and the aim of
the problem is to minimize this value.

Selection
Selection is the process used to select individuals for reproduction to cre-

ate the next generation. This is driven by a fitness function that makes higher
fitness individuals more likely to be selected for creating the next generation.
We have implemented three different selection strategies: the fitness propor-
tionate selection, the elitist selection and the tournament selection. Several
BDTWNPP were tested and the results show that the tournament selection
strategy outperformed the other considered selection strategies, achieving best
solution quality with low computing times.

Genetic operators
During each successive generation, a proportion of the existing population

is selected to produce a new generation. The crossover operator requires some
strategy to select two parents from previous generation. In our case we selected
the two parents using the binary tournament method, where p solutions, called
parents, are picked from the population, their fitness is compared and the
best solution is chosen for a reproductive trial. In order to produce a child,
two binary tournaments are held, each of which produces one parent. We
have experimented a single point crossover. The crossover point is determined
randomly by generating a random number between 1 and n− 1. We decided
upon crossover rate of 0.85 based on preliminary experiments with different
values.

Mutation is a genetic operator that alters one or more gene values in
a chromosome from its initial state and it helps to prevent the population
from stagnating at any local optima and its purpose is to maintain diversity
within the population and to inhibit the premature convergence. We consider
a mutation operator that changes the new offspring by flipping bits from 1 to
0 or from 0 to 1. Mutation can occur at each bit position in the string with
0.1 probability.

HEURISTICS FOR BI-DIMENSIONAL TWO-WAY NUMBER PARTITIONING 23

An important feature of our GA, that increased its performance, is that
every time a new population is produced, we eliminate the duplicate solutions.

In our algorithm the termination strategy is based on a maximum number
of generations to be run if the optimal solution of the problem is not found or
no improvement of the discrepancy value is not observed within 15 consecutive
generations.

As we will see in the Computational results section, our proposed GA
is effective in producing good solutions. However, due to the weakness of
GAs to intensify the search in promising areas of the solutions space, we will
combine our GA with the local search ability of VNS in order to enhance the
exploitation ability of GAs.

3.3. The GA-VNS hybrid algorithm. Variable neighborhood search (VNS)
is quite a recent metaheuristic for solving combinatorial optimization and
global optimization problems introduced by Mladenovic and Hansen [9]. Its
basic idea is a systematic change of neighborhood both within a descent phase
to find a local optimum and in a perturbation phase to get out of the corre-
sponding valley.

VNS is based on two simple facts:

• Fact 1: A local minimum w.r.t. one neighborhood structure is not
necessary a local minimum with another;
• Fact 2: A global minimum is a local minimum w.r.t. all possible

neighborhood structures.

The hybrid algorithm that we are going to present in this section combines
the GA described in the previous section with a Variable Neighborhood Search
procedure.

Applying local search to all the individuals of a current population will
lead to highly time consuming procedure, therefore we selected a subset of
individuals in each generation with a specified probability and then the VNS
procedure is applied to each of them separately. In the case better individuals
are found they are introduced in the current population.

Our VNS algorithm applies 10 types of neighborhoods, denoted by Ni,
i ∈ {1, ..., 10}. The neighborhoods are implemented as inversions of bits (rep-
resenting either 0 or 1) within the chromosome with positions generated ran-
domly. The ten neighborhoods correspond to the number of bits which are
inverted i ∈ {1, ..., 10}. For each neighborhood the following repetitive loop is
applied: we choose randomly the positions within the chromosome made up
of bits and then we inverse the corresponding genes by logical negation.

The first neighborhood is the set of candidate solutions that have one
bit difference against the current solution. We select randomly an entry from
the string representation and then inverse the value of the corresponding gene,

24 LEVENTE FUKSZ, PETRICĂ POP, AND IOANA ZELINA

meaning that we assign an integer from one set to the other one. If by changing
the value of a gene, we obtain a neighbor having a lower cost than the current
solution, than the neighbor becomes the new current solution and the search
proceeds. The search process continues until no better solution is found in the
neighborhood, then the search switches to the second neighborhood, which
consists of candidate solutions having exactly two bits difference against the
current solution. This new neighborhood is examined in order to find an
improvement solution and the search continues till a better feasible solution
cannot be found.

Then the search switches to the new neighborhood and the process goes
on iteratively.

The switching of neighborhoods prevents the search being struck at a local
optimum. When there is no better solution found in a current neighborhood,
it can be a local optimum, but by changing the neighborhood, it is highly
probable that a better feasible solution can be found and the local optimum
is skipped.

The described strategy show how to use VNS in descent in order to escape
from a local optimum of and now we are interested in finding promising regions
for sub-optimal solutions.

Our implementation of the VNS procedure is described in Algorithm 1.

Algorithm 1 Variable Neighborhood Search Framework

Initialization. Select a set of neighborhoods structures
N={Nl | l = 1, ..., 10}; an initial solution x and a stopping criterion

Repeat the following sequence till the stopping criterion is met:
(1) Set l = 1;

(2) Repeat the following steps until l = 10:
Step 1 (Shaking): Generate x′ ∈ Nl at random;

Step 2 (Local Search): Apply a local search method starting with x′ as
initial solution and denote by x′′ the obtained local optimum;

Step 3 (Move or not): If the local optimum x′′ is better than the
incumbent x,

then move there (x← x′′) and continue the search with N1

otherwise set l = l + 1 (or if l = 10 set (l = 1);
Go back to Step 1.

According to this basic scheme, we can observe that our VNS is a random
descent first improvement heuristic.

The algorithm starts with an initial feasible solution x from the selected
individuals from the current population and with the set of the 10 nested

HEURISTICS FOR BI-DIMENSIONAL TWO-WAY NUMBER PARTITIONING 25

neighborhood structures: N1,..., N10, having the property that their sizes are
increasing:

N1(x) ⊆ N2(x) ⊆ ... ⊆ N10(x).

Then a point x′ at random (in order to avoid cycling) is selected within
the first neighborhood N1(x) of x and a descent from x′ is done with the local
search routine. This will lead to a new local minimum x′′. At this point, there
exists three possibilities:

1) x′′ = x, i.e. we are again at the bottom of the same valley and we
continue the search using the next neighborhood Nl(x) with l ≥ 2;

2) x′′ 6= x and f(x′′) ≥ f(x), i.e. we found a new local optimum but
which is worse than the previous incumbent solution. Therefore, also
in this case, we will continue the search using the next neighborhood
Nl(x) with l ≥ 2;

3) x′′ 6= x and f(x′′) < f(x), i.e. we found a new local optimum but
which is better than the previous incumbent solution. In this case, the
search is re-centered around x′′ and begins with the first neighborhood.

If the last neighborhood has been reached without finding a better solution
than the incumbent, then the search begins again with the first neighborhood
N1(x) until a stopping criterion is satisfied. In our case, as stopping criterion
we have chosen a maximum number of iterations since the last improvement.

4. Computational results

This section presents the obtained results for solving the BDTWNPP.
The experiments were carried out on instances obtained using the randomly
number generator Random.org.

The testing machine was an Intel Core i5-2450M and 4 GB RAM with
Windows 7 as operating system. The greedy algorithm, GA and GA-VNS
hybrid algorithm have been developed in Microsoft .NET Framework 4 using
C #.

Based on preliminary computational experiments, we set the following
genetic parameters: the size of the initial population consists of 50 individuals
generated half randomly, tournament selection with groups of 7, one-point
crossover, mutation probability 10% and maximum number of generations
100.

In Table 1, we present the obtained computational results using our pro-
posed greedy algorithm, GA and GA-VNS hybrid algorithm. In our experi-
ments, we performed 5 independent runs for each instance.

The first three columns in the table give the dimension of the instance: the
interval from were have been selected the numbers and the number of pairs

26 LEVENTE FUKSZ, PETRICĂ POP, AND IOANA ZELINA
In

sta
n
c
e
s

G
re

e
d
y

a
lg

o
rith

m
R

e
su

lts
o
f

G
A

R
e
su

lts
o
f

G
A

-V
N

S
M

in
M

a
x

#
o
f

p
a
irs

B
e
st

so
l.

T
im

e
B

e
st

so
l.

T
im

e
B

e
st

so
l.

T
im

e

1
1
0
0

1
0

1
5

(1
5
;1

5
)

0
.6

1
1

(3
;1

1
)

0
.2

4
3

(3
;3

)
0
.1

5
1

1
0
0

5
0

4
4

(4
4
;3

8
)

0
.0

4
(4

;4
)

0
.5

6
7

0
(0

;0
)

2
.7

5
1

1
0
0

1
0
0

5
9

(5
9
;5

3
)

0
.1

3
(3

;1
)

0
.1

5
9

1
(1

;1
)

0
.1

2
5

1
1
0
0

5
0
0

2
4
3

(2
2
8
;2

4
3
)

0
.0

1
(0

;1
)

1
.3

4
0

1
(0

;1
)

2
.5

7
8

1
1
0
0

1
0
0
0

4
8

(1
;4

8
)

0
.3

1
1

(1
;0

)
6
.1

4
0

1
(1

;0
)

6
.2

3
4

1
1
0
0
0

1
0

4
9
9

(4
9
9
;3

3
7
)

0
.0

5
5

(5
5
;2

5
)

0
.3

5
9

5
5

(5
5
;2

5
)

0
.1

0
9

1
1
0
0
0

5
0

2
8
5

(2
3
5
;2

8
5
)

0
.0

2
6
9

(2
6
9
;1

9
3
)

0
.1

5
6

1
5

(1
5
;3

)
4
.6

7
2

1
1
0
0
0

1
0
0

3
6
8

(3
6
8
;3

3
0
)

0
.1

2
0

(1
2
;2

0
)

0
.3

9
0

6
(4

;6
)

5
.3

9
0

1
1
0
0
0

5
0
0

5
4
8

(5
1
1
;5

4
8
)

0
.0

6
(1

;6
)

1
.7

3
4

2
(1

;2
)

2
4
.2

6
6

1
1
0
0
0

1
0
0
0

9
2
6

(8
9
0
;9

2
6
)

0
.3

1
4

(4
;2

)
7
.6

7
2

2
(2

;2
)

3
9
.2

3
6

1
0
0
0

1
0
0
0
0

1
0

7
3
6

(7
3
6
;5

1
0
)

0
.0

2
0
1
4

(2
0
1
4
;7

2
2
)

0
.3

4
3

7
3
6

(7
3
6
;5

1
0
)

0
.9

3
1
0
0
0

1
0
0
0
0

5
0

1
0
4
0

(9
7
;1

0
4
0
)

0
.0

1
4
2
2

(2
9
3
;1

4
2
2
)

0
.2

3
4

5
4

(1
9
;5

4
)

4
.7

6
5

1
0
0
0

1
0
0
0
0

1
0
0

2
6
5
1

(7
0
8
;2

6
5
1
)

0
.0

2
2
7

(1
3
4
;2

2
7
)

6
.7

8
2
3

(1
2
;2

3
)

4
.1

4
0

1
0
0
0

1
0
0
0
0

5
0
0

1
7
6
6
3

(1
7
6
6
3
;1

7
2
3
3
)

0
.1

5
6
1

(6
1
;5

9
)

2
.8

4
3

1
1

(3
;1

1
)

2
4
.4

8
5

1
0
0
0

1
0
0
0
0

1
0
0
0

7
1
6
9

(7
1
2
6
;7

1
6
9
)

0
.3

1
4
1

(1
0
;4

1
)

2
4
.3

2
9

1
0

(1
0
;9

)
5
3
.8

0
1
0
0
0
0

1
0
0
0
0
0
0

1
0

4
6
8
7
9
6

(3
8
7
0
6
7
;4

6
8
7
9
6
)

0
.0

3
0
8
9
1
6

(3
0
6
2
9
9
;3

0
8
9
1
6
)

1
.9

3
1
2
9
9
2
7

(1
2
9
9
2
7
;1

2
7
3
8
6
)

0
.4

6
1
0
0
0
0

1
0
0
0
0
0
0

5
0

2
9
8
6
5
3

(2
9
8
6
5
3
;1

5
5
0
6
8
)

0
.0

2
2
9
0
2
4

(8
1
1
9
1
;2

2
9
0
2
4
)

0
.3

5
9

7
6
9
1

(7
6
9
1
;6

2
7
2
)

1
.4

5
3

1
0
0
0
0

1
0
0
0
0
0
0

1
0
0

7
9
6
9
7
4

(7
7
1
6
4
3
;7

9
6
9
7
4
)

0
.1

9
6
8
0
0

(4
5
2
5
;9

6
8
0
0
)

1
.1

0
9

3
0
1
9

(3
0
1
9
;1

0
)

6
.1

4
0

1
0
0
0
0

1
0
0
0
0
0
0

5
0
0

9
1
6
1
0
3

(9
1
6
1
0
3
;9

0
6
4
4
7
)

0
.1

5
5
3
1
9

(5
3
1
9
;3

8
7
5
)

1
3
.7

8
1

1
7
7
1

(3
7
;1

7
7
1
)

4
9
.6

8
9

1
0
0
0
0

1
0
0
0
0
0
0

1
0
0
0

3
4
5
6
1
8
9

(3
4
5
6
1
8
9
;3

4
4
0
3
2
7
)

0
.3

1
2
6
8
9

(2
3
5
7
;2

6
8
9
)

1
7
.7

3
5

2
0
1
3

(1
5
0
5
;2

0
1
3
)

7
.7

7
4

1
0
0
0
0
0
0

1
0
0
0
0
0
0
0

1
0

2
3
5
6
6
1
7

(2
3
5
6
6
1
7
;7

4
7
9
1
3
)

0
.0

2
5
4
0
3
0
1

(2
5
4
0
3
0
1
;4

6
0
6
9
9
)

0
.1

5
4
0
7
3
6
1

(5
1
4
7
3
;4

0
7
3
6
1
)

0
.1

4
1
0
0
0
0
0
0

1
0
0
0
0
0
0
0

5
0

2
1
5
8
7
2
0

(2
1
5
8
7
2
0
;4

3
5
1
2
6
)

0
.0

1
5
1
1
4
9
8

(1
5
1
1
4
9
8
;8

4
8
1
6
2
)

0
.1

4
0

4
8
6
1
8

(4
8
6
1
8
;3

6
2
4
)

1
.1

2
5

1
0
0
0
0
0
0

1
0
0
0
0
0
0
0

1
0
0

3
9
2
7
7
4

(1
5
6
8
9
2
;3

9
2
7
7
4
)

0
.0

3
2
2
6
3
6

(1
5
2
2
4
2
;3

2
2
6
3
6
)

0
.1

4
0

2
8
8
8
8

(5
4
2
0
;2

8
8
8
8
)

5
.8

4
4

1
0
0
0
0
0
0

1
0
0
0
0
0
0
0

5
0
0

3
2
2
4
3
9
1
9

(3
1
9
5
0
5
4
7
;3

2
2
4
3
9
1
9
)

0
.1

1
1
0
4
3
3
9

(3
3
5
9
;1

0
4
3
3
9
)

2
0
.2

6
6

3
6
7
1

(3
5
5
;3

6
7
1
)

3
7
.4

8
1
0
0
0
0
0
0

1
0
0
0
0
0
0
0

1
0
0
0

2
7
0
9
8
5
8
6

(2
4
6
8
1
6
8
5
;2

7
0
9
8
5
8
6
)

0
.3

1
6
9
8
3
5

(6
9
8
3
5
;3

2
8
1
4
)

3
6
.7

8
3

6
6
7
7

(6
6
7
7
;4

9
4
0
)

5
2
.8

6
7

HEURISTICS FOR BI-DIMENSIONAL TWO-WAY NUMBER PARTITIONING 27

considered, the next two columns provide the results and computational times
obtained by using the greedy heuristic algorithm and the last four columns
give the best solutions and required necessary computational times provided
by the GA and the hybrid GA-VNS algorithm.

Analyzing the results presented in Table 1, we observe that our proposed
hybrid GA-VNS heuristic algorithm performs favorable in terms of the solution
quality in comparison with the GA alone and the greedy heuristic algorithm:
in 22 out of 25 instances the hybrid GA-VNS provided the best solutions and
in the other 3 instances we obtained the same solutions as those obtained using
the GA alone. For all the considered instances, the solutions provided by GA
and GA-VNS have better quality than the solutions provided by the greedy
algorithm.

The running times of our GA and hybrid GA-VNS are proportional with
the number of generations. From Table 1, we observe that the greedy algorithm
is faster comparing to GA and GA-VNS approaches.

5. Conclusions

This paper deals with the bi-dimensional two-way number partitioning
problem, where a set of pairs has to be partitioned into two subsets such that
the sums of numbers in each subset should be equal or are close to be equal
for both coordinates.

We developed three heuristics for solving the BDTWNPP: a greedy algo-
rithm, a genetic algorithm and an efficient hybrid approach to the problem
that combines the use of genetic algorithms (GA) and Variable Neighborhood
Search (VNS). Some important features of our hybrid algorithm are:

• using a novel method for generating the initial population: partially
randomly and partially based on the problem structure.
• elimination of the duplicate solutions from each population;
• using the VNS procedure along the GA in order to intensify the search

within promising areas of the solution space.

The preliminary computational results show that our hybrid GA-VNS al-
gorithm compares favorably in terms of the solution quality in comparison to
the greedy algorithm and the genetic algorithm alone.

In the future, we plan to asses the the generality and scalability of the
proposed hybrid heuristic by testing it on more instances and to apply it also
in the case of multi-way number partitioning problem.

Acknowledgments. This work was supported by a grant of the Roma-
nian National Authority for Scientific Research, CNCS - UEFISCDI, project
number PN-II-RU-TE-2011-3-0113.

28 LEVENTE FUKSZ, PETRICĂ POP, AND IOANA ZELINA

References

[1] M.F. Arguello, T.A. Feo, O. Goldschmidt, Randomized methods for the number parti-
tioning problem, Computers & Operations Research, Vol. 23, Issue 2, pp. 103-111, 1996.

[2] R.E. Berretta, P. Moscato, C. Cotta, Enhancing a memetic algorithms’ performance using
a matching-based recombination algorithm: results on the number partitioning problem,
in Metaheuristics: Computer Decision-Making (M.G.C. Resende and J. Souza, editors),
Kluwer, 2004.

[3] M. R. Garey, D. S. Johnson, Computers and Intractability. A Guide to the Theory of
NP-Completeness, W.H. Freeman, New York, 1997.

[4] F. Glover, M. Laguna, Tabu Search, Kluwer Academic Publishers, Norwell, Mas-
sachusetts, USA, 1997.

[5] E. Horowitz, S. Sahni, Computing partitions with applications to the Knapsack problem,
Journal of ACM, Vol. 21, Issue 2, pp. 277-292, 1974.

[6] D.S. Johnson, C. R. Aragon, L. A. McGeoch, C. Schevon, Optimization by simulated
annealing: An experimental evaluation; Part II: Graph coloring and number partitioning,
Operations Research, Vol. 39, Issue 3, pp. 378-406, 1991.

[7] N. Karmarkar, R.M. Karp, The differencing method of set partitioning, Technical Report
UCB/CSD 82/113, Computer Science Division, University of California, Berkeley, 1982.

[8] J. Kojic, Integer linear programming model for multidimensional two-way number parti-
tioning problem, Comput. Math. Appl., Vol. 60, pp. 2302-2308, 2010.

[9] N. Mladenovic and P. Hansen, Variable neighborhood search, Computers and Operations
Research, Vol. 24, Issue 11, pp. 1097-1100, 1997.

[10] P.C. Pop and O. Matei, A memetic algorithm approach for solving the multidimensional
multi-way number partitioning problem, Applied Mathematical Modelling (to appear).

[11] W. Ruml, J.T. Ngo, J. Marks, S.M. Shieber, Easily searched encodings for number
partitioning, Journal of Optimization Theory and Applications, Vol. 89, Issue 2, pp.
251-291, 1996.

(1) Indeco Soft, 5 Magnoliei St., 430094 Baia Mare, Romania
E-mail address: levi.fuksz@yahoo.com

(2) Department of Mathematics and Computer Science, North University
Center of Baia Mare, Technical University of Baia Mare, 76 Victoriei St.,
430122 Baia Mare, Romania

E-mail address: petrica.pop@ubm.ro

E-mail address: ioanazelina@yahoo.com

