
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LV, Number 3, 2010

JAVASCRIPT GENERATORS

GHIŢĂ DANIEL-CONSTANTIN

Abstract. The JavaScript language is used for client-side programing in
web applications. JavaScript is sent as source code from the web server to
the user’s browser and executed locally. Because not all current browsers
support the latest version of JavaScript, developers are limited to use only
the features supported by the lowest common denominator. I propose
an approach to solve this problem by using an intermediary compile step
which transforms the code written by the user into code supported by all
browsers. This allows web developers to use the latest version of JavaScript
today, without having to wait until all major browsers implement all the
features.

1. Introduction

JavaScript is commonly known as the language of the web. This object-
oriented scripting language is implemented in all modern browsers and it is
the only cross-platform language available for client-side programming in web
application. It is a dialect of the ECMAScript standard [6].

JavaScript is rapidly evolving. Because some implementations are lagging
behind, developers cannot take advantage of all the features which have been
added to the language. This is further amplified by the presence in the wild
of browsers which are not up to date.

We can address this issue using static compiling. Using a compiler we can
transform code which is written to use the latest version of JavaScript into
code which uses only the basic syntactic constructs and so is (syntactically)
compatible with all implementations in the wild. Using a library which will
be loaded at run-time the program can add any missing methods to the core
objects of the language. We will show how to address each issue individually
with examples and offer an implementation of a compiler which integrates all
the pieces. The result is a translator which takes as input code written in

Received by the editors: June 10, 2010.
2010 Mathematics Subject Classification. 68N20.
1998 CR Categories and Descriptors. D.3.4 [Software]: PROGRAMMING LAN-

GUAGES – Processors.
Key words and phrases. JavaScript, ECMAScript, web applications, compiler, program

analysis.

95

96 GHIŢĂ DANIEL-CONSTANTIN

the latest version of JavaScript and outputs code which works on all current
JavaScript platforms.

This rest of the paper is structured as follows. Section 2 is structured in
two subsections: the first one offers an overview of JavaScript, while the second
section takes a look at what benefits compiling has offered other languages.
Section 2.3 presents the current status of methods applied for JavaScript
source code. Section 3 presents the goal of this paper in more details. Section
4 details each step of the path in achieving said goal, and in the end we give
some conclusion that evaluates the results which have been obtained and the
roads opened for future work.

2. Background

2.1. A Brief Overview of JavaScript.

2.1.1. Where JavaScript is today. There are many different implementations
of ECMAScript dialects and a few call themselves JavaScript. Every major
browser has its own ECMAScript implementation and there are even compilers
and interpreters for ECMAScript as a systems language. ECMAScript covers
only the core language and many extensions, including ”host objects”, are left
to the implementation:

ECMAScript as defined here is not intended to be computa-
tionally self-sufficient; indeed, there are no provisions in this
specification for input of external data or output of computed
results. Instead, it is expected that the computational envi-
ronment of an ECMAScript program will provide not only the
objects and other facilities described in this specification but
also certain environment-specific host objects, whose descrip-
tion and behavior are beyond the scope of this specification[6]

2.1.2. Basic building blocks. Often described as ”Lisp in C’s clothing”[4,5], the
JavaScript language is dynamic and weakly typed. It has first-class functions
and prototype-based object inheritance. It has closures, which means func-
tions have lexical scope and they can access the variables from the context in
which they were created. Functions can be called with any arguments (and
any number of arguments). All objects are hash tables and objects cannot
be created ex-nihilo. Objects and arrays can be written as literals and the
language has built-in support for regular expressions. The logical OR (||)
and logical AND (&&) are short-circuiting operators. The ternary operator is
similar to the one found in C.

JAVASCRIPT GENERATORS 97

2.2. Benefits of compiling. Compiling is the process of transforming code
from one computer language into another—called the target language. Usually
compilers target machine code which can be directly executed by a computer
or virtual machine. Historically, compilers have been a major factor in the
advance of programming by allowing the same code to be used on different
architectures and by performing tedious tasks on the behalf of the programmer,
such as checking type correctness, optimizations, relaxing the limitations of
the machine (e.g. aligning data at certain memory locations), supporting high-
level constructs not available on the underlying hardware, linking (distributing
a program across more than one source file) and more. In short, compiling
enables easier programming and portability.

2.2.1. Source-to-source compilers. While most compilers output machine code
or bytecode, source-to-source compilers use a high-level language for both the
input and the output. Source-to-source compilers can be used, for instance,
for adding parallel code annotations (e.g. OpenMP) or for porting code from
an old version of the language into a new version.

2.3. Review of the State of the Art. In this section we will look at what
methods have been previously applied to JavaScript source code before.

2.3.1. Minification. Minification [5]is the process in which an input source
code is transformed into an output source which, when executed, results in
the same operations being performed on the same data. The program which
performs this transformation on the code is called a minifier. The goal is
usually to obtain a program which works identically to the input code but
which has a smaller size. In order to achieve this goal, the minifier employs
more than one technique:

• Whitespace removal. Indentation, line feeds and any other whitespace
is deleted because it does not affect the semantics of the program.
• Comments are eliminated, for the same reason as whitespace. Usually
JavaScript minifiers understand and preserve conditional comments.
Also, some minifiers preserve comments which begin with ‘!’ or which
contain ‘@license’ or ‘@preserve’. This is used in order to preserve
copyright information.
• Redundant characters with syntactic but not semantic meaning are
removed. For instance, many semicolons can be deleted without af-
fecting the instructions because JavaScript allows the programmers to
omit semicolons in some places.
• Numbers are written in the shortest form possible. For instance, 1000
could be transformed into 1e3 and 1e1 could be transformed into 10,
each modification saving one character.

98 GHIŢĂ DANIEL-CONSTANTIN

• Local variables and function arguments are renamed to use less char-
acters. This can be particularly problematic in dynamic languages
which support eval(...) such as JavaScript. Because the argument
to be evaluated is a string and is usually composed dynamically or
received from an external source (e.g. a response from the server), any
references to local variables inside the string cannot be updated by
the minifier. This means that executing print(eval("currentIndex
+ pageSize")); after minification will result in two undefined refer-
ences1.
• Transform conditionals where possible from if-statements using short-
circuiting operators. A short-circuiting boolean AND operator does
not evaluate the second argument if the first is false. Some tools take
advantage of JavaScript’s boolean operators and transform statements
such as if (a) b(); into a && b();.

Minification is usually safe, unless local variables are obfuscated and eval(...)
is used to reference local variables.

2.3.2. Packing. Packing[5] is the process in which the identifiers, keywords
and constants are separated from the code and moved into a separate list.
Duplicates are discarded and placeholders are used in the code to know where
to insert each item. Two strings are obtained: the first contains the code
without the removed parts and the second contains all the removed parts with
a separator. The final file has the two strings and a few instructions which
reassemble the original file (as a string) and feed it to eval(...). Packing is
usually used after the source has already been minified.

Tools which implement minification of JavaScript sources include Closure
Compiler, JSMin, Microsoft AJAX Minifier, Packer, ShrinkSafe and Yahoo!
UI Compressor. Packer is the only one which implements packing.

2.3.3. Function inlining. Function inlining or inline expansion is the process
in which a call to a particular function is replaced with the body of the func-
tion. While this increases the size of the code if the function is called from
more than one place, it optimizes the execution speed of the program if the
function is called often because it eliminates the overhead caused by a function
call.

2.3.4. Aliasing. Aliasing is the situation in which a data location can be ac-
cessed under different names called aliases. In JavaScript aliasing is often used
in conjunction with calling the same method on the same object repeatedly.

1Local variables and function arguments are not renamed in functions which use a with

instruction anywhere in the source because declaring variables inside a with statement creates
properties inside the object instead of local variables.

JAVASCRIPT GENERATORS 99

For instance, creating an alias for the appendChild method of the <body>

element in an HTML document:

function add (newNode) {
document . body . appendChild (newNode) ;

}

Function inlining is implemented in Closure Compiler.

2.3.5. Turning Java into JavaScript. A different approach which has been
tried is to give programmers a language with static typing (specifically Java)
and then translate that language’s syntax into JavaScript constructs. This
has the advantage of static type checking and support from the IDEs which
target the guest language2

The collection of tools which compiles Java into JavaScript is Google Web
Toolkit.

2.3.6. Asynchronous JavaScript. While JavaScript has features which enable
it to work asynchronously (setTimeout, setInterval, asynchronous connections
to the server) it is single-threaded and execution itself is synchronous: once
a function begins executing, it cannot sleep or pause execution in anyway;
it will either terminate or enter an infinite cycle (in which case it will ulti-
mately be killed by the browser). Two techniques have been used to bring
this functionality into JavaScript using libraries.

The first method involves using a loader which will scan the JavaScript
source before it is loaded into the browser and modify it before it is compiled.
This works in all browsers but is very slow.

The second method consists of using the yield instruction (which is de-
signed for generators)[7,8]. This takes advantage of a pause-and-resume sup-
port built into generator and thus it is more efficient than the first method.
The major downside is that it requires JavaScript 1.7 which is currently only
available in Mozilla implementations.

2.3.7. ECMAScript 5 strict subsets. There has been at least one attempt to
implement a strict subset of ES5 strict mode on top of ES3[2]. This has
been done in order to limit the flexibility of the language such that modules
written using the allowed subset of the language are easier to isolate. This
does not actually add anything to language, it just removes some building
blocks. Google’s Caja project implements two languages: Cajita is a strict
subset of ES5 strict mode with many features removed (e.g. eval, with, the
Function constructor, monkey patching, etc.[3]) and Valija is an extension of

2JavaScript IDEs are rather poor compared to C++, C# and Java IDEs. For instance,
Microsoft Visual Studio 2010 is still unable to understand regular expression literals in
JavaScript and tries to auto-complete the text inside and the flags, although the syntax has
been in the language since the beginning.

100 GHIŢĂ DANIEL-CONSTANTIN

Cajita which adds back some of the elements which have been removed, but
with a limited scope (e.g. eval).

3. Problem Statement

3.1. Existing browsers. JavaScript, as shown in section 1 and section 2, is
a fast-evolving language with a huge installed base. Except C and maybe
C++, it is a challenge to find one language which can be executed on so
many devices. It is more widespread than even Java—every device which can
run Java can also execute JavaScript using Rhino (a Java library) and there
are many mobile devices which come with a browser but no Java runtime.
Not only are there JavaScript shells and cross-platform FastCGI modules(also
#/bin/v8cgi[1]), but the most popular desktop operating system, Microsoft
Windows, comes with a built-in JavaScript environment capable of interacting
with the system tools (and no Java runtime unless the user explicitly installs
it).

Together with the size of the installed base also comes a disadvantage:
fragmentation. Some implementations are lagging behind and, when writing
web applications, generic libraries, or other tools, developers are forced to code
for the smallest common denominator. This considerably limits the capabili-
ties which can be used and denies the improvements which could be gained:
faster development, less error-prone code, better performance and more.

3.2. Need for compatibility. While there are many tools which process
JavaScript source code, they do not extend it with the latest constructs. The
tools either translate other languages to JavaScript constructs3. No tool has
attempted to implement the new functionality offered by newer versions on
top of the common baseline and the topic has not even been formally analyzed
before.

Additionally, none of the tools available are written in JavaScript. This
is important because JavaScript’s Function constructor and eval function
means code will be loaded from external sources, sometimes even on-demand.
Unless the tool is implemented in JavaScript, it cannot catch calls to load
extra code at runtime and handle the new code.

3.3. Target and impact. Today, usually only baseline constructs can be used
when developing JavaScript applications4. The ones most affected by this are,
of course, developers working on JavaScript frameworks. Such frameworks can

3If the code must be written in a language other than JavaScript, this usually results
in rendering the developer unable to use certain high-level features which are not available
in the original language; this may include prototype inheritance, variadic functions, duck
typing, iterators, generators, loading code on-demand, etc.

4The most notable exception consists of Firefox add-ons. Obviously, they can take ad-
vantage of the latest JavaScript implementation which is used by the browser.

JAVASCRIPT GENERATORS 101

also be used outside of the web and into the realm of gadgets, where JavaScript
is probably the most popular language5. As expected, JavaScript is also used
when writing add-ons for browsers6. JavaScript is also popular in other circles,
as a plugin language for many environments (PDF files, Nokia’s Qt framework,
OpenOffice, Google Docs, Microsoft Office and more). JavaScript is also used
as a general-purpose application programming language (Palm’s webOS which
is used for phones and other platforms, the GNOME Shell, KDE’s kjs, etc).

4. Implementing JavaScript generators in ECMAScript 3

In order to address the issues presented we have built a compiling frame-
work called Alkaline7. The framework is written in JavaScript in order to
provide support for re-entry during runtime when the Function constructor
or eval function are invoked.

4.1. Architecture overview. Alkaline is composed of a few modules and
some glue which sends data from one module to the next. Between each stage,
an Abstract Syntax Tree (AST) is used as the intermediary representation for
the program. Four modules are provided:

• A parsing module which takes JavaScript source code and builds an
AST. This module is built using the ANTLR parser generator and
includes two distinct parts, a lexer and a parser.
• Analyzer annotates the AST (for instance, this resolves variable refer-
ences).
• 5to3 transforms AST structures from the latest JavaScript specifica-
tion into structures supported by ECMAScript 3.
• Printer transforms the AST back into source code.

4.2. Generators. Generators have been introduced into the JavaScript lan-
guage from version 1.7[9] and they have been described as “a better way to
build Iterators”[10]. There are two main differences between a normal function
and a generator:

• generators persist the state of local variables after they yield each
result
• on each subsequent invocation generators continue execution from the
yield statement which generated the last item

5The following environments use JavaScript: Apple’s Dashboard Widgets, Microsoft’s
Gadgets, Yahoo! Widgets, Google Desktop Gadgets and Serence Klipfolio.

6To be more specific, this applies to all the major browsers except Internet Explorer:
Firefox, Chrome, Opera, Safari and maybe others.

7Alkaline is open source and available at https://code.google.com/p/alkaline-js/.

102 GHIŢĂ DANIEL-CONSTANTIN

4.2.1. A simple example. Listing 1 illustrates a simple generator which yields
the next odd number each time it is invoked. The generator is invoked five
times in order to return the first five odd numbers.

Listing 1. A simple generator

1 function oddNumber () {
2 var i = 0 ;
3 while (true) {
4 i f (i % 2)
5 yield i ;
6 i++;
7 }
8 }
9

10 function printOdd (count) {
11 var i t e r = oddNumber () ;
12 while (count−−)
13 pr in t (i t e r . next ()) ;
14 }
15

16 printOdd (5) ;

In a way, the generator itself works somewhat similar to a separate thread:
once created, it has its own state and even though it never ends, it does not
block the main thread.

We can take advantage of the fact that JavaScript offers first-class func-
tions and translate generators into regular functions, and use yield state-
ment. In order to demonstrate how the method described affects the code,
in Listing 2 we implement the previous simple generator using only ES3 con-
structs.

The code in Listing 2 takes advantage of the fact that in JavaScript func-
tions are used as constructors and transforms the generator-function oddNumbers
into both a class and a function which returns a new instance of the class (line
2).

In order to simulate the resume behavior, all blocks of code leading up to
the yield statement are placed behind if statements which test _continuation
such that when “resuming” execution, they are skipped. All loops and condi-
tionals which gate the execution path toward the yield instruction are injected
code such that they always take the correct branch when _continuation is
true.

JAVASCRIPT GENERATORS 103

Listing 2. A simple generator modified to use only EC-
MAScript 3 constructs

1 function oddNumber () {
2 i f (! (this i n s t an c e o f oddNumber))
3 return new oddNumber () ;
4 }
5

6 oddNumber . prototype . next = function () {
7 i f (! this . c on t i nua t i on) {
8 this . l o c a l i = 0 ;
9 }

10 while (this . c on t i nua t i on | | true) {
11 i f (this . c on t i nua t i on | | this . l o c a l i % 2) {
12 i f (! this . c on t i nua t i on) {
13 this . c on t i nua t i on = true ;
14 return this . l o c a l i ;
15 } else
16 this . c on t i nua t i on = fa l se ;
17 }
18 this . l o c a l i ++;
19 }
20 }
21

22 function printOdd (count) {
23 var i t e r = oddNumber () ;
24 while (count−−)
25 pr in t (i t e r . next ()) ;
26 }
27

28 printOdd (5) ;

4.2.2. Multiple yield statements, StopIteration. A natural extension of the
simple generator previously presented is the support for multiple yield in-
structions. This increases the flexibility of the method but also complicates
the implementation which must support it. Additionally, if after a call to
next() the generator “terminates” without yielding anything, it automati-
cally throw an error which inherits StopIteration. Listing 3 demonstrates
all these mechanisms at work. The exception StopIteration is easy to solve
here by simply adding a throw statement at the end of the generator body.

The conditions which gate execution when resuming after a yield will
need to be updated. Basically, at any point in the source, if we are resuming
to a yield which is placed after the instruction at the current position we
must skip executing the instruction we are considering. If, on the other hand,

104 GHIŢĂ DANIEL-CONSTANTIN

the yield to which we are resuming is inside one of the branches which be-
longs to the current instruction then we must guide execution toward it. This
means that if the instruction gates the third yield we must skip it completely
when this._continuation > 3 and we must enter one of the branches when
this._continuation == 3. Listing 4 applies this approach to the generator
from listing 3 mentioned previously. If the resume flag indicates a yield which
is placed before the current instruction, the code should behave as if the flag
is cleared (i.e. normal execution).

Listing 3. A generator with multiple yield statements using
only classic constructs (simplified)

1 function mult ip l eGenerator () {
2 i f (! (this i n s t an c e o f mult ip l eGenerator))
3 return new mult ip leGenerator () ;
4 this . c on t i nua t i on = 0 ;
5 }
6 mult ip l eGenerator . prototype . next = function () {
7 i f (this . c on t i nua t i on < 1) {
8 this . c on t i nua t i on = 1 ;
9 return ” f i r s t ” ;

10 }
11 i f (this . c on t i nua t i on < 2) {
12 this . c on t i nua t i on = 2 ;
13 return ” second” ;
14 }
15 i f (this . c on t i nua t i on < 3) {
16 this . c on t i nua t i on = 3 ;
17 return ” th i rd ” ;
18 }
19 throw new S top I t e r a t i on () ;
20 }
21

22 var g = mult ip leGenerator () ;
23 pr in t (g . next ()) ; // p r i n t s ” f i r s t ”
24 pr in t (g . next ()) ; // p r i n t s ” second”
25 pr in t (g . next ()) ; // p r i n t s ” th i rd ”
26 pr in t (g . next ()) ; // throws an e r r o r which i s an in s t anc e o f←↩

Stop I t e r a t i on

4.2.3. The send(...) method, generator arguments, exceptions. An impor-
tant feature of generators is the ability to interact with a generator which has
been started. The yield statement does more than just pause execution and

JAVASCRIPT GENERATORS 105

wait for it to be resumed later. It can return a value and sometimes even
throw an exception. By default, it returns undefined.

When generatorInstance.send(something) is called, the generator will
be resumed (similar to calling next()) and the previously paused yield in-
struction will return something. This makes it possible to send new informa-
tion into the generator when it is resuming. By calling
generatorInstance.throw(exception) the generator will be resumed and
the previously suspended yield will throw the given exception. Additionally,
similar to functions, generators can take arguments. Listing 4 shows a genera-
tor for the set of natural numbers. The generator receives an optional starting
value—which defaults to 0—and return a new number each time next() is
invoked. By calling send(number) a value can be fed into the generator in
order to reset its position to an arbitrary point. This listing demonstrates the
use of arguments for generators and the send(...) method.

Listing 4. A generator which counts to +Infinity

1 function counter (s t a r t) {
2 i f (! s t a r t)
3 s t a r t = 0 ;
4 while (true) {
5 var r e s t a r t = yield s t a r t++;
6 i f (! isNaN (r e s t a r t))
7 s t a r t = r e s t a r t ;
8 }
9 }

10

11 var f = counter () ;
12 pr in t (f . next ()) ; // p r i n t s 0
13 pr in t (f . next ()) ; // p r i n t s 1
14

15 f = counter (3) ;
16 pr in t (f . next ()) ; // p r i n t s 3
17 pr in t (f . send (8)) ; // p r i n t s 8
18 pr in t (f . next ()) ; // p r i n t s 9

It should be noted that both send(...) and throw(...) wake up the
generator. Of course, calling send(undefined) is the same as calling next().
Calling send(something) before the generator yields the first value will throw
a TypeError.

Adding support for generator arguments is easy: the names of the argu-
ments are added to the list of local variables and the arguments received in the
generator constructor are saved just like local variables. In order to support
the send(...)method, the generator must take the new value when resuming.

106 GHIŢĂ DANIEL-CONSTANTIN

Listing 5 translates the generator counter into basic constructs with support
for send(...), throw(...) and generator arguments.

Listing 5. A generator which counts to +Infinity using only
ES3 constructs

1 function counter (s t a r t) {
2 i f (! (this i n s t an c e o f counter))
3 return new counter (s t a r t) ;
4 this . c on t i nua t i on = 0 ;
5 // the un l i k e l y name i s used to obta in a r e f e r e n c e to ←↩

the p r im i t i v e <undef ined>
6 this . y i e l d v a l u e = this . th i sPropertyDoesNotExist ;
7 this . y i e l d e x c e p t i o n = nu l l ;
8 this . l o c a l s t a r t = s t a r t ;
9 }

10 counter . prototype . next = function () {
11 var r e s t a r t ;
12 i f (! this . l o c a l s t a r t)
13 this . l o c a l s t a r t = 0 ;
14 while (true) {
15 return this . l o c a l s t a r t ++;
16 r e s t a r t = this . y i e ldReturn () ;
17 this . l o c a l r e s t a r t = r e s t a r t ;
18 i f (! isNaN (this . l o c a l r e s t a r t))
19 this . l o c a l s t a r t = r e s t a r t ;
20 }
21 }
22 counter . prototype . next = function () {
23 var nextValue = this . next () ;
24 i f (this . c on t i nua t i on < 0)
25 throw new S top I t e r a t i on () ;
26 return nextValue ;
27 }
28 counter . prototype . y i e ldReturn = function () {
29 var except ion ;
30 i f (except ion = this . y i e l d e x c e p t i o n) {
31 this . y i e l d e x c e p t i o n = nu l l ;
32 throw except ion ;
33 } else {
34 var value = this . y i e l d v a l u e ;
35 this . y i e l d v a l u e = this . th i sPropertyDoesNotExist ;
36 return value ;
37 }
38 }
39 counter . prototype . send = function (y i e ldVa lue) {
40 i f (typeo f y i e ldVa lue != ’ undef ined ’) {
41 i f (this . c on t i nua t i on == 0)
42 throw new TypeError () ;
43 this . y i e l d v a l u e = yie ldVa lue ;
44 }
45 return this . next () ;
46 }
47

48 var f = counter () ;

JAVASCRIPT GENERATORS 107

49 pr in t (f . next ()) ; // p r i n t s 0
50 pr in t (f . next ()) ; // p r i n t s 1
51

52 f = counter (3) ;
53 pr in t (f . next ()) ; // p r i n t s 3
54 pr in t (f . send (8)) ; // p r i n t s 8
55 pr in t (f . next ()) ; // p r i n t s 9

4.2.4. The close() method and finally blocks. To quote from a previous
paragraph:

If, on the other hand, the yield to which we are resuming is
inside one of the branches which belongs to the current instruc-
tion then we must guide execution toward it.

The close method is the opposite of this: when the user invokes it, the
generator must return to the point in the source where it last left off, but
instead of starting to execute instructions it must execute all the finally
clauses and nothing else. This brings into discussion another aspect which
was neglected until now: finally clauses. Whenever a JavaScript function
returns, any finally clauses which are active are executed. This happens only
for return and not yield because the latter is a pausing mechanism and
execution is expected to resume later. By replacing yield statements with
return equivalents we are changing the behavior: the finally clauses will
be executed for each ”yield” and—depending on what code is inside them—
this may cause problems. The solution is simple, all we have to do is gate
the content of the finally clause so it is only executed when the genera-
tor is closing and when it is not paused (e.g. finally { ... } becomes
finally { if (normal execution or closing) { ... }}).

4.2.5. When the generator uses eval(...). If the body of the generator calls
the function eval then additional steps must be performed. Because the code
compiled and executed by eval may reference local variables and we have
moved all of them into properties of the generator instance, we must either up-
date the code which eval will compile so all the references are resolved, or make
sure the variables exist and are up to date before calling eval. The latter op-
tion is simpler than parsing, analyzing and changing the code which will be exe-
cuted. For instance, if a generator uses two variables, a and b, and the first one
is the name of a function, the line b = eval(a+ "()") would be changed into
var a = this._local_a, b = this._local_b; this._local_b = eval(a
+ "()") which works as expected.

4.2.6. Putting it all together. In this section we have built a solution for trans-
lating generators for JavaScript into a structure which uses only ECMAScript
version 3 constructs and is therefore supported in all ECMAScript environ-
ments. No code outside of the generator has to be changed which makes this

108 GHIŢĂ DANIEL-CONSTANTIN

a local solution. Listing 6 show the template for implementing a generator.
The steps are:

(1) If the class StopIteration does not exist, create it and make it inherit
Error.

(2) Create the class for the generator. Inside the constructor, create the
start state with the arguments. Save all the arguments in local prop-
erties of the generator instance. Move the generator-function to the
next method.

(3) Redirect all references to arguments and local variables into properties
of the generator instance.

(4) Implement continuation and transform yield statements into return
statements which also push the new state to the list of states. Update
finally clauses so they don’t do anything when the function returns.

(5) If the function eval is used, make all the variables reference the current
(saved) state before invoking eval.

(6) Add the static methods next(), yieldReturn(), send(yieldReturn),
"throw"(exception) and close(). It is also possible to place these
methods inside a single object and inherit it using the prototype chain
(which would generate less code when there is more than one genera-
tor).

Listing 6. The template used to translate a generator into
ECMAScript 3 constructs

1 i f (typeo f S t op I t e r a t i on == ’ undef ined ’) {
2 var S top I t e r a t i on = function () {} ;
3 S top I t e r a t i on . prototype = new Error () ;
4 }
5

6 function generatorName (arg1 , arg2 , . . .) {
7 i f (! (this i n s t an c e o f generatorName))
8 return new generatorName (arg1 , arg2 , . . .) ;
9 this . c on t i nua t i on = 0 ;

10 this . y i e l d v a l u e = this . th i sPropertyDoesNotExist ;
11 this . y i e l d e x c e p t i o n = nu l l ;
12 this . c l o s i n g = fa l se ;
13 this . l o c a l a r g 1 = arg1 ;
14 this . l o c a l a r g 2 = arg2 ;
15 . . .
16 }
17 generatorName . prototype . next = function () {
18 . . . a c tua l genera tor code . . .
19 }
20 generatorName . prototype . next = function () {
21 var nextValue = this . next () ;
22 i f (this . c on t i nua t i on < 0)
23 throw new S top I t e r a t i on () ;
24 return nextValue ;
25 }

JAVASCRIPT GENERATORS 109

26 generatorName . prototype . y i e ldReturn = function () {
27 var except ion ;
28 i f (except ion = this . y i e l d e x c e p t i o n) {
29 this . y i e l d e x c e p t i o n = nu l l ;
30 throw except ion ;
31 } else {
32 var value = this . y i e l d v a l u e ;
33 // the un l i k e l y name i s used to obta in a r e f e r e n c e ←↩

to the p r im i t i v e <undef ined>
34 this . y i e l d v a l u e = this . th i sPropertyDoesNotExist ;
35 return value ;
36 }
37 }
38 generatorName . prototype [’ throw ’] = function (except ion) {
39 this . y i e l d e x c e p t i o n = except ion ;
40 return this . next () ;
41 }
42 generatorName . prototype . send = function (y i e ldVa lue) {
43 i f (typeo f y i e ldVa lue != ’ undef ined ’) {
44 i f (this . c on t i nua t i on == 0)
45 throw new TypeError () ;
46 this . y i e l d v a l u e = yie ldVa lue ;
47 }
48 return this . next () ;
49 }
50 generatorName . prototype . c l o s e = function () {
51 this . c l o s i n g = {} ; // c r e a t e a new ob j e c t
52 while (this . c l o s i n g)
53 try {
54 this [’ throw ’] (this . c l o s i n g) ;
55 } catch (e) {
56 i f (e == this . c l o s i n g | | (e i n s t an c e o f ←↩

S top I t e r a t i on))
57 this . c l o s i n g = fa l se ;
58 else
59 // a d i f f e r e n t e r r o r was thrown
60 throw e ;
61 }
62 }

5. Conclusion

JavaScript generators from language 1.7 can be successfully implemented
on top of the baseline ECMAScript 3 using a source-to-source compiler.

The proposed method is complete and does not sacrifice any feature which
JavaScript brings to the table in order to bring this support to legacy envi-
ronments.

A compiler toolkit has been implemented which allows compiling new ver-
sions of JavaScript and targeting legacy platforms.

5.1. Future Research.

110 GHIŢĂ DANIEL-CONSTANTIN

(1) The idea presented here can be taken further and support can be im-
plemented for all the features added by recent versions of JavaScript.

(2) A block of code with a very small footprint can be used to decide at
runtime whether to load the original JavaScript source or the trans-
lated one. This would eliminate any small speed-bumps which the
translator may add as long as the user is using an environment which
supports the complete set of JavaScript instructions while still sup-
porting everyone with an outdated environment.

(3) Additionally, the Abstract Syntax Tree generated by the parser can be
used in order to perform optimizations.

(4) The output module can be replaced with one which generates C++
code or LLVM intructions.

References

[1] Apache configuration for v8cgi. http://code.google.com/p/v8cgi/wiki/ApacheConfiguration,
last updated May 12, 2010.

[2] Google Caja, a source-to-source translator for securing Javascript-based web content.
http://code.google.com/p/google-caja/, retrieved Jun 9, 2010.

[3] Overview of the Caja system. http://code.google.com/p/google-
caja/wiki/CajaOverview#Cajita, last updated Jul 17, 2009.

[4] Douglas Crockford. JavaScript: The world’s most misunderstood programming lan-
guage, 2001. http://www.crockford.com/javascript/javascript.html.

[5] Douglas Crockford. JavaScript: The Good Parts. O’Reilly, May 2008.
[6] Ecma International. ECMA-262, 5 edition, December 2009. http://www.ecma-

international.org/publications/files/ECMA-ST/ECMA-262.pdf
[7] Eli Grey. Pausing JavaScript with async.js. Eli Grey’s Blog, January 2010.

http://eligrey.com/blog/post/pausing-javascript-with-async-js.
[8] Neil Mix. Threading in JavaScript 1.7. Neil Mix’s blog, January 2007.

http://www.neilmix.com/2007/02/07/threading-in-javascript-17/.
[9] Mozilla Developer Center. New in JavaScript 1.7, 2006.

https://developer.mozilla.org/en/New in JavaScript 1.7 (revision 144).
[10] Mozilla Developer Center. Iterators and Generators, 2007.

https://developer.mozilla.org/en/Core JavaScript 1.5 Guide/Iterators and Generators
(revision 13).

Master student, Babeş-Bolyai University, Faculty of Mathematics and Com-
puter Science, 1 M. Kogălniceanu St., 400084 Cluj-Napoca, Romania

E-mail address: bluepx@gmail.com

