
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LVI, Number 1, 2011

CONCEPTUAL MODELING EVOLUTION. A FORMAL

APPROACH

MARIA-CAMELIA CHISĂLIŢĂ-CREŢU

Abstract. The aim of this paper is to investigate the possible types of
conceptual variability and to propose shifting strategies, like refactoring,
forward conceptual abstraction, and conceptual specialization to switch
between conceptual models. A biological evolution-based model is pro-
posed to describe the changes within the structure of the studied models.
The transformations that highlight the conceptual modeling variability in
ontogenic and phylogenic processes are formalized.

1. Introduction

Software systems continually change as they evolve to reflect new require-
ments, but their internal structure tends to decay. Refactoring is a commonly
accepted technique to improve the structure of object oriented software. Its
aim is to reverse the decaying process in software quality by applying a series
of small and behaviour-preserving transformations, each improving a certain
aspect of the system [9]. The variability [19] in the context of conceptual mod-
eling means the possibility to build distinct and still correct conceptual models
for the same set of requirements from the real world (Universe of Discourse,
UoD) problems. Such conceptual model is called variant. A non-exhaustive
framework of three types of variability was proposed, based on a literature
survey and empirical evidence [19].

Within conceptual modeling variability, refactoring has proved to be a fea-
sible technique to switch between variants. In order to emphasize refactoring
transformations, the artifact may be represented as graph [14]. As refactoring
was initially applied at the implementation level, conceptual models became
a potential target for application of refactorings.

Research within conceptual modeling reveals the possibility to integrate
the refactoring process in the analysis development phase too. A biological

Received by the editors: March 20, 2011.
2010 Mathematics Subject Classification. 68N30, 92B10.
1998 CR Categories and Descriptors. D.2.1 [Reusable Software]: – Reusable Software;

I.6.5 [Model Development]: – Modeling Methodologies.
Key words and phrases. conceptual modeling, refactoring, biological evolution.

62



CONCEPTUAL MODELING EVOLUTION. A FORMAL APPROACH 63

evolution model is proposed in order to cope with different types of variability
that were identified. Specific refactorings are suggested to shift between onto-
genic conceptual models, while forward conceptual abstraction and conceptual
specialization are advanced to achieve phylogenic conceptual models.

The rest of the paper is organized as follows. Section 2 investigates the
three types of conceptual modeling variability identified in the literature.
Three types of transformations are advanced in order to cope with the variabil-
ity among variants. A biological evolution-based model is proposed in Section
3, while Section 3.2 formalizes the identified transformations within the three
types of conceptual modeling variability studied as ontogenic and phylogenic
processes. Section 4 contains some conclusions of the paper and suggestions
of future work.

2. Conceptual Modeling Variability Types

A non-exhaustive framework of three types of variability was proposed,
based on a literature survey and empirical evidence: construct, vertical ab-
straction, and horizontal abstraction variability [19].

2.1. Construct Variability.

Definition 2.1. Construct Variability ([19])
Construct variability represents the possibility of modeling concepts in the

UoD using different constructs in the same modeling language.

Within construct variability, the concepts within UoD have the same se-
mantics in all variants. They are represented by a class (entity), an attribute,
a relationship.

2.1.1. Types of Equivalent Construct Variants. There are many types of con-
struct variability. In [3] the possible refactorings that may be applied to the
conceptual modeling variability are studied. In Figure 1 a frequently case of
construct variability within object-oriented analysis and design is presented.
The Price concept may be both modeled as a class (cmA variant) with a
single attribute amount or as an attribute of type integer (cmB variant). The
semantic definition for the price and the Product are identical in both vari-
ants, though different language constructs to represent it are used, i.e., an
attribute (cmB variant) instead of a concept (cmA variant).

Another type of construct variability is similar to normalization of a data-
base definition, by removing all redundant data elements from the class defi-
nitions. Figure 2 emphasizes such a normalization in the cmA variant, where
the product value aspect is modeled as an attribute. In the cmB variant, the
product value is modeled as a method, which multiplies the quantity by the
price to obtain the correct value in Figure 2. A motivation to consider the



64 MARIA-CAMELIA CHISĂLIŢĂ-CREŢU

Product

name: String

Price

amount: int

has

:

name: String
price: int

cmA cmB

Product

Extract Class

Inline Class

Figure 1. Construct variability for the concept Price. cmA
variant is an entity-based model; cmB variant is an attribute-
based model.

value a method is because it represents a calculation done predominantly at
design level. Within the analysis phase, the semantic definition of the value is
given by the same formula within different conceptual models.

Product

quantity: int

price: int

value: int

:

quantity: int

price: int

cmA cmB

Product

Introduce Explaining Variable

Self Encapsulate Field

quantity*price

Figure 2. Construct variability for the attribute value. cmA
variant is an attribute-based model; cmB variant is a method-
based model.

A third type of construct variability is represented by the multiple types
definition. It consists of introducing or removing specific codes for all the types
that are a direct specialization of a generic type. Figure 3 shows a general
Product that is refined to another ones, more specific: BOY and GIRL. The
cmA variant defines specific codes for each concrete product as for boy or girl,
adding a short description for the derived types. On the other hand, the cmB
variant creates different classes for boy or girl products, providing flexibility
for improvements directed to a specific type. Therefore, the definition for the
specialized types has not the same semantics for both variants.

2.1.2. Suggested Refactorings. In order to switch between variants, there are
several types of refactorings that may be applied.

Refactoring a class (entity) to a set of attributes (properties)



CONCEPTUAL MODELING EVOLUTION. A FORMAL APPROACH 65

Product

BOY: int = 0

GIRL: int = 1

type: int

:

cmA cmB

Product

Replace Subclass with Fields

Replace Type Code with Subclasses

BoyProduct GirlProduct

is ais a

Figure 3. Construct variability for multiple types. cmA
variant is an attribute-based model; cmB variant is a entity-
based model.

The first recommended transformation is the InlineClass refactoring [9]. It
is used as a weight reducer since it diminishes the number of classes (entities)
by redistributing the responsabilities among the remaining classes (entities).
The aspect of moving the attributes and methods to other classes is realized
through refactorings like MoveMethod or MoveField. Figure 1 illustrates how
the price attribute in the Product class is replaced by the attribute contained
within the Price class, i.e., the amount attribute. In order to reverse the effect
of the InlineClass refactoring, the ExtractClass refactoring may be applied to
switch between variants. As an immediate effect of the latter application is
a raise of the abstraction level, while the overall weight of the UoD increases
due to the new class (entity) addition.

Refactoring an attribute to a method
There are many cases where an attribute may be computed from other

existing attributes, while the attribute continues to exist. This results in re-
dundancy, a particular case of bad smell [9]. The initialization of the attribute
may consist of a formula of which the interpretation gives the correct value of
the attribute. Subsequently, the attribute is updated by the corresponding for-
mula. Thus, it may be extracted to a method and the calls to this method will
replace the access to the redundant attribute. The latter one being no longer
referenced, will be removed. In order to remove this redundancy problem, the
SelfEncapsulateField refactoring is suggested by Figure 2, that will replace all
accesses and updates to the attribute with calls to a newly introduced acces-
sor (getter) and modifier (setter) method. The IntroduceExplainingVariable
refactoring allows to return to initial variant by adding an attribute that will
be initialized with the corresponding expression.

Refactoring type codes to a set of derived classes



66 MARIA-CAMELIA CHISĂLIŢĂ-CREŢU

Type codes may be used to model different specializations of the same
class. This situation is usually indicated by the presence of case-like condi-
tional statements, i.e., switch, if-then-else constructs. They test the value
of the type code and then execute the appropriate code, depending on the
value of the type code. A variant to this conceptual model is to expand the
class into a class hierarchy in order to emphasize specific types of the base
class.

Different refactorings are recommended to be used subsequently. Condi-
tionals that affect the behavior need to be transformed by the ReplaceCondi-
tionalwithPolymorphism refactoring, that allows to use polymorphism to han-
dle the different behavior in the inherited classes. In order to switch the type
codes within a context where the behaviour is not affected the ReplaceType-
CodewithSubclass refactoring may be applied. In each cases, the type codes
will be replaced with a subclass for each distinct one. Furthermore, there are
cases where some features that are relevant only to objects with certain type
codes.

Creating such a class hierarchy through this refactoring, then the Push-
DownMethod and the PushDownField refactorings may be applied to clarify
to which subclass these features are relevant. An important advantage of this
switch between variants is the possibility to move the particular behaviour
from a client of a class to the class itself. This refactoring ensures a large
flexibility of the variant within a continuous changing UoD, through polymor-
phism.

The reverse process allows to transform subclasses into attributes within
a single class, following the ReplaceSubclasswithFields refactoring. Figure 3
depicts the way the type codes are changed by the appropriate refactorings.
This refactoring situation represents a special case of forward conceptual ab-
straction. There are cases where the type code may or may not affect the
behavior.

2.1.3. Core Ideas. The three representative examples demonstrate that refac-
toring between construct variants is feasible. The effort required to switch
between the variants is reduced by the application of a limited number of
small refactorings.

There are few, rather limited differences between the variants within the
construct variability. Though, the literature retained some work that suggests
the evolvability aspect of conceptual models within this type of variability.
This would be the case of the third example discussed here, where the flexibility
to improvements of the cmA variant is reduced. In [1] it is claimed that an
entity should be preferred over an attribute if it is likely that the modeled
concept in the UoD will take benefit of additional properties in the future.



CONCEPTUAL MODELING EVOLUTION. A FORMAL APPROACH 67

Though, this claim suggests that is useful to be able to switch between these
two variants.

This type of variability is exploited in the shift from object-oriented anal-
ysis to design. As a consequence, it is expected that construct variability had
been already used refactoring in current modeling activities. Furthermore,
other relevant results in refactoring conceptual models show that is unlikely
that hard obstacles for this transformations between construct variants will
be found [6, 18, 7].

2.2. Vertical Abstraction Variability.

Definition 2.2. Vertical Abstraction Variability ([19])
Vertical abstraction variability refers to the possibility of modeling concepts

in the UoD in a more or less generic (abstract) way.

2.2.1. Types of Vertical Abstract Variants. There are two ways to navigate
over the vertical abstraction variability. The first one refers to the possibility
to switch from a general conceptual model to a concrete model, while the other
one increases the abstraction level by removing concrete aspects, or by adding
various parameters. In [2] refactoring categories needed to switch between
models are identified and described.

An example of an abstract vertical variability that may be navigated in
both ways, from a generic to a specific conceptual model and vice versa is
presented for the Loan concept. It cannot be considered like in the construct
variability, because its definitions are different within studied variants. The
cmA variant illustrated by Figure 4 consists of a concrete conceptual model,
where a Loan is associated with the Client to whom it was given to.

Loan Clientis given to 1*

Figure 4. cmA variant for the concept Loan: a concrete
model within a vertical abstraction.

In the Figure 5, the cmB variant defines the Loan given to a Client when
a specific Action is achieved, e.g., the client meets some eligibility criteria.

Figure 6 depicts the cmC variant, where the Loan is given to Client, that
may be an Institution or a Person. Moreover, the Loan has a type and it
is given to the Client when some Action is fulfilled.



68 MARIA-CAMELIA CHISĂLIŢĂ-CREŢU

Loan Clientis given to 1*Action is attached to1 1

Figure 5. cmB variant for the concept Loan: a general model
within a vertical abstraction.

Type I nstitution Person

Loan Client
is given to 1*

Action
is attached to1 1

has

1

*

Figure 6. cmC variant for the concept Loan: a very general
model within a vertical abstraction.

The three variants may be navigated from the most concrete, to the most
general and conversely. The cmC variant is the most general model, where
the Loan definition is available for a wide number of situations compared to
the first two variants.

2.2.2. Suggested Refactorings. In order to switch between the presented vari-
ants, the two ways to navigate over the vertical abstraction and instantiation
variability were studied and appropriate solutions were provided.

Transforming to a more generic variant
For the Loan concept, switching from the most concrete variant (cmA

variant) to the most general (cmC variant) means to increase its flexibility



CONCEPTUAL MODELING EVOLUTION. A FORMAL APPROACH 69

degree. First, by introducing some Action concept that allows to offer a Loan

to a Client (cmB variant). The abstraction level is increased by switching
from the cmB variant to the cmC variant, by adding a Type to the Loan and
differentiating a Client as Institution or Person. In order to do that, a
more detailed analysis is needed. The forward conceptual abstraction follows
to discover new concepts and new associations that make the model more
flexible. The refactoring techniques that may be applied are not immediately
identified.

Transforming to a more specific variant
In order to obtain the cmA variant starting from the cmC variant, the

flexibility level of the more generic variant has to be reduced by removing
all unrequired concepts, associations, and attributes. The refactorings that
can be applied in this situation are those specific to inheritance or generality
category [9]. They may consists of refactorings like: PullUpField, PullUp-
Method, PushDownMethod, PushDownField, ExtractSubclass, ExtractSuper-
class, or ExtractInterface. It is important to underline that from this large
refactoring category only the refactorings that work on concepts, associations,
or attributes will be applied. This transformations allow to switch from a
flexible model to a thin, clear, concrete model, by removing the superfluous
information.

2.2.3. Core Ideas. The software genericity is defined by Parnas [16] as the
possibility to use it ”without change, in a variety of situations”. In [11] ab-
straction is defined as ”a view of an object that focuses on the information
relevant to a particular focus and ignores the remainder of the information”.

In order to identify and implement new concepts and specialized behaviour
that transform the concrete models to more generic ones, the forward concep-
tual abstraction process is needed. Refactoring techniques have limited usage
in this navigation way of the vertical abstraction variability. The new variants
have the advantage of a raised adaptability and flexibility.

The shift from a more generic to a more specific conceptual model consists
of applying refactoring techniques that remove the redundant modeling ele-
ments and achieve a lighter variant of the initial model. This type of variability
was observed in the process of simplifying the design of the over engineered
systems [16, 10, 8, 6]. Changes to the system are made more easily if the
conceptual model is more general and consequently, more difficult if the con-
ceptual model is too simple or too concrete.

2.3. Horizontal Abstraction Variability.

Definition 2.3. Horizontal Abstraction Variability ([19])



70 MARIA-CAMELIA CHISĂLIŢĂ-CREŢU

Horizontal abstraction variability refers to the possibility of modeling con-
cepts in the UoD based on different properties.

2.3.1. Types of Horizontal Abstract Variants. The horizontal abstraction is
emphasized within a particular UoD that contains the concepts of an academic
management system, like students and teachers. A student has a specialty that
follows, while a teacher has a didactic position. Each of them has a certain civil
status. The solutions proposed to achieve horizontal variability are presented
in [4].

A first direction within the research is represented by the one depicted in
Figure 7 where the person type, i.e., student or teacher, is emphasized. The
possibility to make visible the person types means to add it as a primary
dimension [19], that allows to isolate all instances of a certain type of person.
In the cmA variant, the person type instances are separated in two categories,
defined as the Student or Teacher concepts. Civil Status property is shared
by both Student and Teacher concepts. In [19] such a property forms a
secondary dimension in the concept modeling. Its instances, like married
person or single person are scattered (made not visible) over all instances of
the Student and Teacher types.

Student

Specialty

is registered at

1

*

Civil status

Teacher

Didactic position

occupies

*

1

has 1

*
has1

*

Figure 7. cmA variant : The Person types form a primary
dimension, through the Student and Teacher concepts.

The second approach consists of highlighting the Civil Status property
by isolating it as a primary dimension. Therefore, instances of persons are
divided in two categories: Married person and Single person. The person
type (student or teacher) remains as a secondary dimension, being spread over
all instances of type Married Person and Single Person. Figure 8 presents
the cmB variant where the person type is not visible, but shared between
different instances of Civil Status types.

In order to shift between the two variants an intermediate cmC variant,
presented by Figure 9, needs to be build. Therefore, the primary dimension
of the person types from the first approach and the primary dimension of the



CONCEPTUAL MODELING EVOLUTION. A FORMAL APPROACH 71

Single Person

Specialt y

is registered at

1

*

Married Person

Didact ic posit ion

occupies

*

1

is registered at 1*

occupies1 *

Figure 8. cmB variant : The Civil Status types form a
primary dimension, through the Married Person and Single

Person concepts.

civil status types from the second research direction are used. This means
that both are isolated and visible.

Single Person

Married Person

Didactic position

Specialty

Civil status

Person

Married Teacher

Married Student

Single Teacher

Single Student

Teacher

Student

occupies
1*

is registered at 1*has

1

*

Figure 9. cmC variant : Both Person and Civil Status

types are primary dimensions.

2.3.2. Suggested Refactorings. There are situations where someone may want
to switch between variants developed within horizontal abstraction variability.
The shift between the cmA variant and the cmB variant may be done using
the cmC variant as an intermediate variant. In order to achieve it a two phases
process has to be implemented:

• Step 1: establish an equivalency relationship between the two dimen-
sions, by transforming the cmA variant to the cmC variant;



72 MARIA-CAMELIA CHISĂLIŢĂ-CREŢU

• Step 2: allow to keep the requested primary dimension only.

Refactoring to equivalent dimensions (Step 1)
In order to accomplish the equivalency between the cmA variant and the

cmC variant, each entity type from the primary dimension of the cmA variant
will receive the specialization from the primary dimension of the cmB vari-
ant. This means that a Student will become Married Student or Single

Student, while a Teacher will be Married Teacher or Single Teacher. The
total number of entity types is computed as cartesian product between the
number of entity types for the Primary Dimension (noPD) within the cmA
variant (student, teacher) noPDcmA = 2, and the cmB variant (married,
single) noPDcmB = 2. Therefore, as it is shown in Figure 9 the num-
ber of specialized types identified within the cmC variant is noPDcmC =
noPDcmA × noPDcmB = 2 × 2 = 4. Transformations required to switch be-
tween the cmA variant and the cmC variant include the following aspects:

(1) add new classes to specialize. For each entity type of the primary di-
mension within the cmA variant, i.e., Student and Teacher, new sub-
classes that emphasize the primary dimension within the cmB variant,
i.e., Married and Single, are added. This means the new variant will
be enhanced with the following classes (entities): Married Student,
Single Student, Married Teacher, and Single Teacher.

(2) responsibility reassignment. Specialization for the new added classes
(entities) is made by moving or pushing down data (and behaviour)
from the initial primary dimension to the new subclasses, using refac-
torings like: PushDownMethod and PushDownField [9]. This new vari-
ant introduces redundancies, like where a Single Student has already
a typed property Civil Status as Single.

(3) add new class to generalize. Generalization for the new created sub-
classes is added from the primary dimension of the cmB variant.

Refactoring to a primary dimension (Step 2)
To obtain the simplified cmB variant starting from the cmC variant, the

transformations previously applied have to be semantically reversed. This
means that primary dimension from the cmB variant has to be emphasized by
collapsing the existing subclasses in the cmC variant. Thus, the entity types
related to a Person (Student and Teacher) will be spread within the model
through the new primary dimension Civil Status (Married and Single) of
the cmB variant. The suggested refactorings to obtain a lighter model, concen-
trated on a specific primary dimension, include the following transformations
that collapse the hierarchy:



CONCEPTUAL MODELING EVOLUTION. A FORMAL APPROACH 73

(1) responsibility reassignment. Generalization is realized by moving or
pulling up data (and behaviour) from one initial primary dimension to
a new class, using refactorings like: PullUpMethod and PullUpField.
This transformations prepare the model to safely remove the superflu-
ous information from the cmC variant.

(2) safely removal of the specialized classes. Only the primary dimen-
sion of the cmB variant, represented by the typed property Civil

Status, through Married Person and Single Person are kept. Spe-
cialized classes related to the primary dimension of the cmA variant, as
Married Student, Single Student, Married Teacher, and Single

Teacher may be safely removed from the new model.

Refactorings applied to reduce the model to a single primary dimension,
does not ensure the equivalency between the cmB variant and the cmA variant.
There are two possibilities to check that a Person is a Student or a Teacher.

• implicit relationship usage. There is an implicit relationship between
– Student and Specialty – only the Student is registered at a

faculty Specialty;
– Teacher and Didactic Position – only the Teacher occupies a
Didactic Position;

• type variable usage. A new type variable may be introduced to distin-
guish between the two Person types (Student and Teacher).

2.3.3. Core Ideas. Similar to the vertical abstraction variability, in horizontal
abstraction variability the concepts in the UoD are modeled using different se-
mantic definitions. But, within the former one, the difference between variants
concerns the different levels of generality, while in latter one, the difference
between variants bears upon concepts that are modeled based on different
properties.

In the horizontal abstraction variability, the properties may be or not
visible and isolated. They are classified as primary dimension properties (that
can be visible and isolated from others) and secondary dimension properties
(that are not visible and cannot be isolated from others)[19].

The literature records claims that, as vertical abstraction variability, the
horizontal abstraction variability affects evolvability [17]. Within the latter
one, the aspect responsible for the evolvability disadvantages is represented
by the information hiding highlighted within the secondary dimension.

In order to refactor from the cmA variant to the cmB variant a new inter-
mediate with equivalent dimensions cmC variant is used. The transformation
process from a variant with equivalent dimensions to a regular variant implies
more resources than the previous step, when there were many constraints and
relationships that became implicit in the resulting model.



74 MARIA-CAMELIA CHISĂLIŢĂ-CREŢU

The transformations number applied through refactoring when switching
between variants depends on the number of entity types in the primary dimen-
sions of both variants (noPDcmC = noPDcmA×noPDcmB) and the extent to
which these types are used. Thus, it is expected that some range may be taken
over, above which the refactoring cost weights to much over its advantages.

Refactoring literature does not record real world application of horizontal
abstraction variability, though active research has been developed [15].

3. A Model for the Evolution in Conceptual Modeling
Variability

Variability within conceptual modeling outlines an evolutionary process
among different models of a specific variability type. This process is similar to
the biological evolutionary process presented by Maturana and Varela in [13].
According to them, changes are determined by the structure of an organism
and a perturbation. A perturbation itself does not determine how the organism
evolves, but it triggers the organism to change its structure. The evolved
organism with its new structure affects the outer environment and produces
another perturbation. This iterative process of the interaction between the
organisms structure and the environment through a perturbation is a driving
force of evolution [13].

For a software product, customers may require new functionalities to be
implemented. This results in changes that serve as perturbation in the software
product evolution. In order to achieve variability within conceptual modeling,
changes provided by refactoring, forward conceptual abstraction, conceptual
specialization or other evolutionary changes have to be applied. There are two
types of evolution in biology: phylogeny and ontogeny [13]. The former refers
to the evolution as species while the latter refers to the evolution of individual
living beings.

Two types of evolutions have been identified for the conceptual modeling
variability within our research. A first type of evolution is similar to an on-
togenic process where an individual living being grows. This corresponds to
small changes that does not substantially affect the overall conceptual model.
Major modifications on the conceptual models that have effect on the entire
future development represent a second type of evolution. This is represented
by a phylogenic process that fundamentally affects every development stage
forward. Within a phylogenic evolution, the before and after conceptual mod-
els belong to different development stages and have different development ap-
proaches.

For the already studied conceptual modeling variability with its three dif-
ferent types, i.e., construct, vertical abstraction, and horizontal abstraction,



CONCEPTUAL MODELING EVOLUTION. A FORMAL APPROACH 75

an evolution model may be developed. Figure 10, Figure 11, and Figure 12
illustrate how the two ontogenic and phylogenic biological evolution may be
modeled in the conceptual modeling variability context.

3.1. Conceptual Modeling Variability as Biological Evolution. x
Evolution in Construct Variability
Figure 10(a) depicts the ontogenic evolution for conceptual models that

are perturbated by small changes that does not fundamentally affect the de-
veloped model. These changes correspond to switches between attributes
and entities (cmi,j → cmi+1,j , cmi+1,j → cmi,j) or attributes and methods
(cmi+1,j → cmi+2,j , cmi+2,j → cmi+1,j) approaches (see Section 2.1.2). They
consists of refactorings applied to the conceptual models such that their overall
organization remains fundamentally unchanged.

The multiple types definition construct variability presented in Section 2.1,
outlines a phylogenic evolution by the addition of new types within the con-
ceptual model. Figure 10(b) shows that changes within the model are reflected
by a forward conceptual abstraction process, denoted by − →, for addition
of new types (cmi,j− → cmi+1,j+1). The existing types removal and their
replacement by type codes is achieved by conceptual specialization, relation
denoted by −•, where cmi+1,j+1 − • cmi,j . They represent small refactorings
that decrease the complexity. They may be interpreted as a special case of
forward conceptual abstraction inducing a different generality level between
the source and the target models.

Evolution in Vertical Abstraction Variability
Reducing the abstraction level for a conceptual model means to remove

superfluous information in order to shape a more concrete conceptual model.
Figure 11 suggests that shifting from a more general to a more concrete model
(cmi+1,j+2 − • cmi,j , cmi+3,j+3 − • cmi+1,j+2, cmi+1,j+2 − • cmi+2,j+1) results
in changes applied to a single model, i.e., the more concrete one, which corre-
sponds to a conceptual specialization, by reducing the model generality. In this
way, the simplifying process consists of refactorings that remove the irrelevant
information in the target model. On the contrary, raising the abstraction level
requires additional information gathered by forward conceptual abstraction.
Figure 11 shows that moving to a generic model new extension stages are added
(cmi,j− → cmi+1,j+2, cmi+1,j+2− → cmi+3,j+3, cmi+2,j+1− → cmi+1,j+2).

Evolution in Horizontal Abstraction Variability
Switching between models developed under horizontal abstraction vari-

ability may be done using an intermediate variant. The phylogenic evolution
within this type of variability appears at the first shifting step. Figure 12 shows
that addition of a new visibility dimension to the model, which drives the com-
plexity of the development process to a higher level through forward conceptual



76 MARIA-CAMELIA CHISĂLIŢĂ-CREŢU

cmi+2, jcmi+1, jcmi, j

phylogenic

evolution

ontogenic

evolution

modeling

stage i+1
modeling

stage i

extension

stage j

Legend:

refactoring

modeling

stage i+2

(a) Ontogenic evolution in construct variability, through refactoring

cmi+1, j+1

cmi, j

phylogenic

evolution

ontogenic

evolution
modeling

stage i

extension

stage j

Legend:
conceptual specialization
forward conceptual abstraction

extension

stage j+1

(b) Phylogenic evolution in construct variability, through forward conceptual abstraction
and conceptual specialization

Figure 10. Construct variability as ontogenic and phylogenic
evolution processes, through refactoring, forward conceptual
abstraction, and conceptual specialization

abstraction (cmi,j− → cmi+1,j+1, cmi+2,j− → cmi+1,j+1). In order to reduce
the number of visible dimensions, refactoring may be applied to a model within
a conceptual specialization (cmi+1,j+1 − • cmi,j , cmi+1,j+1 − • cmi+2,j). This
process is depicted by Figure 12 where the intermediate model cmi+1,j+1 is
used to achieve the specialization for a single conceptual model.

3.2. Formal Approach. In order to formalize the conceptual modeling vari-
ability as an ontogenic and phylogenic evolution some definitions are needed.

Definition 3.1. Conceptual Model ([5])



CONCEPTUAL MODELING EVOLUTION. A FORMAL APPROACH 77

cmi+3, j+3

cmi+1, j+2

cmi, j

phylogenic

evolution

ontogenic

evolution

modeling

stage i

extension

stage j

Legend:

forward conceptual
abstraction

conceptual specialization

extension

stage j+2

extension

stage j+3

cmi+2, j+1

modeling

stage i+1

modeling

stage i+3

modeling

stage i+2

extension

stage j+1

Figure 11. Vertical abstraction as phylogenic evolution
through forward conceptual abstraction and conceptual spe-
cialization

cmi+2, j
cmi, j

cmi+1, j+1

phylogenic

evolution

ontogenic

evolution

modeling

stage i

extension

stage j

Legend:
forward conceptual
abstraction

conceptual specialization

extension

stage j+1

modeling

stage i+1

modeling

stage i+2

Figure 12. Horizontal abstraction as phylogenic evolution
through forward conceptual abstraction and conceptual spe-
cialization

A conceptual model is a triple M = (E,S,A), where:

(i) E = {e1, . . . , em} is the set of entities or concepts within the model;



78 MARIA-CAMELIA CHISĂLIŢĂ-CREŢU

(ii) S = {sij |ei, ej ∈ E, ∃ei sij ej , i, j ∈ {1, . . . ,m}} is the set of associa-
tions between the entities within the model;

(iii) Attri = {ai1 , . . . , aik} is the set of attributes for the entity ei, i = 1,m,
and
A = ∪m

i=1Attri is the set of all attributes within the model.

In what follows, by P(X) is denoted the power set of X.

Definition 3.2. Refactoring ([5])
Let M1 = (E1, S1, A1) and M2 = (E2, S2, A2) be two conceptual models. A

refactoring is a triple r = (er, sr, ar) that transforms M1 to M2. Further-
more, the following constraints are met:

(i) er : E1r → P(E2r) maps the affected set of entities of the two concep-
tual models, where E1r ⊆ E1, E2r ⊆ E2;

(ii) sr : S1r → P(S2r) maps association relationship changes between the
two conceptual models, where S1r ⊆ S1, S2r ⊆ S2;

(iii) ar : A1r → P(A2r) maps the affected set of attributes of the two con-
ceptual models, where A1r ⊆ A1, A2r ⊆ A2.

This is denoted by M1
r→ M2.

Definition 3.3. Forward Conceptual Abstraction ([5])
Let M1 = (E1, S1, A1) and M2 = (E2, S2, A2) be two conceptual models.

A forward conceptual abstraction is a triple fca = (efca, sfca, afca) that

transforms M1 to M2 (denoted by M1
fca→ M2). Furthermore, the following

constraints are met:

(i) efca : Efca → P(E2) maps a new set of entities Efca to the M2 con-
ceptual model, where E1 ∩ Efca = ∅, E1 ∪ Efca = E2;

(ii) sfca : Sfca → P(S2) maps a new set of association relationships Sfca

to the M2 conceptual model, where S1 ∩ Sfca = ∅, S1 ∪ Sfca = S2;
(iii) afca : Afca → P(A2) maps a new set of attributes Afca to the M2

conceptual model, where A1 ∩Afca = ∅, A1 ∪Afca = A2.

Refactoring allows to switch between variants on the same abstraction
level, while forward conceptual abstraction increases the generality of the tar-
get conceptual model, placing it on a higher extension stage. In order to reach
a lower abstraction level, transformations that reduce complexity and gener-
ality are applied. Conceptual specialization decreases the abstraction level,
being a special case of forward conceptual abstraction that achieves the trans-
formation in the reverse order. Similar to this, conceptual specialization uses
refactoring to move towards a lower extension stage. Therefore, a concep-
tual specialization is defined as a refactoring that acts as a reversed forward
conceptual abstraction.



CONCEPTUAL MODELING EVOLUTION. A FORMAL APPROACH 79

Definition 3.4. Conceptual Specialization ([5])
Let M1 = (E1, S1, A1) and M2 = (E2, S2, A2) be two conceptual models. A

conceptual specialization is a triple r = (ecs, scs, acs) that transforms M1

to M2 (denoted by M1
cs→ M2). Furthermore, the following constraints are

met:

(i) ecs : E1cs → P(E2) maps the set of entities E1cs to the M2 conceptual
model, where E1cs ⊆ E1, E2 ⊆ E1;

(ii) scs : S1cs → P(S2) maps the set of association relationships S1cs to the
M2 conceptual model, where S1cs ⊆ S1, S2 ⊆ S1;

(iii) acs : A1cs → P(A2) maps the set of attributes A1cs to the M2 conceptual
model, where A1cs ⊆ A1, A2 ⊆ A1.

Following the notions previously introduced, the ontogenic and phylogenic
processes are formally defined.

Definition 3.5. Ontogenic Evolution ([5])
Let M1 = (E1, S1, A1) and M2 = (E2, S2, A2) be two conceptual models,

where E2−E1 = ∅, S2−S1 = ∅ and A2−A1 = ∅. An ontogenic evolution
is a transformation to = (eto , sto , ato) that transforms M1 to M2 (denoted by

M1
to→ M2). The transformation to has the following properties:

(i) to consists of (small) changes that does not affect the semantics of the
M2 model;

(ii) to is a refactoring, i.e., M1
to→ M2 is achieved by M1

r→ M2, to = r.

Definition 3.6. Phylogenic Evolution ([5])
Let M1 = (E1, S1, A1) and M2 = (E2, S2, A2) be two conceptual models,

where E2 − E1 = Ep, S2 − S1 = Sp and A2 − A1 = Ap. A phylogenic
evolution is a transformation tp = (etp , stp , atp) that transforms M1 to M2

(denoted by M1
tp→ M2). The transformation tp has the following properties:

(i) tp consists of changes that affect the semantics and the abstraction level
of the M2 model;

(ii) if M2 is a more general model than M1 then tp is a forward conceptual

abstraction, i.e., M1
tp→ M2 is accomplished by M1

fca→ M2, tp = fca;
(iii) if M1 is a more general model than M2 then tp is a conceptual special-

ization, i.e., M1
tp→ M2 is achieved by M1

cs→ M2, tp = cs.

The three types of conceptual modeling variability are defined as biological
evolution processes, following the ontogenic and phylogenic principles.

Definition 3.7. Construct Variability Evolution ([5])



80 MARIA-CAMELIA CHISĂLIŢĂ-CREŢU

Let M1 = (E1, S1, A1) and M2 = (E2, S2, A2) be two conceptual models.

The construct variability is a transformation cV ar (denoted by M1
cV ar→

M2). The following statements stay within the construct variability:

(i) within the ontogenic evolution M1
to→ M2:

(a) a refactoring transformation is applied, i.e., M1
r→ M2, and cV ar =

to = r, where M1 and M2 have the same abstraction modeling
level;

(ii) within the phylogenic evolution M1
tp→ M2:

(a) a forward conceptual abstraction may be applied, i.e., M1
fca→ M2,

and cV ar = tp = fca, where M1 and M2 have different abstrac-
tion modeling levels and M2 is a more general model than M1;

(b) a conceptual specialization is applied, i.e., M1
cs→ M2, and cV ar =

tp = cs, where M1 and M2 have different abstraction modeling
levels and M1 is a more general model than M2.

Definition 3.8. Vertical Abstraction Variability Evolution ([5])
Let M1 = (E1, S1, A1) and M2 = (E2, S2, A2) be two conceptual models.

The vertical abstraction variability is a transformation vV ar (denoted by

M1
vV ar→ M2). The following statements stay within the vertical abstraction

variability:

(i) within the phylogenic evolution M1
tp→ M2:

(a) a forward conceptual abstraction may be applied, i.e., M1
fca→ M2,

and vV ar = tp = fca, where M1 and M2 have different abstrac-
tion modeling levels and M1 is converted to a more general model
M2;

(b) a conceptual specialization may be applied, i.e., M1
cs→ M2, and

vV ar = tp = cs, where M1 and M2 have different abstraction
modeling levels and M1 is converted to a more specific model M2.

Definition 3.9. Horizontal Abstraction Variability Evolution ([5])
Let M1 = (E1, S1, A1) and M2 = (E2, S2, A2) be two conceptual models.

The horizontal abstraction variability is a transformation hV ar (denoted

by M1
hV ar→ M2). The following statements stay within the horizontal abstrac-

tion variability:

(i) within the phylogenic evolution M1
tp→ M2:

(a) a forward conceptual abstraction may be achieved, i.e., M1
fca→ M2,

and hV ar = tp = fca, where M1 and M2 have different modeling



CONCEPTUAL MODELING EVOLUTION. A FORMAL APPROACH 81

abstraction levels and the M1 model is transformed to the M2

model by adding a new primary dimension;

(b) a conceptual specialization may be applied, i.e., M1
cs→ M2, and

hV ar = tp = cs, where M1 and M2 have different abstraction
modeling levels and the M1 model is transformed to the M2 model
by removing a primary dimension.

The existing relations among various conceptual models within the same
or different extension stages of the development process is formalized too.

Definition 3.10. Ontogenic Equivalence ([5])
Let M1 = (E1, S1, A1) and M2 = (E2, S2, A2) be two conceptual models.

Then:
M1 is ontogenically equivalent to M2 (denoted by M1 ≡ M2) if ∃ tor , tol

two ontogenic transformations such that M1
tor→ M2 and M2

tol→ M1.

This means that M1 and M2 belong to the same extension stage, while tor
and tol are refactorings that transform a conceptual model to another.

Definition 3.11. Phylogenic Dominance ([5])
Let M1 = (E1, S1, A1) and M2 = (E2, S2, A2) be two conceptual models.

Then:

(i) M1 is phylogenically dominated by M2 (denoted by M1 < M2) if

∃ tpu a phylogenic transformation such that M1
tpu→ M2 and M2 is a

more general conceptual model than M1;
(ii) M1 phylogenically dominates M2 (denoted by M1 > M2) if ∃ tpd

a phylogenic transformation such that M1
tpd→ M2 and M1 is a more

general conceptual model than M2.

This means that M1 and M2 belong to different extension stages, while tpu
is a forward conceptual abstraction and tpd is a conceptual specialization that
allows to shift between conceptual models.

4. Conclusions and Future Work

Variability occurs in almost every modeling activity and its exploitation
may help modelers to switch between taken decisions and to validate the model
equivalence. Refactoring techniques are dedicated to design and implementa-
tion phase, but the research shows that their applicability may be extended
to the conceptual modeling level.



82 MARIA-CAMELIA CHISĂLIŢĂ-CREŢU

Even though refactoring was applied to some theoretical but representative
conceptual model examples, there is a large confidence that refactoring is reli-
able when it is used on particular and large UoD. For each type of variability,
the specific problems on refactoring between variants were studied.

There are several important ideas that emerge from this analysis:

• construct and vertical abstraction variability and the application of
refactorings between them are already recognized in software evolution
practice and research [9, 12];

• within vertical abstraction variability, the transformation to a more
generic variant requires forward conceptual abstraction, similar to a
forward engineering at modeling stage;

• within horizontal abstraction variability shifting between variants re-
quires an intermediate conceptual model, with an inconsistent model-
ing state and reduced relevance.

A biological evolution model was proposed in order to cope with differ-
ent types of variability previously identified. Three specific transformations
were suggested to shift between ontogenic and phylogenic conceptual models:
refactoring, forward conceptual abstraction, and conceptual specialization.

Furthermore, there are aspects that have to be analyzed in the near fu-
ture, like: a thoroughly study of the switching process between horizontal
abstraction variants and to estimate the refactoring effort between variants.

References

[1] C. Batini, S. Ceri, and S. Navathe. Conceptual database design: an entity relationship
approach. Benjamin/Cummings, 1992.

[2] M.C. Chisăliţă-Creţu. Efecte ale refactorizării asupra structurii interne a codului.
”Analele Facultăţii”, Seria Ştiinţe Economice, Universitatea Creştină ”Dimitrie Can-
temir” Bucureşti, Facultatea de Ştiinţe Economice Cluj-Napoca, ISSN:1584-5621,
13(1):214–230, 2005.

[3] M.C. Chisăliţă-Creţu. General aspects of refactoring applicability to conceptual
models. In Proceedings of the Symposium ”Colocviul Academic Clujean de INFOR-

MATICĂ”(CACI2005), pages 99–104, 2005.
[4] M.C. Chisăliţă-Creţu. Describing low level problems as patterns and solving them

via refactorings. ”Studii şi Cercetări Ştiinţifice”, Seria Matematică, ISSN: 1224-2519,
(17):29–48, 2007.

[5] M.C. Chisăliţă-Creţu and A. Mihiş. A model for conceptual modeling evolution. In The
7th International Conference on Applied Mathematics (ICAM 2010), September 1-4,
2010, Baia-Mare, Romania, 2010.

[6] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented Reengineering Patterns.
Morgan Kaufmann and DPunkt, 2002.

[7] B. Du Bois. Opportunities and challenges in deriving metric impacts from refactoring
postconditions. In In Proceedings of the Fifth International Workshop on Object Ori-
ented Reengineering (WOOR2004), ECOOPworkshop, 2004.



CONCEPTUAL MODELING EVOLUTION. A FORMAL APPROACH 83

[8] M. Fayad and D. Schmidt. Object-oriented application frameworks. Communications of
the ACM, 40(10):32–38, 1997.

[9] M. Fowler. Refactoring Improving the Design of Existing Code. Addison-Wesley, 1999.
[10] D. Garlan and D. Perry. Introduction to the special issue on software architecture. IEEE

Transactions on Software Engineering, 21(4):269–274, 1995.
[11] IEEE. Standard IEEE Std 610.12-1990: IEEE standard glossary of software engineering

terminology, In IEEE standards collection: software engineering. IEEE Press, 1990.
[12] J. Kerievsky. Refactoring to Patterns. Addison-Wesley Professional, 2004.
[13] H. R. Maturana and F.J. Varela. The Tree of Knowledge: The Biological Roots of Human

Understanding. Shambhala Publiccations,Inc., Boston, MA., USA, 1998.
[14] T. Mens, S. Demeyer, and D. Janssens. Formalising behaviour preserving program trans-

formations. Graph Transformation of Lecture Notes in Computer Science, 2505:286–301,
2002.

[15] T. Mens, S. Demeyer, B. Du Bois, H. Stenten, and P. Van Gorp. Refactoring: Current re-
search and future trends. Electronic Notes in Theoretical Computer Science, 82(3):483–
499, 2003.

[16] D. Parnas. Designing software for ease of extension and contraction. IEEE Transactions
on Software Engineering, 5(2):128–128, 1979.

[17] H. Schmid. Systematic framework design by generalization. Communications of the
ACM, 40(10):48–51, 1997.

[18] S. Tichelaar, S. Ducasse, S. Demeyer, and O. Nierstrasz. A meta-model for language-
independent refactoring. In In Proceedings of the International Symposium on Principles
of Software Evolution, pages 157–169. IEEE Computer Society Press, 2000.

[19] J. Verelst. The influence of the level of abstraction on the evolvability of conceptual
models of information systems. In Proceedings of the International Symposium on Em-
pirical Software Engineering (IIESE04), Los Angeles, IEEE CS Press, pages 17–26,
2004.

Computer Science Department, Faculty of Mathematics and Computer Sci-
ence, Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: cretu@cs.ubbcluj.ro


	1. Introduction
	2. Conceptual Modeling Variability Types
	2.1. Construct Variability
	2.2. Vertical Abstraction Variability
	2.3. Horizontal Abstraction Variability

	3. A Model for the Evolution in Conceptual Modeling Variability
	3.1. Conceptual Modeling Variability as Biological Evolution
	3.2. Formal Approach

	4. Conclusions and Future Work
	References

