
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVII, Number 2, 2012

DRAS: DERIVED REQUIREMENTS GENERATION

DAVID BAR-ON AND SHMUEL TYSZBEROWICZ

Abstract. A system specification may include many interdependencies
between the specified requirements. Requirements may conflict with one
another and they may impact other requirements as well. We present the
DRAS (Derived Requirements generation by Actions and States) method-
ology that helps to identify Functional Requirements (FRs) that are in
conflict with other FRs DRAS also assists with generating the derived re-
quirements that are inferred from the conflicting requirements. DRAS is
based on the observation that using the same action in two requirements
indicates that those requirements may conflict. In order to find which
requirements potentially are in conflict with a given requirement, DRAS
considers actions stated by the requirements, their implied actions, modes
(also called states), and action modifiers.

The DRAS methodology is explained by means of a comprehensive ex-
ample, which uses a subset of simplified requirements from an industrial
project that one of the authors participated in its requirements definition
and analysis.

1. Introduction

System and product requirements often contain inconsistent and conflict-
ing requirements. Requirements may impact other requirements as well. In-
consistency between requirements usually means that either existing require-
ments should be enhanced, or new requirements should be written. The DRAS
methodology (DRAS — Derived Requirements generation by Actions and
States) that is described in this paper helps to identify conflicting Functional
Requirements (FRs) and to resolve the conflicts. The method is not effective
for Non-Functional Requirements (NFRs).

Consider the functional requirements “close the window when the outside
temperature is below 10 degrees” and “open the window in the morning”.

Received by the editors: April 25, 2012.
1991 Mathematics Subject Classification. 68N99.
1998 CR Categories and Descriptors. code [D.2.1]: Requirements/Specifications –

Methodologies ;
Key words and phrases. Early Aspects, Requirements Engineering, Conflicting Require-

ments, Crosscutting Requirements, Derived Requirements, Match-Point.

83

84 DAVID BAR-ON AND SHMUEL TYSZBEROWICZ

The requirement to close the window conflicts with the requirement to open
the window when the temperature in the morning decreases below 10 degrees.
The outcome of analyzing the interaction between the requirements should
include a decision whether or not to open the window in the morning, when
the temperature is below 10 degrees.

The resolution of conflicting requirements influences the definition and the
architecture of the system. Therefore, it is very important to identify conflict-
ing requirements as soon as possible in the software development process, for
example during requirements analysis. Otherwise there may be a major over-
head work during later development phases. While identifying and handling
conflicting requirements, both functional-requirements and non-functional re-
quirements should be considered. A rigorous analysis and understanding of
conflicting requirements and their interactions is essential to derive a balanced
architecture. Ignoring it may result in an incomplete understanding of speci-
fied requirements and, consequently, poorly informed architectural choices.

One way to resolve the conflicts between requirements is to define Derived
Requirements (DRs). These are requirements that we infer, or derive, from
other user requirements. They represent the outcome of resolving interactions
and conflicts between requirements. DRs may be either new requirements or
enhancements to existing requirements.

The identification of conflicting requirements is a difficult process, espe-
cially in large systems; consequently, methods and tools that can identify
conflicting requirements and define the resulting DRs are needed. This is be-
cause the system may be designed according to one of the requirements, while
the other conflicting requirements should have precedence, so a redesign may
be required later in the process.

The DRAS methodology is used to generate textual DRs from stakehold-
ers’ textual requirements. DRAS aims to assist the process of identifying con-
flicting functional requirements and supports resolving these conflicts. The
resolution may include changing, enhancing, or overriding some of the con-
flicting FRs, including the generation of textual derived requirements which
are part of the resolution. Note that DRAS does not handle non-functional
requirements, as it relies on action words to identify conflicts between require-
ments.

We have addressed the main concepts of DRAS methodology in [5, 4].
This paper expands on the previous papers by providing more details about
the methodology, procedures used for its implementation (using a prototype
tool), and adding an Appendix with a comprehensive example of the DRAS
process.

DRAS includes some ideas that have been adopted from existing methods
for identifying and handling conflicting requirements, especially from [2, 31,

DRAS: DERIVED REQUIREMENTS GENERATION 85

7]. DRAS uses actions as the primary means for identifying conflicting FRs,
similar to ý [2]. Actions are the functions specified by the FRs. In the example
above, “open window” is the action used by both requirements. Note that
using the same action by both requirements indicates that one of them may
conflict with the other.

The main contribution of the DRAS methodology is the way conflicting
requirements are identified. In order to find which requirements may conflict
a given requirement Req, DRAS considers Req’s actions, modes (also called
states), and action modifiers. Actions can be explicitly stated in Req, im-
plied by actions in Req, or imply actions in Req. For example, “refresh the
room”implies the action “open a window” and “unlock the window” is implied
by “open the window” (and indirectly, is also implied by “refresh the room”).

The activation of some actions depends on the mode of the system Req
refers to. For example, there might be different requirements for opening the
window depending on the season - summer or winter. Requirements that are
relevant only for the summer usually are not conflicting requirements that are
relevant only for the winter.

We also distinguish between a restricting action, that forbids some activi-
ties (e.g., “open a window” is restricted in ”do not open the window when the
temperature is below 10 degrees”) and ease a restriction for an action (e.g.,
“the window may be opened when leaving the room, even if the temperature is
below 10 degrees”). This distinction is used to determine whether to consider
implied or implying actions.

In designing a system that reengineers the requirements, one dilemma is
whether the output should be expressed textually or a more formal method
should be used. The initial stakeholders’ requirements for a system or a prod-
uct are usually textual. Only later in the development process are the require-
ments specifications transformed into a more formal, technical representation
(such as UML diagrams ý [16]). When the data is formally represented, it is
easier to identify conflicting requirements and the requirements they conflict.
However, non-technical stakeholders, such as customers and marketing repre-
sentatives, usually are not trained to read formal specifications. Therefore,
it is advantageous to be able to generate DRs in a textual form and to inte-
grate them with other requirements. This enables non-technical stakeholders
to review and understand the specifications. Therefore we decided to create
textual requirements as the output of DRAS.

In order to generate textual DRs from stakeholders’ requirements, DRAS
first identifies match-points (defined in ý [7]) between requirements. A Match-
point in requirements is identifying tentative conflicts between the require-
ments (e.g., a common action). This is performed by identifying common

86 DAVID BAR-ON AND SHMUEL TYSZBEROWICZ

actions that are used by the requirements (inspired by ý [2]), and by identify-
ing common system modes and states (when these actions are used). The DRs
are then created based on the conflicting requirements. This enables review
and evaluation process by both technical and non-technical stakeholders.

As an example, following is a simple set of requirements for initiating a
call from a cellular system:

• Ra. When a phone user dials a number, the phone shall initiate a call
to the dialed number.
• Rb. The phone shall allow initiating calls to the police (911 in the US,

112 in Europe) under any condition.
• Rc. The phone shall be allowed to initiate calls and receive calls only

after checking that the user is allowed to use it (bills paid, phone not
stolen, etc.).

The first observation is that all of these requirements are FRs, and the action
“call initiation” is mentioned in each of them. Therefore, the requirements
may conflict with each other. Further analysis reveals that Rb and Rc are
tentatively conflicting, as Rc restricts call initiation while Rb eases restriction
for initiating a call. Analyzing each pair of requirements shows that Rc con-
flicts Ra, restricting its specification. Assuming that Rc has a higher priority
than Ra, the result is an enhancement (change) to Ra. The enhanced derived
requirement may be:

• Rd. When a user of a phone dials a number, the phone shall initiate
a call to the dialed number only if the user is legitimate.

In this case Rc is redundant since Rd includes it. It still may be important
to keep such a requirement, as usually not all the requirements it conflicts are
identified in the early stages of development.

Another derived requirement is required since Rb and Rc are in conflict
with each other. Illegitimate users are allowed to dial the police according to
Rb and disallowed according to Rc. A common solution in cellular systems
gives R2 higher priority, allowing also illegitimate users to dial the police:

• Re. Illegitimate user should be allowed to dial the police.

Alternatively, this can be an enhancement to Rd :

• Rd (enhanced). The phone should not allow dialing by an illegitimate
user, unless the user dials the police.

This paper is structured as follows. Section 2 gives an overview of related
work. In Section 3 we discuss the problem of generating DRs and outline
how DRAS handles this issue. Section 4 concludes the paper, and discusses

DRAS: DERIVED REQUIREMENTS GENERATION 87

further work and enhancements to DRAS. The Appendix contains a detailed
description of DRAS, which is demonstrated using detailed examples.

2. Related Work

Many methods exist to identify crosscutting and conflicting requirements.
Since DRAS uses ideas of Aspect Oriented Requirements Engineering (AORE),
we reference AORE-based methods for identifying crosscutting concerns, and
use some of those ideas to identify conflicting requirements.

AORE complements existing requirements engineering approaches by of-
fering additional abstraction and composition mechanisms for systematically
handling crosscutting, or aspectual, requirements. AORE methods include
techniques for explicitly modeling aspects or concerns, in the context of re-
quirements specifications. These methods allow identifying concerns in re-
quirements, identifying crosscutting aspects between requirements, evaluating
the aspects, and resolving conflicts caused by aspectual requirements. An
extensive review of AORE methods can be found in [5, 1].

Several of the referenced papers are using the term crosscutting require-
ments, referring to requirements that are inconsistent with other requirements
they crosscut, requirements that enhance or change the functionality of other
requirements, and sometimes are also in conflict with these requirements. The
DRAS methodology mainly deals with conflicting requirements. However,
several of the methods used for handling crosscutting requirements are also
applicable for conflicting requirements and are adopted by DRAS.

Section ďż˝2.1 elaborates on AORE methodologies that includes ideas that
are used DRAS. We describe some of the methodologies that have been eval-
uated during the development of DRAS in Section ďż˝2.2, including a brief
discussion on their relevancy to DRAS.

2.1. Methods with ideas used by DRAS. Goal Oriented Require-
ments Analysis [26] explores the alternatives for achieving the goals as
described in a given set of high level requirements, in order to achieve high-
level requirements and select the proper alternatives. The method correlates
Softgoals (NFRs) with goals and other Softgoals, which is similar to analyzing
crosscutting requirements. An enhancement of this method is Aspects in Re-
quirements Goal Models (Yu et-al [36], summarized in [11]) proposes a pro-
cess for discovering aspects early in the software development process, based
on relationships between functional and non-functional goals. V-shape graphs
are used to decompose goals from Softgoals, and to present the goal/softgoal
hierarchies. The Discovering Aspects from Requirements Goal Models method
described below is based on these methods.

88 DAVID BAR-ON AND SHMUEL TYSZBEROWICZ

Discovering Aspects from Requirements Goal Models method [36]
is an enhancement of the Goal Oriented Requirements Analysis method. It
proposes a process for discovering aspects early in the software development
process, from relationships between functional and non-functional goals. DRAS
enhancements over this method include correlating between system specifica-
tions to identify conflicting functional requirements and then resolving those
conflicts.

Modularization and Composition of the Aspectual Requirements
method, described in [31], defines an AORE process model for resolving con-
flicts between requirements, and determining the influence of the conflicts res-
olution later in the architecture and design development stages. It focuses on
the modularization and on the composition of requirements-level concerns that
cut across other requirements. The method is primarily useful for Non Func-
tional Requirements (NFRs), such as: availability, security, response time,
accuracy, reliability, and other requirements that cannot be encapsulated by
a single viewpoint or use-case [18]. The method supports the separation of
crosscutting NFR properties and helps to identify the mapping and influence of
the requirements level aspects on artifacts at later development phases. The
method identifies critical tradeoffs before the architecture is derived. It in-
cludes steps for identifying concerns and viewpoints relationships, identifying
candidate aspects, identifying match-points, defining composition rules, and
the composition of viewpoints and aspects using composition rules. DRAS
adopted the same idea from the Modularization and Composition of Aspec-
tual Requirements method, for analyzing the requirements in order to find out
whether they are conflicting or whether a requirement enhances other ones,
and how. However, as noted earlier, this method is mainly relevant for cross-
cutting NFRs while DRAS handles FRs; it also does not use actions as a
means to identify crosscutting and conflicting functional requirements.

Composition Process for Aspect Oriented Requirements (AOR),
described in [7], is a process for composing crosscutting concerns with the con-
cerns (requirements) they conflict. The method is used primarily for NFRs,
but it also includes techniques that are applicable for functional requirements.
The process includes the following steps: a) identify concerns; b) identify can-
didate aspects; c) compose candidate aspects with concerns. DRAS adopted
from this methodology the identification of match points and the use of contri-
bution and composition-rules. Note that this method mainly handles NFRs;
it does not work well to identify match-points between FRs. Brito, et al. [8]
presents enhancements to this approach; the composition rules are refined with
new operations inspired by LOTOS [6] operators.

Theme and Theme/Doc are defined in [2] and [3]. These methods han-
dle FRs, rather than mainly NFRs as in most of the other methods described

DRAS: DERIVED REQUIREMENTS GENERATION 89

earlier. Theme is a method and set of tools developed for early identification of
aspects in the software development life cycle. The theme notion represents a
system feature. Themes can be either base themes, which may share some be-
havior structure with other base themes, or crosscutting themes-aspects, which
have a behavior that overlays the base themes functionality. Theme/Doc can
identify aspects from interrelated behaviors of FRs, not just from NFRs as
most other methods identify. The Theme/Doc approach and tool is used to
view the relationship between behaviors in requirements documents and to
identify and isolate aspects in the requirements. That is, it is primarily used
to identify and separate aspects or concerns from the requirements, but not
to combine aspects with other requirements. The approach provides require-
ments specifications views, exposing relationships between behaviors in the
system. The method helps to determine which elements of functionality are
base and which are aspects. The Theme/Doc approach assumes that if two
behaviors are described in the same requirement, they are related. Accord-
ing to this approach, behaviors can be related to each other in three ways:
erroneously/coincidentally, hierarchically, and crosscutting. The Theme/Doc
process includes creating a list of actions that are used by the system. The
actions are then used to identify crosscutting requirements, based on how
these requirements use the actions. Those ideas were adopted by DRAS.
Theme/Doc, however, does not take into account implied actions, actions that
are the result of initiating other actions and states/modes related to the re-
quirements. DRAS handles these issues and this enables identifying conflicts
between requirements that are using related actions, but not using the same
actions.

2.2. Other Methods Evaluated. Viewpoints [15] are used to specify the
system from the perspectives (viewpoints) of each of its users (Actors in Use
Case diagrams). Usually each perspective is partial and incomplete, because
of the different roles each user has. A separate evaluation for each viewpoint is
needed in order to define the full system’s specification. For a complex system,
using viewpoints allows Separation of Concerns (SoC) between different view-
points, and provides a more manageable means of handling the system’s spec-
ifications. Viewpoint-oriented methods do just that. Nuseibeh [28] presents a
viewpoint as collecting and partitioning knowledge about representations, pro-
cesses, and products of software development - all from the user’s perspective.
Several Viewpoints-Based Requirements Engineering (VBRE) methods exist.
For example, Silva [33] introduces an approach for classifying and diagnosing
discrepancies between viewpoints. The main purpose of Viewpoint methods
is to verify that requirements cover all perspectives. Although they deal with

90 DAVID BAR-ON AND SHMUEL TYSZBEROWICZ

SoC, they do not specifically treat the issue of identifying crosscutting or con-
flicting requirements. Therefore, ideas from these methods were not used for
DRAS (at least not directly).

Adaptation of the NFR-Framework to AORE [34] is an enhance-
ment to the method defined in [31], which also includes some methods defined
in [26], and to the NFR-Framework [12]. The NFR-framework is goal-oriented
and is similar to the method described in [26], using the notion of softgoals.
The Adaptation of the NFR-framework to AORE method uses the general
AORE process framework defined by Rashid, et al. [31]. The main enhance-
ment over [31] is identifying and selecting operationalizations. To operational-
ize a requirement means to provide more concrete and precise mechanisms
(such as operations, processes, data representations, or constraints) to solve a
problem. To operationalize a softgoal is to define possible solutions, or design
alternatives, to help achieve the NFRs. This method is applicable to DRAS,
but the related ideas used in DRAS were taken from [31] instead.

Goal Oriented Requirements Methodology [14] enhances the Adapta-
tion of the NFR-Framework to AORE [34], and is based on the SoC principle.
The method provides a way to represent crosscutting requirements separately
from the requirements they affect and to specify the composition between
them.

Crosscutting Quality Attributes [25, 9] propose a model to identify
and specify Quality Attributes (QA) that crosscut other requirements at the
requirements analysis stage. A QA is a non-functional concern, such as re-
sponse time, accuracy, security, and reliability. This is the same as in a NFR,
but from the point-of-view of the functional requirement. The aim of the
method is to improve the separation of crosscutting requirements during anal-
ysis, providing a better means for identifying and managing conflicts. The QA
method enables the handling of the NFR aspect of the FR together with the
FR, instead of handling each of them separately. This method is only partly
applicable for generating derived requirements from the requirements defined
in this work. However, it mainly handles NFR and QA requirements. Also,
the main methods it uses are also included in other methods [31]. Therefore,
ideas from this method were not incorporated into DRAS.

3. The DRAS Methodology: Generating Derived Requirements

The DRAS methodology is used to identify and handle conflicting func-
tional requirements. DRAS first identifies the actions used by each require-
ment, including implied actions, the modes (or states) that are relevant for the
requirement, and the action modifiers per action. Based on this information,
DRAS identifies the functional conflicting requirements, the requirements they

DRAS: DERIVED REQUIREMENTS GENERATION 91

are in conflict with, and helps with generating the resulting derived require-
ments (DRs). The generated requirements are textual, so that all stakeholders,
including those with no technical background, can review and understand the
requirements.

We have chosen to identify conflicting FRs based on the actions used by
the requirements, similar to the Theme/Doc method [2, 3], as the functional
requirements are used to specify the functions, or actions, that the system
should provide.

3.1. Input FRs. Following are functional requirements that will be used to
describe the DRAS process. The requirements are a simplified version of a
very large project that one of the authors participated in the definition and
the analysis of its requirements. The requirements are mainly about the Push-
to-Talk (PTT [37]) action that is used to initiate calls to a pre-selected user
or target number in walky-talkies, by pressing a button, also called PTT.
As in walky-talkies, these calls are half-duplex, and only one participant can
transmit voice at a given time.

• R1. When the PTT is pressed, the phone shall initiate a call.
• R2. When another phone transmits, the phone shall not initiate voice

transmission.
• R3. During a call, the phone shall not initiate a voice transmission

when another phone transmits.
• R4. In the Emergency mode, the phone should always be allowed to

initiate a voice transmission.
• R5. Illegitimate user should not be allowed to use the cellular system.
• R6. Illegitimate users shall not be allowed to initiate calls.
• R7. All users should be allowed to initiate a call to the police (an

emergency number).

As described in the introduction, DRAS purpose is to identify conflicting re-
quirements and to generate derive requirements to resolve the conflict, based
on the actions in the requirements and the relative requirements priorities.

For example, in this set of requirements R1 and R2 may conflict, since
both are about voice transmission, as a call initiation implies voice transmis-
sion. In cellular systems, when the PTT is used to initiate a call, usually R1
and R2 are conflicting requirements. Since usually R2 has a higher priority,
i.e., a phone will not try to transmit if another phone already transmits, the
conflict resolution may be as follows [the E in R1(E) means enhanced]:

• R1(E). When PTT is pressed, the phone shall initiate a call unless
another phone transmits.

92 DAVID BAR-ON AND SHMUEL TYSZBEROWICZ

Note that with R1(E), R2 may be redundant. However, it is important to keep
such conflicting requirements. Usually not all requirements that are in conflict
with each other are identified in the early stages of development; moreover,
new conflicting requirements may be added later (changes and additions to
the systems’ requirements usually never end).

3.2. DRAS Outline. The process map for the DRAS methodology is shown
in Figure 1. The methodology steps are briefly described in the following
sections, using as an example the requirements defined above. In the Appendix
we provide a detailed example of using DRAS.

Gathering the

Stakeholders’

Requirements

Identifying Actions,

Entities, and Attributes

Identifying Actions and

Entities used by the

Input Requirements and

their Priorities

Identifying Implied

Actions used by the

Requirements

Identifying

Requirements-Actions

Attributes

Identifying Match-

Points between the

Requirements

Evaluating

Match-Points

 Identifying

Correlations between

Actions and Entities Generating the

Derived

Requirements

Figure 1. DRAS: Process Map

3.3. Identifying Actions and Attributes Lists. After the stakeholders’
requirements are gathered and formulated, the lists of actions, entities, and
attributes used in the system are identified. Attributes are mainly the Modes
(and States) list of the system.

A list of contradicting pairs of modes values is also generated. This list is
later used to remove tentatively identified conflicts between requirements that
usually cannot occur in reality. E.g., a requirement related to call in process

DRAS: DERIVED REQUIREMENTS GENERATION 93

usually cannot contradict with a requirement related to the case when the
phone is not registered to the system.

In addition, correlations between actions and entities are identified, i.e.
which actions are relevant for each entity. This is used to identify which
actions are relevant to a requirement that refers to an entity, e.g. the actions
related to R5 that refers to the cellular system entity. However, in this section
we will not refer to entities, and the relevant information can be found in the
Appendix.

3.4. Identifying Requirements and Actions Attributes. The attributes
assigned to the requirements and to the requirements’ actions for assisting
with the DRAS process are:

(1) Requirement’s Priority (Section 3.4.1).
(2) Requirement’s Modes (and States) (Section 3.4.2).
(3) Requirement’s Action Action Modifier (Section 3.6.1).

Note that attributes assigned to a requirement are also assigned to the actions
it uses (directly or indirectly).

3.4.1. Requirements Priority. The resolution of conflicting requirements de-
pends on the relative priority of the requirements; i.e., deciding which of the
conflicting requirements takes precedence. The specification of a requirement
with a higher priority should override the specifications of requirements with
a lower one. The use of relative priorities between requirements for handling
conflicting requirements is inspired by methods such as [2, 31].

Note that it is time consuming to decide for each pair of requirements which
requirement has a higher priority. In order to simplify the process, DRAS as-
signs a unique priority to each requirement. A functional requirement priority
is based both on the importance of the actions and on the system-state re-
ferred to by the requirement. For example, a requirement about emergency
actions will usually have higher priority than a requirement about other ac-
tions. Also, requirements that restrict operation in emergency states will
usually have higher priority than requirements for general states.

The decision about a requirement priority is not always deterministic and
the final decision is usually done (or at least validated) manually, based on
experience, domain knowledge, understanding the customer needs, etc.

For example, the analysis of requirements priorities can be used to resolve
the conflict between R6 and R7 :

• R6. Illegitimate users shall not be allowed to initiate calls.
• R7. All users should be allowed to initiate a call to the police (an

emergency number).

94 DAVID BAR-ON AND SHMUEL TYSZBEROWICZ

The resolution whether an illegitimate user can dial the police or not, can
only be performed manually. That is, we must determine which of these two
requirements has a higher priority to define the proper DR.

It should be noted that assigning a unique priority per requirement is a
simplification, as the requirements priorities are not necessarily totally or-
dered. That is, even if Req A has a higher priority than Req B and Req B
has a higher priority than Req C, Req C still may have higher priority than
Req A. Thus, using a unique priority per requirement can only suggest which
requirement has a higher priority. A main reason for this is that many of the
requirements are unrelated, so it difficult to compare their relative priority.
Also, requirements may refer to more than one action, and each reference to
an action may have its own priority.

For example:

• R14. When pressing PTT, the phone shall initiate a call.
• R15. Illegitimate users shall not be allowed to transmit.
• R16. The phone shall send its location to the system every minute.
• R17. During a call, the phone shall not transmit its location.

As initiating a call requires transmission, R15 is assigned a higher priority than
R14. However, although sending location to the system requires transmission
as well, it still may be allowed for illegitimate users, e.g., to allow locating the
phone in case of emergency. Therefore, R16 is assigned a higher priority than
R15, and thus also an higher priority than R14. However, due to R17 (which
is the result of a technical limitation of the system), initiating a call will stop
sending the location for the duration of the call. If R17 has a higher priority
than R16, R14 should also have higher priority than R16 to allow initiating
calls. Otherwise, R17 has no meaning. Thus, different considerations lead
to different relative priorities of R14 and R16. Hence, the relative priorities
between the requirements are not totally ordered.

3.4.2. Requirements Modes and Conflicting Modes. DRAS uses identified modes
(and states) that each requirement refers to. Normally, when two requirements
relate to two orthogonal modes, the requirements are not in conflict. That is,
even if the two requirements use the same (implied) action, we can still assume
that they do not have match-points. Examples for modes of a cellular phone
are: a) is it in a call or not; b) is the user in the dialing a number; c) is the
user reading SMS messages. As shown in Figure 2, the Idle and Call modes
are orthogonal. A phone can either be in a call session or idle. Therefore
a requirement that refers to the Idle mode will usually not conflict with a
requirement referring to the Call mode.

DRAS: DERIVED REQUIREMENTS GENERATION 95

However, the Emergency mode crosscuts both the Idle and the Call modes,
since Emergency mode can be initiated no matter if the phone is in a call or
not.

Idle Mode Call Mode

Emergency Mode

Figure 2. Crosscutting Modes

For example:

• R3. During a call, the phone shall not initiate a voice transmis-
sion when another phone transmits.
• R4. In the Emergency mode, the phone should always be allowed to

initiate a voice transmission.

In this example both requirements use the same action (transmit), R3 refers
to the Call mode, and R4 refers to the Emergency mode. Therefore, require-
ment R4 tentatively conflicts with R3. Following is a possible solution to
the conflict, assuming requirements related to emergency cases have higher
priority than other requirements:

• R3(E). In the Call mode, the phone shall not initiate a voice trans-
mission when another phone transmits, unless it is in the Emergency
mode.

On the other hand, if requirement R1 is modified to include a reference to a
specific mode (“(M)” refers to ”mode”), it will not conflict with requirement
R3 :

• R1(M). In the Idle mode, the phone shall initiate a call when the
PTT is pressed.

Although both requirements imply the use of ”transmit”, none of them con-
flicts the other because the modes are orthogonal, i.e. there is no state of the
phone when the two requirements are both relevant.

3.5. Generating the Implied Actions List. When searching for require-
ments which are based on actions that may conflict other requirements, DRAS

96 DAVID BAR-ON AND SHMUEL TYSZBEROWICZ

not only performs comparisons between actions directly used by the require-
ments, but also takes implied and implying actions into account.

3.5.1. Implied and Implying Actions. In many cases, the use of an action Act
by a requirement implies the use of other actions by that requirement. Those
are the actions which are the consequence of using Act. For example, the
action “pressing the dial button on the phone” implies the use of the action
“”transmitting voice”. In addition, actions that imply the use of Act may also
be relevant to the requirement. For example, when analyzing a requirement
about ”transmitting voice”, the action ”pressing the dial button” may also
have to be considered.

We have to decide which actions to consider: those that are implied by
the action Act or those that imply the use of Act. The decision depends on
whether the requirement restricts the use of Act or whether it eases restrictions
for the use of Act. Restricting the use of Act means that all actions that imply
its use should also be restricted. Ease of restrictions for the use of Act means
that all the actions that it implies should also be allowed.

Consider the case where an action (e.g., transmit) is restricted, i.e. it is
not allowed in certain cases. The action that implies transmit (i.e., initiate a
call) is also restricted:

• R1. When the PTT is pressed, the phone shall initiate a call.
• R2. When another phone transmits, the phone shall not initiate

voice transmission.

In this case, since initiating a call requires the phone to transmit, a phone
should not try to initiate a call if another phone is already transmitting. Note
that this conclusion requires knowing that initiating a call results in a trans-
mission.

3.5.2. DRAS use of Implied and Implying Actions. To identify the implied and
implying actions for a certain action Act, the DRAS methodology uses pre-
defined implied actions-list of all actions that are directly used by each action.
That is, the actions-list specifies for each action A which other actions are
implied by A. The implied actions-list is defined based on previous knowledge
and during initial analysis of the system’s requirements. Recursive use of the
list allows it to identify all actions that are implied by the use of that action.
For each implied action, the list also specifies whether it is always activated
when Act is performed.

For example, for identifying that requirements R1 and R2 conflict, the list
of actions implied by call initiation, as specified by the implied actions-list,
is analyzed recursively to check if transmit is a result of call initiation. This

DRAS: DERIVED REQUIREMENTS GENERATION 97

is shown in Figure 3 (Tx abbreviates transmit, see the Appendix for details
about these actions).

Initiate Call
Call State

to Tx
Tx Voice Tx

Ask Tx

Permission

Figure 3. Implied Actions for Call Initiation

Given that R2 has a higher or equal priority than R1, then the conflict
resolution may be:

R1(E) When PTT is pressed, the phone shall initiate a call, unless another
phone transmits.

A more complex example of implied actions is shown in Figure 4. It shows
that several threads of actions can imply the same action; e.g., both Power
On and Initiate Call imply transmission. Therefore, for example, not allowing
transmission (Tx) means restricted functionality of call initiation and Power
On.

Initiate Call
Call State

to Tx
Tx Voice Tx

Press PTT

Idle Mode

Call Mode

Receive

Incoming

Call

Join

Incoming

Call

Call

Mode to

Active

Power On Register

Registration

Command

Ask Tx

Permission

Figure 4. Implied Actions (a partial list)

To create the list of actions that are implied by other actions, the following
steps are taken:

(1) The list of actions that are used by the requirements is identified.
(2) For each action, the list of actions that they directly imply (i.e.,

that are directly used by the action) are defined.

98 DAVID BAR-ON AND SHMUEL TYSZBEROWICZ

(3) The list of all actions used by each action (either directly or
indirectly) is generated from the list of actions directly implied, as
specified in the following pseudo code:

For each record in "Actions Implied by an Action" table{

Create a record in "All Implied Actions" table with

Action, Implied Action}

Repeat until no new record is added (no duplicates){

For each two records in "All Implied Actions",

where R1.Implied_Action = R2.Action{

Create record in "All Implied Actions" table

with R1.Action, R2.Implied_Action}}

3.6. Identifying Implied Actions used by the Requirements. In this
step, the list of all actions used by the requirements, whether directly or in-
directly (implied and implying), are identified, to ensure all actions common
to the requirements are considered when checking whether a requirement con-
flicts another requirement. To identify whether implied or implying actions
should be considered, the action modifier of the action in the requirement is
used, as described below.

3.6.1. Action Modifier. Functional requirements usually conflict when they re-
strict normal functionality or ease other restrictions. For example, R1 conflicts
with R2 since R2 restricts the functionality of R1. On the other hand, R4
ease the restriction of R3 when the phone is in Emergency mode.

To allow identifying the type of possible conflict between requirements
based on the actions they use, for each action used by a requirement, DRAS
identifies its action modifiers. In general, an action modifier determines whether
the requirement specifies when the action is used or when the action should
not be used.

DRAS distinguishes between 3 action-modifiers:

• Restrict: an action is restricted or not allowed.
• Unconditional: an action is always allowed, even if it was restricted

by other requirements (ease of restriction).
• None: an action is not specifically allowed or restricted in certain

modes or states. Usually, an action with a non-action-modifier does
not need to determine whether the FR conflicts other FRs or not.

The information regarding action-modifiers helps in determining whether two
requirements are in conflict. If the use of an action is not restricted or a
restriction for its use is not eased, then the use of the action does not nec-
essarily mean the requirements are conflicting with other requirements. (An

DRAS: DERIVED REQUIREMENTS GENERATION 99

exception is when there is a mistake in the requirements, such as: two contra-
dicting requirements that are erroneously defined.) The action-modifiers are
also propagated to the implied-actions.

It depends on the action modifier whether to consider the actions that are
implied by an action or to consider the actions that imply the action. If a
requirement restricts the use of action Act, all actions that imply Act are
also restricted. For example, not allowing transmitting also means not allow-
ing call-initiation, but not allowing call-initiation does not mean not allowing
transmitting.

On the other hand, if a requirement eases the restrictions for using Act
or allows using it unconditionally, then all actions implied by Act are also
allowed. For example, permitting unconditional call-initiation in Emergency
mode means also unconditional permission to transmit in this mode. Per-
mitting unconditional transmission, however, does not mean unconditionally
permitting call-initiation. The action-modifier of an action is therefore used to
determine the direction for identifying implied-actions (see Figure 5). If Act
is restricted, then the actions that imply Act are also restricted. If restrictions
are eased (Unconditional), then restrictions for using the actions (implied by
the action) are also eased.

Initiate Call
Ask Tx

Permission

Call State

to Tx
Tx Voice Tx

Implied Actions (Forward) - used for ease of restrictions

Implying Actions (Backward) - used for restrictions

Figure 5. Restriction and Ease of Restriction for Implied Actions

For example, since R2 restricts transmission, according to Figure 5, R2
also restricts call-initiation; therefore, R2 conflicts with R1.

Having only an action-modifier does not mean that one requirement may
conflict with the other. Usually, in order to have a conflict the action-modifier
should also contradict the action-modifier of the other requirement. For ex-
ample, the following two requirements are not in conflict with each other:

R1 When the PTT is pressed, the phone shall initiate a call. R4 In
the Emergency mode, the phone should always be allowed to initiate a voice
transmission.

Although R4 eases a restriction for transmission, it does not contradict
R1, because R1 refers to permitting transmission (implied by call initiation)
and not to restricting transmission.

100 DAVID BAR-ON AND SHMUEL TYSZBEROWICZ

3.6.2. Identifying Implied and Implying Actions. Generating the list of actions
used by a requirement is done as follows:

(1) The actions directly used by it are identified. For ach action, the
Action Modifier is also identified, i.e. whether the action is restricted,
it can be performed unconditionally (restriction is eased), or none.

(2) For each restricted action, the use of all actions implying it may also
be restricted. The following pseudo code describes these actions list
generation:

For each restricted Action1 used by the requirement{

For each Action2 implying Action1{

Add Action2 to the list of restricted actions

used by the requirement}}

(3) For each unconditional action, the use of all actions implied by it
may also be unconditional. The following pseudo code describes these
actions list generation:

For each unconditional Action1 used by the requirement{

For each Action2 implied by Action1{

Add Action2 to the list of unconditional actions

used by the requirement}}

(4) For each identified action, the Action Modifier of the implying or im-
plied action and the requirement’s Priority are assigned.

3.7. Identifying Match-Points between the Requirements. In this step,
conflicting requirements and the requirements they are in conflict with are
identified. This is performed by identifying the match-points between re-
quirements, using their common attributes. The common attributes are ac-
tions, modes, action modifiers and other attributes that are common to the
requirements. We also include priorities for the requirements.

For example, match-point will be identified between R1 and R2 as both
use voice transmission (in R1 voice transmission is implied by call initiation),
and between R1 and R6 as they are both about call initiation.

Match-point identification is performed in three steps:

(1) Identify the list of match-point candidates between requirements, ac-
cording to the use of common actions and different values for at-
tributes. The following pseudo code describes this process:

For each pair of requirements using the same Action

(and per each common Action used by these requirements),

where the priority of the first requirement is

lower than the priority of the second requirement

and where the first requirement uses Action directly

DRAS: DERIVED REQUIREMENTS GENERATION 101

and Action Modifier of both Actions is different {

Add record to "Match by Action" table with Action

and the list of attributes from both requirements}

(2) Remove redundancies that were created by multiple matches between
two requirements (mainly caused by several implied actions that match
between requirements). The following pseudo code describes this pro-
cess:

Delete each record where a second record exists that

results from the same two requirements and with the

same Action

(3) Remove match-points that cannot happen in reality, or do not have at
least one different conflicting mode or state.

Delete each record where two of its attributes contradict

or where the two requirements do not have at least one

different attribute

3.8. Evaluating Match-Points. After identifying the requirements that may
conflict with each other, the effect of the conflicts should be evaluated. This is
performed by identifying two attributes for each pair of matched requirements:
contribution and composition rules, and is based on Brito and Moreira [7].

• Contribution - indicates how the function defined by one of the re-
quirement affect the other requirement’s function:

– Conflicts with the functionality of the other requirement (”-”)
– Adds to that functionality (”+”)
– Does not affect the functionality (”None”)

• Composition Rules - based on the requirements’ relative priority
and the nature of the conflicting functionality, the conflicting require-
ment can be one of the following:

– Overlap Before/After - add functionality before/after the func-
tionality of the requirement it conflicts with.

– Override - replace the functionality
– Wrap - encapsulate the existing functionality within new func-

tionality.

Identifying these attributes enables an improved understanding of the nature
of the conflict and how it can be resolved. After these attributes are identified,
they are used for deciding how the requirements should be modified to resolve
the conflicts, and to identify which of the match-points should result in a
derived requirement.

102 DAVID BAR-ON AND SHMUEL TYSZBEROWICZ

For example, requirement R2 conflicts with R1 and override its function-
ality, i.e. the phone should not initiate a call or transmit when other phone is
transmitting:

• R1. When the PTT is pressed, the phone shall initiate a call.
• R2. When another phone transmits, the phone shall not initiate

voice transmission.

On the other hand, R4 overrides R2, meaning that R1 is allowed in emergency
mode, even if other phone is transmitting.

R4 In the Emergency mode, the phone should always be allowed to ini-
tiate a voice transmission.

3.9. Generating the Derived Requirements. Derived requirements are
generated according to the attributes defined for each match-point. In addi-
tion, requirements specifications may be enhanced based on the match-points
attributes. Note that several match-points may result in one derived require-
ment, as several conflicts may have the same resolution.

For example, the following derived requirements may be generated (Rx/Ry
indicates the matched requirements that are the source for the DRs):

• R1/R2 When the PTT is pressed, the phone shall initiate a call, unless
other phone is transmitting.
• R6/R7 Illegitimate users shall only be allowed to initiate a call to the

police (an emergency number).

4. Conclusion and Future Work

4.1. Conclusion. We have presented DRAS, a methodology to help iden-
tify and handle conflicting functional requirements. We have also applied our
methodology to few test cases.

DRAS identifies conflicting functional requirements based on the actions
they use. It starts with identifying the lists of actions and entities used by the
input requirements. The relative priority of each requirement is also identified.
Then the list of actions (implied by each action) is defined. This list is later
used to identify all of the actions a requirement refers to, directly or indirectly.
Generating the list depends on the action’s action-modifier, i.e. whether the
requirement restricts the use of an action or eases a restriction for its use. If
the use of an action Act is restricted, the use of all actions that use Act (i.e.
the implied-actions) is restricted too. If a requirement eases the restrictions
for using an action Act, the actions list will include actions that are the result
of using Act (i.e. the implying actions).

For each requirement, the modes and states of the different entities it refers
to are also identified. This information is later used to help to decide whether

DRAS: DERIVED REQUIREMENTS GENERATION 103

functional requirements conflict with each other, because this usually depends
on the modes and the states referred to by the requirements.

The actions (and their modifiers) and modes for each requirement are
identified. Based on this information, match-points between the requirements
are identified. To get to the final list of match-points, the list is further refined
to remove redundancies and conflicts that cannot occur in real-life.

The final step of DRAS is to generate DRs, according to the list of match-
points between requirements. This process usually requires consulting the
stakeholders; because in several cases resolving conflicts is not straight forward,
and the stakeholders should decide what direction to take. The requirements,
both original and derived, can be reviewed by all stakeholders, making sure
that resolutions to conflicts are performed properly.

Using DRAS provides a method to identify conflicting functional require-
ments and the requirements they are in conflict with. It also helps in deciding
what derived requirements should be generated from the conflict, by identi-
fying the match-points between the requirements. By that, DRAS helps to
define more consistent requirements.

4.2. Further Work. Several enhancements are considered for the DRAS
methodology; mainly further automating the process beyond the partial au-
tomation of the prototype tool described in the Appendix, so that the (ten-
tative) DRs can be generated automatically. Before automating the process,
some more case studies should be done. In addition, automation requires the
ability to parse and analyze the text and the ability to set the relative priori-
ties between requirements a match-point refers. Note that text analysis should
allow identifying actions, even when they are written in different forms. For
example, ”call initiation” may be written in the requirement ”initiate a call”,
”start call”, etc.

The DRAS methodology, or part of it, may be integrated with existing
requirements management tools (such as DOORS or RequisitePro). This will
enhance their functionality and enable an easier definition of requirements
(derived from conflicts between other requirements). Another possible en-
hancement to such tools is the definition of attributes per requirement, as
used in this work. For each requirement, these attributes include the actions
used with their action-modifiers and the mode/state attributes. With proper
textual analysis, the requirements management tool may be able to generate
these attributes automatically. Using these attributes, the tool can suggest to
the user possible conflicts between the requirements, by implementing similar
algorithms to the ones defined for DRAS.

DRAS methodology assumes that an identified match-point (between func-
tional requirements) tentatively identifies that one requirement is conflicting

104 DAVID BAR-ON AND SHMUEL TYSZBEROWICZ

the other. That is, one of the requirements is a conflicting requirement. This
assumption was not validated; further work is required to identify whether
this is true, or for what cases this is true.

Using natural language processing methods to analyze the requirements
(e.g. [21, 32]), it may be possible to semi-automate actions identification of
actions (used by the requirements) and their different attributes. Writing the
requirements in some formal form, such as Attempto controlled language [35],
can assist this approach. Ideas from AbstFinder [17] may also be used to
help identify aspects in the specifications text. Mining aspects methods [23]
and tools may also be used for automatic or semi-automatic retrieval and
identification of aspects. Automatic weaving (composing) of requirements
(to generate the DRs) may use methods similar to the ones used by aspect
oriented programming (see [20]). As a starting point for using natural language
processing, we consider adapting two tools that we have developed for other
purposes. The EasyCRC tool [30], which automates the processes of finding
nouns and synonyms, as part of its activity, can be adapted to find actions
and related actions in the requirements. The CodePsychologist [27] is used to
assist the programmer to locate regression bugs in the source code. It uses
some affinity evaluation algorithms, which we consider using in our tool.

Using queries to identify conflicting requirements and the requirements
they are in conflict with, as defined in the Requirements Description Lan-
guage (RDL) [10], is another possible approach for enhancing DRAS. RDL
identifies aspectual (conflicting) requirements by defining constraint queries
about actions and objects used by the requirements. The requirements that
the aspectual requirements tentatively are in conflict with are identified by
base queries.

The use of XML to internally represent requirements can also be consid-
ered. Note that XML cannot be used to represent input and output require-
ments, because these should be in textual format, so that all stakeholders
can understand. XML representation can help automate the creation of DRs.
Methods will be needed to translate the textual requirements from text to
XML (or another format) and to translate back the XML representation for
DRs to textual format. XML is already used for aspect-oriented methods (e.g.,
the ARCaDe tool [31, 19]) to compose requirements, or for supporting aspects
plug-ins in software design [22]. Concepts from these and other approaches
may be reused.

To allow automatic detection of relative priorities between requirements,
priorities may be added to each attribute value (e.g., Normal=1, Emergency=2).
In addition to requirements priorities, this can also enable having relative pri-
orities between requirements (i.e., a partially ordered tree of requirements

DRAS: DERIVED REQUIREMENTS GENERATION 105

priorities). There will be no absolute priority per requirement, and the rela-
tive priority of each pair of requirements should be evaluated separately. In
addition, default values for each attribute should be defined. This will enable
requirements handling, where partial attribute values are specified (e.g., set
call priority default as “Normal”).

Composition-rules can be enhanced to improve the automation process.
In many cases, current composition-rules values are not useful. Different val-
ues for composition rules, which are more suited for generating DRs, may be
more useful. One possible approach is to define temporal rules, such as “Over-
ride Temporarily”, “Delayed After”, “On Event” (e.g., when mode changes).
Enhancements using ideas from LOTOS [6, 8] should also be considered.

Temporal logic may also be used to enhance the method [24]. Action Mod-
ifiers identified in DRAS, “Restrict” and “Unconditionally” seem to be similar
to Temporal Logic Path Quantifiers/Operators A/G (all paths / always) and
A/H (all paths/always in the past). It may be possible to develop a logic
based on temporal logic, that will use such action-modifiers and specify (using
a formula), the effect of these aspectual action-modifiers on other require-
ments (e.g., Emergency → [A(always) PTT → Initiate Call]). The logic may
be defined as an extension to already existing methods which support tem-
poral logic for requirements, such as Formal Tropos [29] or Kaos [13]. Using
formal languages that use temporal logic may allow the use of model checking
methods [24] to identify conflicting requirements. The ideas suggested by [19]
for the use of temporal logic in the PROBE framework can also be used as
input for enhancements.

References

[1] J. Araújo, E. Baniassad, P. Clements, A. Moreira, A. Rashid, and B. Tekinerdogan.
Early aspects: The current landscape. Technical Notes, CMU/SEI and Lancaster Uni-
versity, 2005.

[2] E. Baniassad and S. Clarke. Finding aspects in requirements with Theme/Doc. In
B. Tekinerdoğan, P. Clements, A. Moreira, and J. Araújo, editors, Early Aspects:
Aspect-Oriented Requirements Engineering and Architecture Design, pages 15–22, March
2004.

[3] E. L. A. Baniassad and S. Clarke. Theme: An approach for aspect-oriented analysis and
design. In ICSE, pages 158–167. IEEE Computer Society, 2004.

[4] D. Bar-On and S. S. Tyszberowicz. Derived requirements generation: The DRAS
methodology. In SwSTE, pages 116–126. IEEE Computer Society, 2007.

[5] D. Bar-On and S. S. Tyszberowicz. Aspects, dependencies and interactions: report on
the workshop ADI at ECOOP 2007. In Proceedings of the 2007 conference on Object-
oriented technology, ECOOP’07, pages 5–10, Berlin, Heidelberg, 2008. Springer-Verlag.

[6] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language LOTOS.
Comput. Netw. ISDN Syst., 14(1):25–59, March 1987.

106 DAVID BAR-ON AND SHMUEL TYSZBEROWICZ

[7] I. Brito and A. Moreira. Towards a composition process for aspect-oriented require-
ments. In J. Araújo, A. Rashid, B. Tekinerdogan, A. Moreira, and P. Clements, editors,
Early Aspects 2003: Aspect-Oriented Requirements Engineering and Architecture De-
sign, Mar. 2003.

[8] I. Brito and A. Moreira. Integrating the NFR framework in a RE mode. In EA-AOSD:
Workshop on Early Aspects: Aspect-Oriented Requirements Engineering and Archi-
tecture Design, held in conjunction with the 3rd International Conference on Aspect-
Oriented Software Development, Lancaster, UK, March 2004.

[9] I. Brito, A. Moreira, and J. Araújo. A requirements model for quality attributes. In
Workshop on Early Aspects: Aspect-Oriented Requirements Engineering and Architec-
ture Design (AOSD-2002), March 2002.

[10] R. Chitchyan, A. Rashid, P. Rayson, and R. Waters. Semantics-based composition for
aspect-oriented requirements engineering. In Proceedings of the 6th international con-
ference on Aspectoriented software development AOSD, pages 36–48. ACM Press, 2007.

[11] R. Chitchyan, A. Rashid, P. Sawyer, A. Garcia, M. P. Alarcon, J. Bakker, B. Tekin-
erdoğan, S. Clarke, and A. Jackson. Survey of aspect-oriented analysis and design ap-
proaches. Technical Report D11 AOSD-Europe-ULANC-9, May 2005.

[12] L. Chung, B. Nixon, and E. Yu. Non-Functional Requirements in Software Engineering.
Kluwer International Series in Software Engineering. Kluwer Academic, 2000.

[13] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements acquisition.
In Science of Computer Programming, volume 20, pages 3–50. Elsevier, April 1993.

[14] G. M. C. de Sousa and J. Castro. Towards a goal-oriented requirements methodology
based on the separation of concerns principle. In L. E. G. Martins and X. Franch, editors,
WER, pages 223–239, 2003.

[15] A. Finkelstein and I. Sommerville. The view point FAQ. Software Engineering Journal,
1(11):2–4, 1996.

[16] M. Fowler and K. Scott. UML distilled - a brief guide to the Standard Object Modeling
Language (2nd edition). Addison-Wesley-Longman, 2000.

[17] L. Goldin and D. M. Berry. AbstFinder, a prototype natural language text abstrac-
tion finder for use in requirements elicitation. Automated Software Engg., 4(4):375–412,
October 1997.

[18] I. Jacobson. Object-Oriented Software Engineering: A Use Case Driven Approach. Ad-
dison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 2004.

[19] S. Katz and A. Rashid. From aspectual requirements to proof obligations for aspect-
oriented systems. In 12th IEEE International Conference on Requirements Engineering
(RE 2004), 6-10 September 2004, Kyoto, Japan, pages 48–57. IEEE Computer Society,
2004.

[20] R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programming. Manning Pub-
lications Co., Greenwich, CT, USA, 2003.

[21] D. Lin and P. Pantel. Discovery of inference rules from text. In Seventh ACM SIGKDD
international conference on Knowledge discovery and data mining, USA, pages 323–328,
August 2001.

[22] C. V. Lopes and T. C. Ngo. The aspect oriented markup language and its support of
aspect plugins. Technical Report UCI-ISR-04-8, October 2004.

[23] N. Loughran and A. Rashid. Mining aspects. In Workshop on Early Aspects: Aspect-
Oriented Requirements Engineering and Architecture Design (AOSD-2002), March 2002.

DRAS: DERIVED REQUIREMENTS GENERATION 107

[24] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. The Temporal Logic of Reactive and Concurrent Systems. Springer-Verlag,
1992.

[25] A. Moreira, J. Araújo, and I. Brito. Crosscutting quality attributes for requirements en-
gineering. In Proceedings of the 14th International Conference on Software Engineering
and Knowledge Engineering, pages 167–174. ACM Press, 2002.

[26] J. Mylopoulos, L. Chung, S. S. Liao, H. Wang, and E. S. K. Yu. Exploring alternatives
during requirements analysis. IEEE Software, 18(1):92–96, 2001.

[27] D. Nir, S. S. Tyszberowicz, and A. Yehudai. Locating regression bugs. In K. Yorav, edi-
tor, Haifa Verification Conference, volume 4899 of Lecture Notes in Computer Science,
pages 218–234. Springer, 2007.

[28] B. Nuseibeh. Crosscutting requirements. In G. C. Murphy and K. J. Lieberherr, editors,
AOSD, pages 3–4. ACM, 2004.

[29] M. Pistore, A. Fuxman, Kazhamiakin, and M. R., Roveri. Formal Tropos: Language
and semantics. Technical Report 4, November 2003.

[30] A. Raman and S. S. Tyszberowicz. The easycrc tool. In ICSEA, pages 25–31. IEEE
Computer Society, 2007.

[31] A. Rashid, A. Moreira, and J. Araújo. Modularisation and composition of aspectual
requirements. In M. Akşit, editor, Proceedings 2nd International Conference on Aspect-
Oriented Software Development (AOSD-2003), pages 11–20. ACM Press, March 2003.

[32] A. Sampaio, R. Chitchyan, and P. Rayson. Ea-miner: a tool for automating aspect-
oriented requirements identification. In D. F. Redmiles, T. Ellman, and A. Zisman,
editors, ASE, pages 352–355. ACM, 2005.

[33] A. Silva. Requirements, domain and specifications: a viewpoint-based approach to re-
quirements engineering. In Proceedings of the 24th International Conference on Software
Engineering, ICSE ’02, pages 94–104, New York, NY, USA, 2002. ACM.

[34] G. Sousa, G. Silva, and J. Castro. Adapting the NFR framework to aspect-oriented
requirements engineering. In Proceedings of the 17th Brazilian Symposium on Software
Engineering (SBES), pages 177–192, 2003.

[35] H. Stefan. The syntax of Attempto controlled english: An abstract grammar for ace
4.0. Technical Report ifi-2004.03, 2004.

[36] Y. Yu, J. Leite, and J. Mylopoulos. From goals to aspects: Discovering aspects from
requirements goal models. In 12th IEEE International Requirements Engineering Con-
ference, September 2004.

[37] ETSI EN 300 392-2. Terrestrial Trunked Radio (TETRA); Voice plus Data (V+D); Part
2: Air Interface (AI), 2007.

Motorola Solutions Israel
E-mail address: David.Bar-On@motorolasolutions.com

School of Computer Science, The Academic College of Tel Aviv Yaffo
E-mail address: tyshbe@tau.ac.il

