
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVI, Number 3, 2011

BUILDING BLOCKS DEV STUDIO. A TOOL FOR

COMPONENT BASED DEVELOPMENT

PAUL HORAŢIU STAN

Abstract. This paper presents a technique inspired from hardware en-
gineering that can be applied in software engineering in order to develop
flexible and modular systems based on independent components, these
components can be written on different programming languages. A graph-
ical user interface tool has been developed during this research. The BB-
DevStudio combines theoretical results presented in [2] and [1] in order to
generate the source code for independent components and to support com-
munication between Java and .NET components. At the end of the article
a demo application is presented together with advantages and constraints
of the proposed solution.

1. Introduction

In hardware development process, an engineer can use many integrated
circuits in order to develop a complex system, for instance he/she can use
multiplexers, counters, logic AND, logic OR, memory, register etc, these com-
ponents are interconnected on a main board and become a complex system.
The counter or the multiplexer or other components are developed by a third
party company. This principle can be applied both on hardware and software
development process, for example a software system can have many indepen-
dent components that should be interconnected on a main board in order to
become a complex system. These components can be developed by a third
party company. Nowadays there are many third party components that are
used in software systems, but the connections between them are made by a
developer, on the other hand a person should write a program that will use
the third party components, this can introduce many errors; more than this,

Received by the editors: March 30, 2011.
2010 Mathematics Subject Classification. 68N15.
1998 CR Categories and Descriptors. D.2.11 [Software]: Software Engineering – Soft-

ware Architectures; D.2.13 [Software]: Software Engineering – Reusable Software.
Key words and phrases. Component Based Development, Automatic Source Code Gen-

eration, Software Architectures.

9



10 PAUL HORAŢIU STAN

changing the code written by a developer is an expensive process that needs
time and money [1].

Figure 1. MIPS Architecture

2. The problems

The general context of this article is focused on: (1) how to access remote
objects developed for different programming languages in a transparent way,
like they were written for client programming language and (2) presenting a
technique for automatically generate the source code for a software component
that contains subcomponents.

Regarding (1) the problem is: how the parameters can be passed to the
remote methods without being necessary to serialize them on client platform
and restored on remote platform in order to be used there. The main idea
presented in this article is that each object should be executed in the address
space of the process which has created itself.

Regarding (2) the problem is: based on an XML component specification
file a skeleton source code should be generated, after that a developer can add
the source code that implements the business logic.

The (1) and (2) should be combined in order to support source code gen-
eration for components written on different platforms that can communicate
in a transparent way.

This section is composed by three parts, first presents the current inter-
operability and component based approaches and the second describes the
proposed solution. The proposed solution has two parts: (1) the interoper-
ability solution and (2) the component based solution.



A TOOL FOR COMPONENT BASED DEVELOPMENT 11

3. Proposed approach

3.1. Proposed Architecture for platform interoperability. The pro-
posed solution is based on the Proxy design pattern presented in [16].

In the proposed solution for each remote object a proxy object is gener-
ated on the client side. When the client platform creates the proxy then the
server creates the real object and store it in a hash table based on an auto-
matically generated identifier. When the client side platform erase the proxy
object, for instance the garbage collector decides to remove from memory the
unreferenced objects then the server side platform will remove the real object
from the remote objects hash table. When a client object invokes a method
on the proxy object the request is redirected to the remote object.

proxyObject remoteObject

<<create>>

method

<<destroy>>

client platform remote platform

RemotePlatformManager

newInstance

MyPlatformManager

newInstance
<<create>>

managedObjects

put

invoke
invoke

get

method

delete
delete

get

remove

Figure 2. Communication Architecture

3.2. Component Based Solution Architecture. Figure 5 presents a print
screen with the main architecture of a software system developed using Build-
ing Blocks framework, this tool is a result of the proposed research.

Two ports O1 and I1 can be connected if they have the same data type
T. The source code for the demoIndepComp will be automatically generated
based on a connection specification file, which is an XML file.

An independent component is an instance of a class. The component class
should implement a standard interface called IndependentComponent. The
component communicates with the environment using properties and events.

Figure 3 presents the conceptual model of the proposed solution. A compo-
nent can have subcomponents, properties, links and subcomponent links. The
direction of a property can be: (1) input, (2) output and (3) input/output.



12 PAUL HORAŢIU STAN

A link is a connection between two properties of two subcomponents and a
subcomponent link is a connection between a property of a subcomponent and
a property of the parent component.

Figure 3. Independent Components Model

4. Research Results

4.1. The developed framework for interoperability. During this research
a framework for interoperability between .NET and Java has been developed.
Current version allows Java classes to be used in .NET and vice-versa. The
general context is: there is a data type RemoteType on the developing platform
RemotePlatform and it should be used in a class C on developing platform
ClientPlatform. Based on the RemoteType an XML file is generated that
specifies how the type can be used. Using this XML file the source code for
the ProxyType is automatically generated. The ProxyType is written in the
ClientPlatform programming language. This process is exposed in the figure
4.

4.2. The Building Blocks Dev Studio. Figure 5 presents a BBDevStudion
print screen. The picture shows an application model with two subcomponents
components: (1) UserInterface and (2) ALU. Both components have two prop-
erties: (1) Request and (2) Response. The data type of the Request property



A TOOL FOR COMPONENT BASED DEVELOPMENT 13

RemoteType

XML
specification
file

ProxyType

Figure 4. Automatically Generating the Proxy Type

is ALURequest and the data type of the Response property is ALUResponse.
These two types are declared in a .NET dll file.

Figure 5. BBDevStudio Print Screen

The UserInterface component can use easily the ALURequest and ALURe-
sponse data types because are written in .NET but the ALU component can-
not use directly these data types, it can only use proxy types written in Java
that can communicate with real data types written in .NET.

On the other hand, the parent component that contains the UserInterface
and ALU components, can easily create the instance of UserInterface but
should use a proxy to ALU for working with the real ALU component written
in Java. The ALU component should use a proxy to the parent component
in order to notify that a Response is ready to deliver to the UserInterface
component.

Acknowledgment

The author wishes to thank for the financial support provided from pro-
grams co-financed by the Sectorial Operational Programme Human Resources



14 PAUL HORAŢIU STAN

Development, Contract POSDRU 6/1.5/S/3 “Doctoral studies: through
science towards society”.

The author would like to thank professor Bazil Pârv for his precious help.

References

[1] Paul Horatiu Stan, A proposed technique for component based software development,
ZAC 2010, 52-56.

[2] Paul Horatiu Stan, Camelia Serban, A proposed approach for platform interoperability,
Studia UBB 2010, 87-98.

[3] B Nolan, B Brown, L Balmelli, T Bohn, U Wahli Model Driven Systems Development
with Rational Products IBM 2008.

[4] Edward L. Lamie Real-Time Embedded Multithreading using ThreadX and MIPS,
Newnes Pap 2008

[5] David Chappell. Introducing SCA, DavidChappell and associates, July 2007,
http://www.davidchappell.com/writing/Introducing SCA.pdf last accessed on June
09, 2011.

[6] SCA Service Componeent Architecture, Assembly Model Specification 2007,
http://www.osoa.org/display/Main/The+Assembly+Model, last accessed on June 09,
2011.

[7] Dominic Sweetman See MIPS Run, Second Edition Morgan Kaufmann; 2 edition 2006.
[8] Ingo Szpuszta, Mario Rammer, Advanced .NET Remoting 2nd Edition, APRESS Feb-

ruary 2005.
[9] Bill Moore, David Dean, Anna Gerber, Gunnar Wagenknecht, Philippe Vanderheyden

Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling
Framework, IBM 2004

[10] Stephen A. White. Introduction to BPMN 2004
http://www.bptrends.com/publicationfiles/07-04 WP Intro to BPMN - White.pdf,
last accessed on June 09, 2011.

[11] Vincent Massol, JUnit in Action, Manning Publications November 2003.
[12] Clemens Szyperski, Beyond Object-Oriented Programming, second edition, ACM Press

New York 2002
[13] Bruce Eckel, Thinking in Java, fourth edition, MindView, Inc, 2002.
[14] Ethan Cerami, Web Services Essentials: Distributed Applications with XML-RPC,

SOAP, UDDI and WSDL, O’Reilly Media, Inc. February 2002.
[15] William Grosso, Java RMI (Java Series), O’Reilly Media, Inc. Octomber 2001.
[16] Erich Gamma, Richard Helm, and Ralph Johnson, and John Vlissides, Design Pat-

terns: 50 specific ways to improve your use of the standard template library. Pearson
Education, Inc 1995.

[17] Model Driven Architecture, http://www.omg.org/mda, last accessed on June 09, 2011.
[18] http://www.w3.org/TR/soap, accessed on June 09, 2011
[19] http://en.wikipedia.org/wiki/Component-based software engineering last accessed on

June 09, 2011

Babeş-Bolyai University, Department of Computer Science, M. Kogălniceanu
St., 400084 Cluj-Napoca, Romania

E-mail address: horatiu@cs.ubbcluj.ro


