
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVI, Number 4, 2011

ACHIEVING REAL-TIME SOFT SHADOWS USING

LAYERED VARIANCE SHADOW MAPS (LVSM) IN A

REAL-TIME STRATEGY (RTS) GAME

ALEXANDRU MARINESCU

Abstract. While building a game engine in Microsoft XNA 4 that pow-
ered a RTS (real-time strategy) tower defense type game, we were faced
with the issue of increasing the amount of visual feedback received by the
player and adding value to the gameplay by creating a more immersive
atmosphere. This is a common goal shared by all games, and with the
recent advancements in graphics hardware (namely OpenGL, DirectX and
the advent of programmable shaders) it has become a necessity. In this pa-
per we will build upon the shadowing techniques known as VSM (variance
shadow map) and LVSM (layered variance shadow map) and discuss some
of the issues and optimizations we employed in order to add real-time soft
shadowing capabilities to our game engine.

1. Introduction to existing shadowing techniques

Shadowing techniques can be divided in 2 major groups: shadow volumes
and shadow mapping. Each has its own advantages and disadvantages and is
best suited to a certain scenario. Shadow volumes rely on extruding actual
polygons from the geometry of the rendered model, in the direction of the
light.

We can see in Figure 1, taken from [6], the actual geometry that is added
to the model in order to achieve shadowing. Shadow volumes have the advan-
tage that they provide extremely accurate shadows, regardless of the distance
between the shadow caster and receiver. On the other hand, they require a
computational overhead on the CPU for the actual computation of the ex-
tra geometry and an added fill rate on the GPU for the actual rasterization,

Received by the editors: November 9, 2011.
2010 Mathematics Subject Classification. 68U05.
1998 CR Categories and Descriptors. A.1 General Literature [INTRODUCTORY

AND SURVEY]; I.3.7 Computing Methodologies [COMPUTER GRAPHICS]: Three-
Dimensional Graphics and Realism – Color, shading, shadowing, and texture .

Key words and phrases. shadow map, VSM, LVSM, render target, filtering, camera and
light space, probability and statistics.

85



86 ALEXANDRU MARINESCU

Figure 1. Shadow volumes and extruded shadow polygons.

depending on the volume density. In addition to this, shadow volumes are
highly dependent on the complexity of the scene and naive implementations
are sensitive to non-convex geometry while also suffering from self-shadowing
artifacts (shadows cast by the geometry on itself).

Shadow maps utilize what is called “the light’s point of view”. The dif-
ference between camera and light view space is illustrated in Figure 2. The
scene on which we perform shadowing is rendered twice. First, it is drawn
as seen by the light (which means that we position our camera in the light’s
position, facing in the direction of the light) and store the depth of each drawn
object relative to the light in a render target (we will see that only this depth
is needed).

As a side note, one should visualize this whole process in the following way:
everything that comes out as output from the pixel shader (GPU program re-
sponsible with filling rasterized geometry with color information) is implicitly
sent to the graphics card’s backbuffer and drawn on screen (the backbuffer
can be thought of as a sort of standard graphics output). A render target is
simply a region of graphics memory, and sometimes we wish to perform some
post-processing before presenting the final scene to the user. This is why we
hijack the backbuffer and instead draw to a render target. After we have
drawn the distance from each object to the light, we obtain a render target
which stores this information as a texture (depth map). Next we draw the
geometry as seen by the actual game camera (with whom the user can inter-
act) and take into account the depth map in order to compute the shadowing
condition. In the vertex shader, each vertex of the geometry, besides being
transformed into camera view space, is also transformed into light view space
(so we know where to sample the depth map). The most basic condition for a
visible pixel (as seen by the camera) to be in shadow is that its depth relative
to the light is greater than the depth sampled from the depth map. Simply



SOFT SHADOWS USING LVSM IN RTS GAMES 87

Figure 2. Camera view and light view frustums.

put, this states that, if the pixel seen by the camera is further away (from the
light) than the corresponding pixel seen by the light, the pixel is in shadow;
otherwise it is fully lit (since there is no occluding geometry).

Given the nature of GPUs, which natively operate with 32-bit floating
point values, the above inequality dcamera < dlight will inevitably yield float-
ing point precision errors. These manifest visually as a flickering of the
light/shadow boundary and grow in strength as the camera or light position
move further apart. This can be solved by adjusting the camera and light view
frustums such that the distance from the near to the far planes is as tight as
possible. This will increase the actual precision of stored depth values; later
on, we will utilize depth values scaled to the range [0..1] and this scaling will
be done linearly using the formula:

(1) dscaled =
d− nearP lane

farP lane− nearP lane
It works because, for example, a range near-far of 1-10000 provides us with

1/9999=0.0001 range per unit of distance, while a near-far plane distance of
1-100 provides 1/99=0.01 range per unit of distance, which is 100 times more
accurate; also one should not forget that 32-bit floating point values are only
accurate up to 10−6 which means that differences in depth finer than this min-
imum value will not be numerically recognized. Other methods for improving
shadow quality include increasing the shadow map size, at the cost of increased
memory storage and draw time. Nevertheless, there are situations when even



88 ALEXANDRU MARINESCU

Figure 3. Regular shadow map, with point sampling.

a 4096*4096 render target is insufficient (which exceeds sizes supported by
most graphics hardware). Still shadow maps are an extremely viable option,
especially in our case where the scene is extremely complex and dynamic, due
to their relative independence of scene complexity and because we can easily
perform a blur post-process (using a Gaussian blur for example) to obtain soft
shadows.

2. Variance Shadow Maps (VSMs)

Before delving further into VSM and LVSM shadowing techniques, we
should discuss our available options regarding the depth map render target and
their numerical implications. XNA provides us with 2 types of render targets:
floating-point and pixel formats [5, 7]. Of specific interest to us are the Single
(32-bit float format using 32 bits for the red channel), Vector2 (64-bit float
format using 32 bits for the red/green channels), Vector4 (128-bit float format
using 32 bits for each channel - red, green, blue and alpha), their half precision
counterparts (HalfSingle, HalfVector2, HalfVector4) and the Rg32 (32-bit pixel
format using 16 bits for the red/green channels) and Rgba64 (64-bit pixel
format using 16 bits for each channel). Floating point render targets can store
values in the same range as their underlying numeric type (float/half). These
can store values in the depth map much more accurately, but most graphics
hardware is limited to POINT (nearest neighbor) filtering when sampling from
floating point surface formats, thus making shadows appear jagged. A more
detailed discussion on texture filtering can be found at [3]. Figure 3 describes
the severity of shadowing artifacts on a standard shadow map, using POINT
filtering.

We could create our own filtering kernel and perform the actual texture
filtering ourselves, but this is costly and we aim to keep any computational



SOFT SHADOWS USING LVSM IN RTS GAMES 89

overheads to a minimum, due to the fact that a game engine has to perform
many other functions, apart from shadowing.

On the other hand, pixel formats allow efficient filtering, mip-mapping,
and anti-aliasing, but any value written by the pixel shader is clamped to
the [0..1] interval. So, in order to keep depth values relevant, we need to
map them using a depth metric to the range [0..1]. Paper [2] states that any
strictly monotonically increasing function will do, but linear depth metrics
are the most commonly used; in the actual implementation we have used the
metric given by (1).

With standard shadow maps, a texture unit (texel) of the depth map can
only store the depth of a single point, so the basic idea behind VSMs is to
store a statistical distribution of depths at each texel. In [2], this is done by
storing the first and second moments µ1, µ2: the mean depth and the mean
squared depth. Thus, we can approximate the average of two distributions
by averaging the moments (which is done inherently by the filtering hardware
of the graphics card). When drawing the scene from the camera’s point of
view, we will use the sampled moments to compute an upper bound on the
probability of a pixel being lit. So, instead of dealing with a simple boolean
situation as with simple shadow maps, now we consider that all pixels have a
certain probability of being lit/shadowed. Chebyshev’s inequality is applied on
the mean µ and variance σ2 derived from sampled moments (denoted M1,M2)
to provide this upper bound (which is shown in [2] to be exact for the single
planar occluder-receiver case).

(2) mean = µ = E(x) = M1

(3) variance = σ2 = E(x2)− E(x)2 = M2 −M2
1

Let d be the depth of the current fragment seen by the camera, relative
to the light, after it has been scaled using the chosen depth metric, then the
probability Plit of the fragment being lit is given by:

(4) Plit = {1, if d ≤ µ and σ2

σ2 + (d− µ)2
otherwise}

It is worth mentioning that VSMs require double the amount of storage
needed for simple shadow mapping techniques because we also store the depth
squared in a separate color channel. Still an implementation at this stage
suffers from shadowing artifacts (Figure 4), but there is room for improvement.

Chapter 8 of [8] discusses various techniques for improving shadow quality,
some of which we have implemented and will be mentioned here. Numeric
inaccuracy is still a potential issue; this problem can be dealt almost entirely



90 ALEXANDRU MARINESCU

Figure 4. Simple VSM implementation.

Figure 5. VSM with minimum variance clamped to a con-
stant value.

Figure 6. Additionally - bilinear filtering, MSAA and Gauss-
ian blur.

if we clamp the minimum variance to a small value before computing Plit; this
minimum variance is a constant value, and once tweaked properly can yield
significant improvement (Figure 5).

Blurring the shadow map may help hide shadowing artifacts; usually sim-
ply enabling mipmapping, trilinear/anisotropic filtering and multisample an-
tialiasing while rendering the shadow map may greatly increase shadow quality
at almost no extra cost (Figure 6).

Finally, we can attenuate the light bleeding phenomenon (visible in Figure
4), which is usually seen when the soft edge of a shadow is visible both on
the first receiver (as it should be) and, to a lesser extent, on a second receiver
(which should be fully occluded by the first). This can be done by modifying



SOFT SHADOWS USING LVSM IN RTS GAMES 91

Figure 7. Additionally - light bleeding reduction is applied.

Plit before applying lighting calculations, for example, any values below some
minimum intensity are mapped to 0, while the remaining values are rescaled
to [0..1] (Figure 7).

3. Layered Variance Shadow Maps (LVSMs)

Attempts to further build upon VSM and reduce the light bleeding arti-
facts are taken in [4], where LVSMs are first introduced. Instead of storing
a single depth map with its associated depth metric (1), we partition the
light’s view space into multiple layers, each with its own depth metric and
corresponding depth map. Thus, for each layer Li covering a depth interval
(nearP lanei, farP lanei) and an unscaled light distance d, we define the depth
metric:

(5) dscaled =
d− nearP lanei

farP lanei − nearP lanei
As stated above, this also has the effect of increasing shadow precision

when compared to standard VSM because the near-far planes are now closer
together. Furthermore, as shown in [4], when shading a surface it is enough
to sample a single layer to determine the shadowing condition: the layer Lj

that contains the receiver surface we are shading (at depth d).
We must choose our strategy for splitting the depth range carefully. If

we want the best numeric precision overall, a simple uniform split is ideal. If
we want to minimize shadow bleeding, we should analyze the distribution of
shadow casters and receivers in our scene and choose depth intervals accord-
ingly. Nevertheless, this improvement in quality comes at the cost of additional
storage per depth layer.

4. Tradeoffs

As with all graphics applications, a trade-off must be reached between
speed and quality and various techniques must be combined in order to attain



92 ALEXANDRU MARINESCU

Figure 8. OcTree, bounding spheres for entities, and the VSM
(from light’s perspective).

a pleasing effect. It is a widely accepted fact that there does not exist a general
method that works for all situations. A broader range of shadowing algorithms
and the environments they are best suited to are outlined in [1].

Consider the following scenario: we need to apply real-time soft shadows
to a large scale environment that is specific to a real-time strategy game. The
gamer is expected to amass a significant number of units and buildings, which
are also coupled to a complex animation system. The terrain (map) is illu-
minated by a single directional light (no actual position, just light coming
from a general direction); this should enable all geometry to cast dynamic
soft shadows and augment the gameplay feel. The camera allows for zoom-
ing in close to units/buildings and zooming out facilitating strategic thinking;
shadow quality should not suffer greatly in neither of these situations. Fur-
thermore, as seen in Figure 8, the shadowing system is expected to take into
account for example a particle system that floats above the map and casts
dynamic shadows on the terrain.

The fact that a directional light does not have an actual position in
the 3D world is an issue which prevents us from constructing its proper
View/Projection matrices. We have overcome this by constructing a bounding
box around the geometry of the terrain. We compute the light’s world position
LightPos by backing out in the reverse direction of the light from the centroid
of this bounding box as far as it is needed (to encompass the floating shadow
casters).

(6) LightPos =
1

8

8∑
i=1

BoundingBox.Corneri − LightDir ∗Distance



SOFT SHADOWS USING LVSM IN RTS GAMES 93

For the light projection matrix, we build an orthographic projection (all
projection lines are orthogonal to the projection plane), which allows to change
the pixel depth calculation from “distance to light position” to “distance to
light plane”. It may not seem important at first, but this distance can be
computed in the vertex shader and afterwards interpolated before passing
to the pixel shader, where we output the variance depth map. This is a
major gain in speed, because the distance to light position could only be
calculated correctly on the pixel shader who is executed once for each fragment,
whereas the vertex shader is executed once per-vertex. Development can be
further taken in the direction of constructing light view/projection matrices
that optimally adapt to the current view frustum of the player camera. Given
the fact that all the units and buildings requiring detailed shadowing would
be located within a small depth range, and the debris particles (which are
also shadow casters) would wander within a much larger distance interval, we
implemented LVSMs with 2 layers, one concentrated on the ground region and
one that would deal with the floating shadow casters.

5. Conclusions

Finally we would like to summarize the whole shadowing algorithm steps
and optimizations which we think can be applied not only to our example, but
to any RTS type game:

• Construct optimal light View/Projection matrices only once (when
loading map for example);
• Manage geometry through a data structure that enables efficient culling

(we use an OcTree for spatial partitioning);
• Render layered variance depth maps into a 1024*1024 Rgba64 render

target, with multisampling enabled, considering distance to light plane;
we use red/green channels for the first layer and blue/alpha for the
second;
• Blur depth map using a two pass Gaussian blur (separated into 2 blur

filters, one horizontal and one vertical); we use a blur amount of 1.25;
• Change to camera view/projection and draw scene, enabling bilinear

filtering for the shadow map; we clamp the minimum variance to a
value of 0.01 and perform shadow bleeding reduction using a power
function: Plit = P 13

lit ; we also offset Plit with a value of 0.65 to lighten
the shadows;
• Applying a post-processing bloom effect yields even nicer results since

it also helps hide any remaining artifacts and makes the scene much
more organic (Figure 9).



94 ALEXANDRU MARINESCU

Figure 9. Final result, after applying a bloom post-process.

6. Acknowledgements

The author would like to thank Assoc. Prof. Ph.D. Simona Motogna1 for
her invaluable role as mentor for the Imagine Cup 2011 Game Design competi-
tion and Lect. Ph.D. Rares Boian2 for tutoring his graduation thesis. Finally,
the author would like to thank his team mates: Bogdan Tanasoiu3 and Catalin
Pintea4 for creating such a wonderful competition atmosphere.

References

[1] L. Bavoil, Advanced Soft Shadow Mapping Techniques, Game Developer Conference,
2008.

[2] W. Donnelly, A. Lauritzen, Variance Shadow Maps, Proceedings of the 2006 Symposium
On Interactive 3D Graphics and Games, 2006, p. 161-165.

[3] S. Hargreaves, Shawn Hargreaves Blog - Game programming with the XNA Framework,
http://blogs.msdn.com/b/shawnhar/

[4] A. Lauritzen, M. McCool, Layered Variance Shadow Maps, Proceedings of graphics
interface 2008, 2008, p. 139-146.

[5] Microsoft, App Hub - XNA main developer portal for Windows Phone & Xbox 360,
http://create.msdn.com/en-US/

[6] Microsoft, DirectX SDK June 2010.
[7] Microsoft, MSDN Library - Documentation for developers using Microsoft technologies

and tools, http://msdn.microsoft.com/en-us/library
[8] H. Nguyen, GPU Gems 3, Addison Wesley Professional, 2007.

Department of Computer Science, Babes-Bolyai University, Kogalniceanu
1, 400084 Cluj-Napoca, Romania

E-mail address: mams0507@scs.ubbcluj.ro

1motogna@cs.ubbcluj.ro
2rares@cs.ubbcluj.ro
3tbei0012@scs.ubbcluj.ro
4ppir0696@scs.ubbcluj.ro


