
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVIII, Number 2, 2013

A COMPARISON OF REINFORCEMENT LEARNING BASED

MODELS FOR THE DNA FRAGMENT ASSEMBLY

PROBLEM

GABRIELA CZIBULA, ISTVAN-GERGELY CZIBULA, AND IULIANA M. BOCICOR(1)

Abstract. The DNA fragment assembly is a very complex optimiza-
tion problem important within many fields, such as bioinformatics, com-
putational biology or medicine. The problem is NP-hard, that is why
many computational techniques, including computational intelligence al-
gorithms, were designed to find good solutions for this problem. This
paper is intended to present and investigate two reinforcement learning
based models for solving the DNA fragment assembly problem. We pro-
vide an experimental comparison of these two models, that will study the
obtained performances of the reinforcement learning based approaches, by
using different action selection policies, with variable parameters.

1. Introduction

Determining the order of nucleotide bases, or the process of DNA sequenc-
ing, has nowadays become of great importance in basic biology research, as
well as in various fields such as medicine, biotechnology or forensic biology.
The main problem with the current sequencing technology is that it cannot
read an entire genome at once, not even more than 1000 nucleobases.

The DNA fragment assembly (FA) refers to reconstructing the original
DNA sequence from a large number of fragments, each several hundred nucle-
obases long, based on common subsequences of fragments. It is an NP-hard
combinatorial optimization problem, growing in importance and complexity
as more research centers become involved in sequencing new genomes [5].

Received by the editors: April 12, 2013.
2010 Mathematics Subject Classification. 68P15, 68T05.
1998 CR Categories and Descriptors. I.2.6[Computing Methodologies]: Artificial In-

telligence – Learning ; I.2.8[Computing Methodologies]: Problem Solving, Control Meth-
ods, and Search – Heuristic methods.

Key words and phrases. Bioinformatics, DNA fragment assembly, reinforcement learning,
Q-learning.

This paper has been presented at the International Conference KEPT2013: Knowledge
Engineering Principles and Techniques, organized by Babeş-Bolyai University, Cluj-Napoca,
July 5-7 2013.

90



A COMPARISON OF RL MODELS FOR THE FRAGMENT ASSEMBLY PROBLEM 91

Reinforcement Learning (RL) [14] is an approach to machine intelligence
in which an agent [13] can learn to behave in a certain way by receiving
punishments or rewards for its chosen actions. The learner is not told which
actions to take, as in most forms of machine learning, but instead must discover
which actions yield the highest reward by trying them.

In this paper we aim at investigating two reinforcement learning based
models for solving the problem of DNA fragment assembly. One of these mod-
els, which was previously proposed in [2], is improved in this study. Moreover,
this paper introduces a second reinforcement learning based model for the
same problem and compares the two approaches.

The rest of the paper is organized as follows. Section 2 introduces the
DNA fragment assembly problem as well as some main aspects related to re-
inforcement learning. The reinforcement learning models that we propose for
solving the FA problem are detailed in Section 3. Experimental evaluations,
analysis and comparisons of the algorithms are given in Section 4. Section 5
outlines some conclusions of the paper and indicates future research directions.

2. Background

This section briefly presents the DNA FA problem as well as some funda-
mental aspects related to reinforcement learning.

2.1. The DNA Fragment Assembly Problem. Determining the order of
nucleotide bases (molecules composing the DNA), or the process of DNA se-
quencing, has nowadays become of great importance in basic biology research,
as well as in fields such as medicine, biotechnology or forensic biology. The
main problem with the current sequencing technology is that it cannot read an
entire genome at once, not even more than 1000 bases. As even the simplest
organisms (such as viruses or bacteria) have much longer genomes, the need
to develop methods that would overcome this limitation arose. One of these,
called shotgun sequencing was introduced in 1982, by Fred Sanger [11] and it
consists of the next steps: first, several copies of the DNA molecule are cre-
ated; then each of the copies is cut at random sites in order to obtain molecules
short enough to be sequenced directly - fragments; the last and most difficult
step involves assembling these molecules back into the original DNA, based on
common subsequences of fragments. The DNA FA problem specifically refers
to this last step. For more details, we refer the reader to [2].

2.2. Reinforcement Learning. Background. Reinforcement Learning [8]
is an approach to machine intelligence that combines two disciplines to solve
successfully problems that neither discipline can address individually: Dy-
namic programming and Supervised learning. RL is a synonym of learning by



92 GABRIELA CZIBULA, JSTVAN-GERGELY CZIBULA AND IULIANA M. BOCICOR

interaction [10]. During learning, the adaptive system tries some actions (i.e.,
output values) on its environment, then, it is reinforced by receiving a scalar
evaluation (the reward) of its actions. The reinforcement learning algorithms
selectively retain the outputs that maximize the received reward over time.
Reinforcement learning tasks are generally treated in discrete time steps. In
RL, the computer is simply given a goal to achieve. The computer then learns
how to achieve that goal by trial-and-error interactions with its environment.

An important aspect in reinforcement learning is maintaining an equilib-
rium between exploitation and exploration [15]. The agent should accumulate
a lot of reward, by choosing the best experienced actions, but at the same
time it must explore its environment, by trying new actions. In this study we
use three policies for selecting actions: the ε-greedy policy [14], the softmax
policy [14] and an intelligent ε-Greedy based action selection mechanism, that
we have introduced in [3], which uses a one step look-ahead procedure in order
to better guide the exploration of the agent through the search space.

3. Reinforcement Learning Based Models for the DNA
Fragment Assembly Problem

In this section we introduce the two reinforcement learning models pro-
posed for solving the DNA FA problem. First, we present some concepts and
notations that will apply to both models.

A general reinforcement learning task is characterized by four components:
a state space S specifying all possible configurations of the system; an action
space A listing all available actions for the learning agent; a transition function
δ specifying the possibly stochastic outcomes of taking each action in any state;
a reward function defining the possible reward of taking each of the actions.

Let us consider that Seq is a DNA sequence and F1, F2, . . . , Fn is a set of
fragments. As indicated in Subsection 2.1, the FA problem consists of deter-
mining the order in which these fragments have to be assembled back into the
original DNA molecule, based on common subsequences of fragments. Conse-
quently, the FA problem can be viewed, from a computational perspective, as
the problem of generating a permutation σ of {1, 2, . . . , n} that optimizes the
performance of the alignment Fσ = (Fσ1 , Fσ2 , . . . , Fσn) (n > 1). The perfor-
mance measure PM we consider in this paper is one of the fitness functions
defined in [9], which sums the overlap scores over all adjacent fragments and
has to be maximized. According to [9], the performance measure PM for the
sequence of fragments Fσ = (Fσ1 , Fσ2 , . . . , Fσn) is defined as in Equation (1):

(1) PM(Fσ) =
n−1∑
i=1

w(Fσi , Fσi+1)



A COMPARISON OF RL MODELS FOR THE FRAGMENT ASSEMBLY PROBLEM 93

where w(a, b) denotes the similarity measure between sequences a and b.

3.1. Path Finding Model. We have previously introduced a reinforcement
learning based model for the FA problem [2]. In the rest of the paper, it will
be referred to as the path finding model. The RL task associated to the FA
problem consists in training the agent to find a path from the initial to a final
state having the maximum associated overall similarity. During the training
step of the learning process the learning agent determines its optimal policy in
the environment, i.e. the mapping from states to actions that maximizes the
sum of the received rewards. The equivalent action configuration is viewed as
a permutation that gives the optimal alignment of the DNA fragments. As the
goal is to find a path having the maximum value of the performance measure,
the reinforcement function rewards the agent with a small value (e.g. 0.1) for
each transition to an non terminal state and with the performance measure of
the found alignment, after a transition to a final state [2]. For training the FA
agent [2] we used a Q-learning approach [14], in conjunction with an ε-Greedy
action selection policy. For more details about the definitions of the state and
action spaces or reward and transition functions, we refer the reader to [2].

Here we propose a modification of the reward function for this model, in
order to better guide the agent towards good solutions. The reward function,
as defined in [2], illustrates situations when feedback is given at the end of each
trial episode. It will be modified so as to give feedback to the agent after each
transition to a new state, even if the state is not final. The moment of reward-
ing is important in the learning process, as learning happens faster if feedback
is being given after each transition from one state to another. If we denote by
π a path from the initial to a final state, π = (π0π1π2 . . . πn), where π0 = s1
(s1 is the initial state), by aπ = (aπ0aπ1aπ2 . . . aπn−1) - the sequence of actions
obtained following the transitions between the successive states from the path
π, which gives the alignment of fragments Faπ = (Faπ0 , Faπ1 , . . . , Faπn−1

) (see

[2]), then the new definition of the reward function is given in Formula 2:

(2) r(πk|s1, π1, π2, . . . , πk−1) =

{
0 if k = 1
w(Faπk−1

, Faπk−2
) otherwise

where by r(πk|s1, π1, π2, . . . , πk−1) we denote the reward received by the agent
in state πk, after its history in the environment is π = (π0 = s1, π1, π2, . . . , πk−1).

Therefore, after each transition to a new state, the FA agent receives as
reward the value of the similarity measure between the fragment corresponding
to the current action and the fragment corresponding to the previously taken
action. As the learning goal is to maximize the total amount of rewards
received on a path from the initial to a final state, the FA agent is actually



94 GABRIELA CZIBULA, JSTVAN-GERGELY CZIBULA AND IULIANA M. BOCICOR

trained to find a path π that maximizes the overall similarity of the associated
alignment.

3.2. Permutation Model. In the following, we introduce a second reinforce-
ment learning based model for the DNA FA problem, considering the general
aspects introduced at the beginning of this section. In the rest of the paper,
this model will be referred to as the permutation model.

The components of the reinforcement learning task are:

• The state space S (the agent’s environment) will consist of n! states,
i.e S = {s1, s2, . . . , sn!}. Each state si, i = 1, n! in the environment
will represent a permutation of all the elements from the fragment set
{F1, F2, . . . , Fn} : Fσi = (Fσi1

, Fσi2
, . . . , Fσin). The initial state will be

represented by the identical permutation s0 = (F1, F2, . . . , Fn). A state
s reached by the agent at a given moment will be considered a terminal
(final) state if the associated performance measure is sufficiently close
to a goal value. However, in order to be able to define a final state,
apriori knowledge is needed to determine an upper bound of the set of
values for the performance measure of all possible permutations.

• The action space consists of
(
n
2

)
= n(n−1)

2 actions available to the prob-

lem solving agent. Let us denote byNa = n(n−1)
2 the number of actions.

An action will be a pair of distinct indices (i, j), i, j ∈ {1, · · · , n}, i 6= j
specifying that the fragments located at indices i and j in the cur-
rent state will be interchanged in order to make a transition to the
following state. Therefore, the action space may be represented as
A = {a1, a2, . . . , aNa}, where ak ∈ {(i, j)|i, j ∈ {1, · · · , n}, i 6= j}, ∀1 ≤
k ≤ Na.
• The transition function δ : S → P(S) between the states is defined as:

(3) δ(sj) =

Na⋃
k=1

∆(sj , ak) ∀j ∈ {1, · · · , n!},

where ∆(sj , ak) = sl, ∀j, l ∈ {1, · · · , n!}, l 6= j and sl is the state
resulted from sj , by interchanging the elements on the positions spec-
ified by ak. This means that, at a given moment, from a state s ∈ S
the agent can move in Na successor states, by executing one of the Na

possible actions. The transitions between the states are equiprobable,
the transition probability P (s, s′) between a state s and each neighbor
state s′ of s is equal to 1/Na.
• The reward function will also be based on the performance measure for

a sequence of fragments, as defined in Formula (1). In this case, the



A COMPARISON OF RL MODELS FOR THE FRAGMENT ASSEMBLY PROBLEM 95

reinforcement function associated to a transition from a state sj = Fσj
to a state sl = Fσl (j, l ∈ {1, · · · , n!}, l 6= j), by executing action
ak, 1 ≤ k ≤ Na, will be:

(4)

r(sl = Fσl |sj , ak) =

{
PM(Fσl)− PM(Fσj ) if sl is non-terminal
PM(Fσl)− PM(Fσj ) + PM(s0) otherwise

where s0 is the identical permutation.

The FA problem formulated as a RL problem will consist in training the
agent to find a sequence of actions from the initial to the final state so as to
maximize the total amount of received rewards, which equates to finding a
permutation having the associated performance measure sufficiently close to
a given maximum (goal) value.

4. Experiments

This section aims to comparatively evaluate the two reinforcement learning
based approaches described in Section 3.

4.1. Case Study. The tests are performed on a small section of DNA belong-
ing to the bacterium Escherichia coli (E. coli). The DNA sequence contains 25
bases: TACTAGCAATACGCTTGCGTTCGGT . Using the Perl scripts that the
authors of [16] produced to generate fragments from a given DNA reference,
for the above mentioned E. Coli sequence, we obtained 8 fragments, each
having a length of 10 bases: F1 = TGCGTTCGGT , F2 = TACGCTTGCG,

F3 = ATACGCTTGC, F4 = TACTAGCAAT , F5 = GCAATACGCT , F6 =

CAATACGCTT , F7 = CTAGCAATAC, F8 = AATACGCTTG.
These fragments are ordered in the following way to form the original

DNA sequence: F4F7F5F6F8F3F2F1. The maximum value for the performance
measure (Equation 1) is 56.01 and it is obtained for two cases: the above
alignment, indicating the original DNA sequence, as well as its reverse. The
overlap similarity scores for all possible pairs of fragments are obtained using
the Smith-Waterman algorithm [12].

For applying the RL models to solve the FA problem, we used a software
framework that we have previously introduced in [4] for solving combinatorial
optimization problems using reinforcement learning techniques.

We compare the two models by running the corresponding implementa-
tions, using theQ-Learning algorithm [14], in conjunction with the three action
selection mechanisms we mentioned in Subsection 2.2. Regarding the param-
eter setting, for all tests we used the following values: the discount factor for
the future rewards is γ = 0.9; the learning rate is α = 0.95; the number of



96 GABRIELA CZIBULA, JSTVAN-GERGELY CZIBULA AND IULIANA M. BOCICOR

training episodes is 4 · 105. In the case of the permutation model, the maxi-
mum value of the performance measure was defined to be 57 and a state was
considered final if its performance measure was at most 1 unit away from this
maximum. For each of the three action selection policies, tests were made for
different values of the policy parameter (ε - in the case of ε-greedy and the one
step look-ahead procedure and τ - in the case of softmax): {0.2, 0.4, 0.6, 0.8}.
Each algorithm was run five times, for each case of selection policy and each
value of the policy parameter and the shown results are averaged over these
runs. We mention that the experiments were carried out on a PC with an
Intel Core i3 Processor at 2.4 GHz, with 3 GB of RAM.

4.2. Comparative Results. Below we present the results obtained by the
Q-learning based algorithms implementing the models described in Section 3.

The path finding model proves to obtain the correct alignment of frag-
ments with all three action selection mechanisms, the difference being the
number of training epochs needed to converge to the optimal solution. The
left-hand side of Figure 1 illustrates the performance measure of the solutions
obtained during the training process. For all three action selection policies,
the algorithm converges to the optimal solution, the one having a performance
measure of 56.01. We note that the algorithm using the one step look-ahead
procedure achieves the fastest convergence, reaching the correct solution after
only 103 training epochs, for ε = 0.8. The next best, in terms of training
epochs until convergence, is the algorithm using the softmax policy, the last
one being the ε-greedy algorithm. In all three cases, as the values of the policy
parameter increase, thus leading to more exploration of the states space, the
convergence is achieved more rapidly: on average, for ε = 0.2 and τ = 0.2, the
algorithm converges (to the optimal or near-optimal solution) after 153 · 103

epochs, while for ε = 0.8 and τ = 0.8, the maximum performance measure is
reached, on average, after only 25 · 103 epochs.

In terms of accuracy, the permutation model performs equally well, deter-
mining the correct alignment for all the tests. In what concerns the number of
training epochs, this second approach outperforms the first, for the case study
we considered. As can be seen on the right-hand side of Figure 1, the permu-
tation model needs fewer epochs to reach the right solution: on average, for all
three action selection policies, convergence is reached after ∼ 6 ·103 epochs, as
opposed to ∼ 84 ·103 epochs, which are needed on average for the path finding
model. In this case, all three action selection policies find the solution equally
fast, but for different values of the policy parameter. Generally, as the value
of the policy parameter increases, the convergence is achieved sooner.

In the following, we will also offer an analysis of the computational time
needed for the proposed RL algorithms in order to reach the correct solution.



A COMPARISON OF RL MODELS FOR THE FRAGMENT ASSEMBLY PROBLEM 97

Table 1 illustrates the average time (in seconds) needed for the two algorithms
implementing the models that we presented in Section 3. Here, p represents the

Figure 1. Illustration of the learning process for the two RL models.



98 GABRIELA CZIBULA, JSTVAN-GERGELY CZIBULA AND IULIANA M. BOCICOR

Path Finding Model Permutation Model
p = 0.2 p = 0.4 p = 0.6 p = 0.8 p = 0.2 p = 0.4 p = 0.6 p = 0.8

ε-Greedy policy 2.8 9.2 14.8 11.4 < 2 < 2 < 2 < 2

Look-ahead procedure 2.2 < 2 < 2 < 2 4 < 2 < 2 < 2

Softmax policy 29.6 17.4 40.6 10.2 705.8 44.6 35.6 26.8

Table 1. Average computational time (in seconds) needed for
each of the presented algorithms to reach the correct solution.

policy parameter, referring to ε, in the case of the ε-greedy based mechanisms
and to τ , for the softmax action selection policy.

Even though intuitively the time is directly correlated with the number
of training epochs, between the two models there are some major differences,
which lead to different durations for epochs. For instance, in the case of the
path finding model, the agent executes exactly 8 actions, to reach a final
configuration. For the permutation model, however, the number of actions is
different in each epoch, as the agent keeps trying actions until it reaches a state
having a performance measure as close as possible to the maximum defined
value. Hence, according to the way the agent explores the search space and the
way it exploits existing knowledge, an epoch in the permutation model could
last less or longer than one in the path finding model. From Table 1 we notice
that for the ε-greedy mechanism, the solution is reached in less time using
the permutation model. Even if an epoch in the permutation model would
last longer, the number of epochs needed until convergence is more than 26
times less than the number of epochs until convergence in the path finding
approach. Another important observation concerns the softmax policy. An
agent guiding its search by softmax must rank all the possible actions from a
state, which requires extra computations that are not necessary for the other
two policies. Therefore, as shown in Table 1, the algorithms using softmax
need more time for each epoch, consequently more time, in total. Futhermore,
regarding the permutation model, from any given state, there are 28 possible
actions (compared to only 8, for the other model) and then the computations
needed for softmax take even longer, as can be seen from Table 1.

4.3. Discussion and Comparison to Related Work. We have experi-
mented with two reinforcement learning based models, proposed for the prob-
lem of DNA fragment assembly, used in conjuction with three different action
selection mechanisms: ε-greedy [14], an intelligent ε-Greedy based look-ahead
action selection mechanism that we have previously introduced [3] and the
softmax selection policy [14]. The path finding model was introduced in a
different study [2] and uses a Q-learning algorithm, with an ε-greedy action



A COMPARISON OF RL MODELS FOR THE FRAGMENT ASSEMBLY PROBLEM 99

selection policy. In this paper we have improved the path finding model and
we have introduced the permutation model, which is also based on Q-learning.

Both algorithms demonstrated to find the correct alignment of fragments,
for the DNA sequence that we considered for the experiments. The difference
between them lies in the number of training epochs and the computational
time each one needs to achieve convergence.

For the considered case study and parameter setting, the permutation
model proved to outperform the path finding approach, in all cases, when
inspecting the number of epochs. In what concerns the computational time,
the situation is the same, for the ε-greedy policy, when the permutation based
algorithm finds the correct solution in less than 2 seconds. Still, for the soft-
max action selection policy, the required time is considerably higher. We
remark that in both cases, the algorithms using the intelligent action selection
procedure [3] converge, on average, in less epochs than those using ε-greedy
or softmax, as this procedure efficiently guides the exploration of the search
space. We will further investigate how an intelligent action selection mecha-
nism, based on softmax instead of ε-Greedy, could influence the outcome.

Regarding the permutation model, we note the following. As it is difficult
to determine a final state, we need apriori information about the possible
values of the performance measure for permutations. Another option would
be to consider a state terminal if the number of actions that were performed
from the initial state equals a given maximum number of steps. However, the
problem with this course of action could be the fact that the agent would not
aim to maximize the total sum of rewards, but the sum of rewards obtained
after the given number of maximum steps. A second observation concerns the
action space. In this study we use a fairly simple definition of an action, but
further work will be done to investigate new types of actions, such as operators
inspired from the field of genetic algorithms (e.g. crossover, mutation).

We remark that for the permutation model the number of states of the
environment is smaller than for the path finding approach. However, an im-
portant drawback of the permutation model is the fact that apriori knowledge
about the problem is needed in order to define a final state and this infor-
mation is not available in all types of situations. Therefore, the path finding
approach is more general and, as the results it obtains are good both in terms
of accuracy and in terms of computational time, we conclude that it is better.

In the following, we will briefly compare our models with other approaches
existing in the literature for the FA problem. Since the used data sets are dif-
ferent from one study to another, we cannot offer a very detailed comparison.

Kikuchi and Chakraborty [6] present an improved genetic algorithm to
approach the FA problem. To improve the efficiency of the simple genetic
algorithm (regarding both speed and solution quality), the authors introduce



100 GABRIELA CZIBULA, JSTVAN-GERGELY CZIBULA AND IULIANA M. BOCICOR

two new ideas, one of which implies manually combining fragments at certain
generations. Compared to the approach from [6], our RL based methods do
not need user intervention during the training process of the agent.

A comparison of four heuristic DNA FA algorithms is provided by Li and
Khuri in [7]: a genetic algorithm, a greedy algorithm, a clustering heuristic
algorithm and one using structured pattern matching. All algorithms are
experimentally evaluated on several data sets, with the number of fragments
ranging from 39 to 773. The authors determined that the running times of
all four algorithms ranged from a few seconds to several hours. Even though
the data set we use contains a smaller number of fragments, the maximum
amount of time needed by the RL approaches is less than 12 minutes, while
the minimum is less than 2 seconds. Therefore, we believe that even for larger
instances it is likely that the necessary time for the RL models to converge to
the correct solution is of the order of minutes, rather than hours.

Angeleri et al. [1] introduce a supervised approach, based on a recurrent
neural network to solve the FA problem. In the case of supervised models,
a set of inputs with their target outputs is required. The advantage of our
RL methods is that the learning process needs no external supervision, as in
our approach the solution is learned from the rewards obtained by the agent
during its training. Still, as mentioned before, the permutation model requires
apriori knowledge about the problem.

5. Conclusions and Further Work

In the present study we investigated two reinforcement learning based
models (the permutation model and the path finding model) for an important
problem in bioinformatics, namely the DNA fragment assembly problem. The
algorithms implementing both approaches, using three different action selec-
tion policies, have been experimentally evaluated and compared.

We plan to extend the evaluation of both Q-learning based algorithms
for larger DNA sequences, and implicitly greater number of fragments, to
further develop the analysis. We will also investigate possible improvements
of these models by adding various local search mechanisms, by combining the
softmax policy with the intelligent action selection procedure introduced in [3],
by decreasing the action selection parameters (ε and τ) during the training
process or by extending the permutation model to a distributed RL approach.

ACKNOWLEDGEMENT

This work was partially supported by the Sectoral Operational Programme
for Human Resources Development 2007-2013, co-financed by the European



A COMPARISON OF RL MODELS FOR THE FRAGMENT ASSEMBLY PROBLEM 101

Social Fund, under the project number POSDRU/107/1.5/S/76841 with the
title Modern Doctoral Studies: Internationalization and Interdisciplinarity.

References

[1] E. Angeleri, B. Apolloni, D. de Falco, and L. Grandi. DNA fragment assembly
using neural prediction techniques. Int. J. Neural Syst., 9(6):523–544, 1999.

[2] M. Bocicor, G. Czibula, and I. G. Czibula. A Reinforcement Learning Approach
for Solving the Fragment Assembly Problem. In Proceedings of the 3th Interna-
tional Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC ’11), pages 191–198. IEEE Computer Society, 2011.

[3] G. Czibula, I. M. Bocicor, and I. G. Czibula. Temporal Ordering of Cancer Mi-
croarray Data through a Reinforcement Learning Based Approach. PLoS ONE,
8(4):e60883, 2013.

[4] I. G. Czibula, G. Czibula, and M. I. Bocicor. A Software Framework for Solving
Combinatorial Optimization Tasks. Studia Universitatis “Babes-Bolyai”, Infor-
matica, Special Issue, LVI(3):3–8, 2011.

[5] A. E. Hassanien, M. G. Milanova, T. G. Smolinski, and A. Abraham. Compu-
tational intelligence in solving bioinformatics problems: Reviews, perspectives,
and challenges. In Computational Intelligence in Biomedicine and Bioinformat-
ics, pages 3–47. 2008.

[6] S. Kikuchi and G. Chakraborty. Heuristically tuned GA to solve genome fragment
assembly problem. IEEE CEC, pages 1491–1498, 2006.

[7] L. Li and S. Khuri. A comparison of DNA fragment assembly algorithms. In Proc.
of the Int?l Conf. on Mathematics and Engineering Techniques in Medicine and
Biological Sciences, pages 329–335. CSREA Press, 2004.

[8] L. J. Lin. Self-Improving Reactive Agents Based On Reinforcement Learning,
Planning and Teaching. Machine Learning, 8:293–321, 1992.

[9] R. J. Parsons, S. Forrest, and C. Burks. Genetic algorithms, operators, and DNA
fragment assembly. In Machine Learning, pages 11–33. Kluwer Academic Pub-
lishers, 1995.

[10] A. Perez-Uribe. Introduction to reinforcement learning, 1998.
http://lslwww.epfl.ch/∼anperez/RL/RL.html.

[11] F. Sanger, A. Coulson, G. Hong, l. D. Hil, and G. Petersen. Nucleotide sequence
of bacteriophage Lambda DNA. J. Molecular Biology, 162(4):729–773, 1982.

[12] T. Smith and M. Waterman. Identification of Common Molecular Subsequences.
Journal of Molecular Biology, 147(1):195–197, 1981.

[13] I. Susnea, G. Vasiliu, A. Filipescu, and A. Radaschin. Virtual pheromones for
real-time control of autonomous mobile robots. Studies in Informatics and Con-
trol, 18(3):233–240, 2009.

[14] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998.

[15] S. Thrun. The Role of Exploration in Learning Control. In Handbook for Intelli-
gent Control: Neural, Fuzzy and Adaptive Approaches. Van Nostrand Reinhold,
Florence, Kentucky, 1992.

[16] W. Zhang, J. Chen, Y. Yang, Y. Tang, J. Shang, B. Shen, and I. K. Jordan.
A practical comparison of de novo genome assembly software tools for next-
generation sequencing technologies. PLoS ONE, 6(3):e17915, 2011.



102 GABRIELA CZIBULA, JSTVAN-GERGELY CZIBULA AND IULIANA M. BOCICOR

(1) Babeş-Bolyai University, Department of Computer Science, Cluj-Napoca,
Romania

E-mail address: {gabis, istvanc, iuliana}@cs.ubbcluj.ro


