
Babeş-Bolyai University

KEPT 2009

KNOWLEDGE ENGINEERING

PRINCIPLES

AND

TECHNIQUES

EDITORS:

Militon Frenţiu and Horia F. Pop

Cluj-Napoca, July 2–4, 2009

KEPT 2009

Important dates

Submission deadline: March 31, 2009

Notification of acceptance: April 15, 2009

Camera-ready copy due: May 10, 2009

Registration deadline: June 10, 2009

Conference dates: July 2-4, 2009

Please note that the refereeing and publication schedule does not permit any delays

in these dates.

Topics

Conference topics include, but are not limited to:

• Knowledge in Computational Linguistics

– Corpora as knowledge bases;

– Linguistic tools in Information retrieval and Information Extraction;

– Text mining, Text entailment and Text summarization ;

– Discourse and Dialogue;

– Multi-lingual processing, machine translation;

– Machine learning for natural languages;

– Linguistic components of information systems;

– Theoretical and application-oriented subjects related to NLP.

• Knowledge Processing and Discovery

– Natural computing;

– Metaheuristics;

– Machine learning;

– Computational intelligence;

– Agent based systems.
v

• Knowledge in Software Engineering

– Software design;

– Formal verification;

– Automated reasoning;

– Parallel and concurrent programming;

– Ontology-based software engineering;

– Ontology-driven information systems;

– Formal methods;

– Knowledge based applications;

– Formal concept analysis.

• Knowledge in Distributed Computing

– Knowledge representation and processing;

– Databases and Data Mining;

– Web services, middleware and web technologies;

– Semantic web;

– Grid architecture;

– Collaborative systems.

• Knowledge Processing in Economics

– Collaborative Decision Support Systems;

– Knowledge acquisition and management in e-activities and m-activities;

– Enterprise ontologies and content management;

– Integrated software systems, ERPs and extensions;

– Business Intelligence and Warehousing;

– Knowledge Management in Small and Medium Size Enterprises;

– Multi-agent Models in Knowledge Acquisition and Management.

Aims

The aim of KEPT2009 is to serve as a forum to present current and future work

as well as to exchange research ideas in the field of Knowledge Engineering.

vi

COMMITTEES

Organizing Committee

Conference General Chairs.

• Militon Frenţiu (Babeş-Bolyai University)

• Horia F. Pop (Babeş-Bolyai University)

Section Chairs.

• Doina Tătar (Babeş-Bolyai University)

– Knowledge in Computational Linguistics

• Dumitru Dumitrescu (Babeş-Bolyai University)

– Knowledge Processing and Discovery

• Bazil Pârv (Babeş-Bolyai University)

– Knowledge in Software Engineering

• Florian Mircea Boian (Babeş-Bolyai University)

– Knowledge in Distributed Computing

• Stefan Niţchi (Babeş-Bolyai University)

– Knowledge Processing in Economics

Secretariat.

• Grigoreta Cojocar (Babeş-Bolyai University)

• Laura Dioşan (Babeş-Bolyai University)

• Sanda Dragoş (Babeş-Bolyai University)

• Vladiela Petraşcu (Babeş-Bolyai University)

• Andreea Sabău (Babeş-Bolyai University)

vii

Program Committee

• Ajith Abraham (Seoul University, Republic of Korea)

• Razvan Andonie (Central Washington University)

• Florian Boian (Babeş-Bolyai University)

• Alexandru Cicortaş (West University of Timisoara)

• Ioan Ciurea (“Transilvania” University, Braşov)

• Dan Cristea (“A.I. Cuza” University, Iasi)

• Andras Csomai (University of North Texas, USA)

• Sergiu Cataranciuc (Chisineu University, Moldova)

• Gabriela Czibula(Babeş-Bolyai University)

• Kalyanmoy Deb (Kanpur University, India)

• Dumitru Dumitrescu (Babeş-Bolyai University)

• Călin Enăchescu (“Petru Maior” University, Targu Mures)

• Militon Frenţiu (Babeş-Bolyai University)

• Gheorghe Grigoraş (“A.I. Cuza” University, Iasi)

• Crina Groşan (Babeş-Bolyai University)

• Diana Inkpen (University of Ottawa, Canada)

• Zoltan Kasa (Sapientia University, Tr̂gu Mureş)

• Ioan Lazăr (Babeş-Bolyai University)

• Dorel Lucanu (“A.I. Cuza” University, Iasi)

• Henri Luchian (“A.I. Cuza” University, Iasi)

• Andrian Marcus (Wayne State University)

• Daniela Marinescu (“Transilvania” University, Braşov)

• Rada Mihalcea (University of North Texas,USA)

• Ruslan Mitkov (University of Wolverhampton, UK)

• Grigore Moldovan (Babeş-Bolyai University)

• Simona Motogna (Babeş-Bolyai University)

• Traian Muntean (University of Marseille, France)

• Viorel Negru (West University of Timisoara)

viii

• Virginia Niculescu (Babeş-Bolyai University)

• Ştefan Niţchi (Babeş-Bolyai University)

• Stephen Olariu (Old Dominion University)

• Mihai Oltean (Babeş-Bolyai University)

• Constantin Orăşan (University of Wolverhampton, UK)

• Gheorghe Păun (Academia Romana)

• Bazil Pârv (Babeş-Bolyai University)

• Dana Petcu (West University of Timisoara)

• Horia F. Pop (Babeş-Bolyai University)

• Mike Preuss (Dortmund University, Germany)

• Dumitru Rădoiu (“Petru Maior” University, Targu Mures)

• Vasile Rus (University of Memphis, USA)

• Gheorghe Ştefănescu (Bucharest University)

• Emma Tamaianu-Morita (Akita University, Japan)

• Doina Tătar (Babeş-Bolyai University)

• Ioan Tomescu (Bucharest University)

• Leon Ţâmbulea (Babeş-Bolyai University)

• Teodor Toadere (Babeş-Bolyai University)

• Daniela Zaharie (West University of Timisoara)

ix

CONTENTS

Invited Lectures

H. Horacek, Knowledge Representation within an Intelligent Tutoring System . . . 3

Z. Horváth, L. Lövei, T. Kozsik, R. Kitlei, A. N. V́ıg, T. Nagy,

M. Tóth, R. Király, Modeling Semantic Knowledge in Erlang for Refactoring . . 7

A. Pretschner, An Overview of Distributed Usage Control . 17

Knowledge in Computational Linguistics

A. Varga, G. Puşcaşu, C. Orăşan, Identification of Temporal Expressions in

the Domain of Tourism . 29

D. Tătar, E. Tămâianu-Morita, G. Czibula, Segmenting Text by Lexical

Chains Distribution .33

A. Iftene, D. Trandabat, Recovering Diacritics using Wikipedia and Google . 37

A. Oneţ, An Approach on Multilevel Text Mining . 41

M. Cremene, F. C. Pop, S. Lavirotte, J.-Y. Tigli, Natural Language

Based User Interface for On-demand Service Composition . 45

S. Cojocaru, E. Boian, M. Petic, Derivational Morphology Mechanisms in

Automatic Lexical Information Acquisition . 49

L. Machison, Named Entity Recognition for Romanian . 53

R. Zehan, Web Interface for Rouge Automatic Summary Evaluator 57

Z. Minier, Feature Selection in Text Categorization Using `1-regularized SVMs . 61

S. Irimiaş, A Romanian Stemmer . 65

A. Perini, D. Tătar, Textual Entailment as a Directional Relation Revisited . . 69

A. D. Mihiş, Ontological Solving of the Team Building Problem73

C. Forascu, A Romanian Corpus of Temporal Information – a Basis for

Standardisation .77

P. Szilágyi, Compacting Syntactic Parse Trees into Entity Relationship Graphs 81

L. Ţâmbulea, A. Sabău, From Databases to Semantic Web .85

C. Bogdan, Domain Ontology of the Roman Artifacts Found in the Tomis

Fortress . 89
xi

Knowledge Processing and Discovery

R. N. Turcaş, Zs. Marian, O. Iova, The Autonomous Robotic Tank (ART):

An Innovative Lego Mindstorm NXT Battle Vehicle . 95

A. Gog, C. Chira, D. Dumitrescu, Distributed Asynchronous Collaborative

Search . 99

C. Chira, C.-M. Pintea, D. Dumitrescu, A Step-Back Sensitive Ant Model

for Solving Complex Problems . 103

L. Dioşan, A. Rogozan, J.-P. Pecuchet, Improving Definition Alignment

by SVM with a Kernel of Kernels .107

D. Dumitrescu, R. I. Lung, T. D. Mihoc, Equilibria Detection in

Electricity Market Games . 111

I. Drugus, Universics – a Structural Framework for Knowledge Representation .115

I. Salomie, M. Dı̂nşoreanu, C. B. Pop, S. L. Suciu, Knowledge

Aquisition from Historical Documents . 119

M. Cremene, O. Sabou, D. Pallez, T. Baccino, Eye-tracking Data

Exploration within Interactive Genetic Algorithms . 123

L. Csato, Z. Bodó, Decomposition Methods for Label Propagation 127

A. Perini, Group Selection in Evolutionary Algorithms . 131

A. Sirghi, Sustainable Development Game .135

S. Irimiaş, Designing Search Strategies for Robots Using Genetic Programming

and Microsoft Robotic Studio .139

O. Şerban, Modeling Multiagent Irational Algorithms for Games 143

R. M. Berciu, Coevolution For Finding Subgame Perfect Equilibria in

2-Period Cumulated Games .147

M. D. Nadăş, Blog Zeitgeist .151

V. Varga, C. Săcărea, A. Takacs, A Software Tool for Interactive

Database Access Using Conceptual Graphs . 155

Z. Bodó, Zs. Minier, Semi-supervised Feature Selection with SVMS 159

A.-R. Tănase, Sensitive Ants Algorithm for Routing in Telecommunication

Networks . 163

A. Miron, Emergency Service Systems and Robots . 167
xii

P. V. Borza, O. Gui, D. Dumitrescu, Applications of Self-Organizing Maps

in Bio-Inspired Artificial Vision Models . 171

H. S. Jakab, L. Csato, Q-learning and Policy Gradient Methods 175

Knowledge in Software Engineering

G. Czibula, I. G. Czibula, A. M. Guran, G. S. Cojocar, Decision

Support System for Software Maintenance and Evolution . 181

I. G. Czibula, A Clustering Approach for Transforming Procedural into

Object-Oriented Software Systems . 185

B. Pârv, I. Lazăr, S. Motogna, I. G. Czibula, L. Lazăr, COMDEVALCO

Framework - Procedural and Modular Issues . 189

I. Lazăr, S. Motogna, B. Pârv, Rapid Prototyping of Conversational Web

Flows . 194

V. Petraşcu, D. Chiorean, D. Petraşcu, Component Models’ Simulation

in ContractCML .198

M. Frenţiu, H. F. Pop, Effort Estimation by Analogy Using a Fuzzy

Clustering Approach .202

C. Enăchescu, D. Rădoiu, Software Cost Estimation Model Based on Neural

Networks . 206

D. Rădoiu, C. Enăchescu, Ontology Development: A Software Engineering

Approach .211

A. Vajda, Duration Estimation of a Work Package .215

I. A. Leţia, M. Costin, A Formal Concept Analysis Approach to Ontology

Search .219

C. Şerban, High Coupling Detection Using Fuzzy Clustering Analysis 223

V. Niculescu, Efficient Recursive Parallel Programs for Polynomial

Interpolation . 227

M. Lupea, Skeptical Reasoning in Constrained Default Logic Using Sequent

Calculus .231

A. Vasilescu, Algebraic Model for the Synchronous SR Flip-Flop Behaviour . . . 235

D. Suciu, Reverse Engineering and Simulation of Active Objects Behavior 239
xiii

E. Scheiber, Parallelization of an Algorithm with an Unknown Number of

Tasks Using a Fixed Number of Workers .244

C. Chisăliţă-Creţu, Andreea Vescan, The Multi-Objective Refactoring

Sequence Problem . 249

S. Jibotean, R. Boian, Virtual Reality Rehabilitation Environment For

Obsessive-Compulsive Disorder . 254

Knowledge in Distributed Computing

S. Buraga, A. Iacob, DISMY – a Semantic Grid System Based on Linda,

P2P and ALCHEMI .261

A. Sterca, Zs. Marian, A. Vancea, Distortion-Based Media-Friendly

Congestion Control . 265

S. Dragoş, R. Dragoş, Web Analytics for Educational Content 268

C. Cobârzan, Node Ranking in a Dynamic Distributed Video Proxy-Caching

System . 272

D. Cojocar, BBUFs: Architecture Overview . 276

T. Ban, Concept Paper: Generating and Assessing Test Papers Complexity

Using Predictions in Evolutionary Algorithms . 280

D. Cojocar, F. M. Boian, BBUFs: Replication Strategies 284

D. Bufnea, New Data Mining Techniques for Macroflows Delimitation in

Congestion Control Management . 288

C. Costa, HypergraphDB – A Peer-to-Peer Database System 292

R. Boian, D. Cojocar, Moving Excess Data Into External Peer-to-Peer

Storage .296

T. Cioară, I. Anghel, I. Salomie, M. D̂ınşoreanu, A. Rarău, A Self-

Configuring Middleware for Developing Context Aware Applications 300

H. Oros, F. M. Boian, Challenge-Response Entity Authentication Techniques 304

V. Chifu, I. Salomie, A. Riger, V. Rădoi, D. Inoan, A Web Service

Composition Approach Based on a Service Cell Graph Model 308

A. Crăciun, A. Sterca, RDDNS – Resource-based Dynamic DNS 312

A. Dărăbant, Clustering Algorithms in OODB Fragmentation – A

Comparative Evaluation . 315
xiv

F. M. Boian, C. Aldea, On Evaluating the Performance Parameters in a

Distributed System . 319

C. Amariei, E. Onica, S. Buraga, Enhancing Yahoo! Search Results Using

Linked Open Data .323

A. Crăciun, Server-Side Mobile Applications . 327

M. C. Florea (Bizon), Virtualization, the Solution for Dynamic IT 331

xv

INVITED LECTURES

KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2009
Cluj-Napoca (Romania), July 2–4, 2009, pp. 3–6

KNOWLEDGE REPRESENTATION WITHIN
AN INTELLIGENT TUTORING SYSTEM

HELMUT HORACEK(1)

Abstract. Intelligent tutoring systems, though quite successful in a variety of
applications, are typically limited with respect to the generality of their problem-
solving methods and in their communication capabilities. Aiming at exploring the
prerequisites for future, more powerful tutoring systems, we present techniques
for representing knowledge within such a system that allow for reasoning about
more complex problem-solving situations and that enable flexible communication
in natural language. The domain of application is teaching a student how to prove
mathematical theorems.

1. Motivation

Intelligent tutoring systems are currently a hot topic in artificial intelligent re-
search, and a number of widely-used application systems as well as experimental
systems have been built over the last decade. Despite this success, the technology is
still restricted in several ways, which has a major source in the predominant system
architecture that does not support a cleanly separated and in part deep representation
of different categories of knowledge.

In contrast to that, our elaborations feature modularization, based on a strict
distinction between

• problem-solving knowledge
• communication knowledge
• pedagogical knowledge

and their suitable coordination. In particular, we emphasize interaction in natu-
ral language, because this way of communication constitutes a crucial asset of human
tutors that intelligent tutoring systems are essentially missing - it encourages students
to explicitly formulate their plans, which is an important step in learning new concep-
tions. Apparently, such an approach is more difficult to orchestrate, but it is believed
to pay off in the long run, since it allows for the incorporation of problem-solving
and natural language processing components that are developed independently of the
tutoring context. Such components are supposed to be reused beneficially, and they
also support the transfer to other domains of application.

2000 Mathematics Subject Classification. 68T50, 68T30.
Key words and phrases. intelligent tutoring systems, knowledge representation, natural language

processing.

c©2009 Babeş-Bolyai University, Cluj-Napoca

3

4 HELMUT HORACEK(1)

The aim of building a tutoring system on these lines is associated with a number of
research challenges. In the following, we elaborate on experience made in the context
of a project carried out at our university, whose goal was

(1) to empirically investigate the use of flexible natural language dialog in tutoring
mathematics, and

(2) to develop a prototype tutoring system that incorporates the empirical find-
ings.

The experimental system engages a student in a dialog in written natural language
to help him/her understand and construct mathematical proofs. Example domains
include elementary set theory and mathematical relations.

2. Problem-Solving Knowledge

Within a tutoring context, demands on knowledge representation for problem-
solving purposes are extremely high. First of all, it should allow for incremental and
flexible solution development. In addition, it should support inspection of the state
of affairs, and checking possible continuations, in view of ambiguous and only partial
specifications, which is what contributions of students typically are. When efficient
problem-solving is the only concern, suitable representations are essentially simple and
uniform, such as logical calculi for theorem proving systems. While completed results
can be transformed into more abstract, communication adequate representation levels,
systematic transformation methods cannot reasonably cope with incompleteness and
incrementality.

In order to meet the requirements of intelligent tutoring, representations are built
on an abstracted level, where individual reasonnig steps essentially correspond to the
application of axioms, that is, conceptually meaningful pieces of domain knowledge,
for example, applying the distributivity law. Populating such a representation with
inferences suitable for the chosen subdomain requires some development effort by
system engineers, which is a certain price to pay. Inference steps can be composed
to build a proof graph, which enables one to check the validity of each step down to
the underlying proof calculus, thus making use of a powerful and general reasoning
component. Moreover, testing and completing specifications of inference steps that
stem from the tutoring interaction is supported in a flexible manner, including forward
and backward inferences.

3. Knowledge for Natural Language Interpretation

Within a tutoring context in a formal domain, such as mathematics, natural
language interpretation is confronted with two specific fundamental challenges:

• Descriptions in these domains are characterized by an intertwined combina-
tion of exact formulas with sometimes sloppy natural language expressions,
and

• descriptions produced by students may contain errors, and they may be vague
and incomplete, in some cases to a greater extent than this is consistent with
the domain-specific language use as found in mathematical textbooks.

KNOWLEDGE REPRESENTATION WITHIN AN INTELLIGENT TUTORING SYSTEM 5

Mastering these challenges is supported by classical linguistic knowledge sources,
which are extended and adapted in some crucial places for our purposes. Grammar
rules may contain places for mathematical expressions of different types, including
some examples of linguistic structures with gaps that can be filled by mathemat-
ical expressions. Such a construct may be essential to cope with specific cases of
intertwinedness, particularly in connection with some operators, such as negation.
The a priori categorization of input components into formulas and pieces of natural
language text, as well as segmentation into individual assertions, a quite critical de-
cision, is done on the basis of some relatively simple heuristics - hence, limitations
in these heuristics are an obvious source of interpretation failures. The meaningful
interpretation of vague and incomplete descriptions is handled by a repertoire of spe-
cialized entries in the semantic lexicon, which allow filling gaps in expressions, such
as interpreting domain-specific metonymic relations.

A final and crucial task in natural language analysis is the ultimate interpretation
of the representations oriented on natural language in terms of representations used
for domain reasoning, which differ in some crucial factors among one another. In order
to accomplish this task, we have built a representation that constitutes an enhanced
mirror of the domain representations. It serves as an intermediate representation
between the domain and linguistic models. Measures in this mapping comprise the
interpretation of vague and sloppy natural language expressions in terms of exact
mathematical concepts, where ambiguities can sometimes be resolved by semantic
role restrictions.

4. Tutoring Knowledge

Tutorial goals in teaching mathematical theorem proving are two-fold: teaching
problem-solving methods is the essential target of tutoring, while techniques for build-
ing correct formal expressions constitute a somehow subordinate goal. Reconciling
these two complementary tutorial goals is quite challenging, since pursuing one of
them can in some cases interfer with pursuing the other. We support these goals by
dedicated representations of knowledge. In order to address low-level errors, we use
a set of replacement rules which aim at curing formal flaws in otherwise reasonable
specifications of problem solving steps, such as confusing two operators or omitting
parentheses. Here, tutoring knowledge interacts with natural language analysis.

In order to address teaching problem-solving methods, a multi-dimensional tax-
onomy of hint categories, varying in degrees of precision and content, has been de-
veloped. This taxonomy encompasses a variety of contextual factors, such as the
number of trials already made by the student and degrees to which the necessary
elements of the inference step addressed are also covered. Here, tutoring knowledge
interacts with problem-solving knowledge. This interaction comprises the evaluation
of proof-relevant parts of the utterances with respect to completeness, correctness,
and relevance, where correct proof steps may not necessarily be relevant in that they
do not contribute to the progress in finding the proof solution. This categorization is
an integral part of our tutorial strategies.

6 HELMUT HORACEK(1)

5. Assessment

The techniques descibed have been developed and evaluated on the basis of two
corpora of tutoring dialogs obtained through Wizard-of-Oz experiments. Our methods
can mimic the behavior of the human tutors in these experiments in essential elements
for some portions of the tutoring dialogs. As expected, a variety of limitations became
apparent as well. They include

• low-level student errors whose repair is more involved than what our replace-
ment rules can explain,

• telegraphic natural language expressions which are beyond the state-of-the-
art of syntactic semantic interpretation, frequently caused by the notorious
absence of segmentation markers in student utterances,

• free mixture of dialog functions, including unexpected topic changes,
• the need for a larger variety of tutoring strategies, which to some extext

are limited by missing meta-knowledge about the domain itself and about
problem solving techniques.

Altogether, our investigastions have illustrated the capabilities and the potential
of natural language processing and reasoning methods for intelligent tutoring pur-
poses, which have been extended in some essential ways. However, we have also found
a number of quite principled limitations, which are likely to influence the design of in-
terfaces for these kind of systems in the near future. The most serious drawback of our
approach in comparison to traditional architectures of intelligent tutoring systems lies
in the difficulty to build authoring tools. In existing systems, they typically comprise
scripts of some sort, which are driven by surface-oriented specifications, so that do-
main experts who are not familiar with computational approaches can populate these
scripts. In our approach with distinct knowledge sources, filling these representations
appropriately requires considerable degree of computational capabilities.

(1) German Research Center for AI and Saarland University F.R. 6.2. Computer
Science, P.O.Box 1150 D-66041 Saarbrcken, Germany

E-mail address: horacek@cs.uni-sb.de

KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2009
Cluj-Napoca (Romania), July 2–4, 2009, pp. 7–16

MODELING SEMANTIC KNOWLEDGE IN ERLANG
FOR REFACTORING

ZOLTÁN HORVÁTH(1), LÁSZLÓ LÖVEI(1), TAMÁS KOZSIK(1), RÓBERT KITLEI(1),

ANIKÓ NAGYNÉ VÍG(1), TAMÁS NAGY(1), MELINDA TÓTH(1), AND ROLAND KIRÁLY(1)

Abstract. RefactorErl is a refactoring tool for the Erlang programming lan-
guage. Refactorings have to collect many kinds of information that appear scat-

tered in the source code. Therefore, when designing a refactoring tool, the most

important concern is how the program is represented so that the many layers of
intertwined information can be accessed conveniently. Such information strongly

depends on the language, therefore we have opted to develop a language specific

model for Erlang. This model encompasses the expert knowledge necessary for
refactoring Erlang programs by describing the connections between the diverse

pieces of information.

1. Introduction

During a large portion of the life cycle of software, after the code has reached
maturity, maintenance and improvement become prevalent. In this phase, it often
becomes evident that the structure of the already produced code is not fit for the
needs of further development. Thus, in order to proceed, changes have to be made.
These changes may or may not involve difficult questions to consider, but most of
the time they are tedious and error-prone to perform by hand. For example, in the
case of renaming a variable, all of the instances of the variable have to be identified
(considering shadowing), and then all of these instances have to be renamed.

Refactoring [6, 7] means changing the program code without changing what the
code does. Tool support for performing refactoring is available for many object-
oriented programming languages, and for some functional ones as well [9, 20]. Refac-
toring tools not only automate systematic transformations of programs, but also en-
sure that the semantics of the refactored programs are preserved. For this reason, the
refactoring tool will analyse the structure of the refactored program (based on the
syntactic rules of the underlying programming language), and it will also collect and
use static semantical information about the program.

The paper is structured as follows. In Section 2, RefactorErl, our refactoring
tool for Erlang, is briefly described. Some of the transformations implemented in the

2000 Mathematics Subject Classification. 68N15, 68N30.
Key words and phrases. Erlang, refactoring.
Supported by Ericsson Hungary and ELTE IKKK..

c©2009 Babeş-Bolyai University, Cluj-Napoca

7

8 Z. HORVÁTH ET AL.

tool are presented in the course of an example. Section 3 introduces the way the
tool acquires and stores information about the program code. Section 4 describes the
extent of knowledge that is represented in the tool. Finally, Section 5 concludes the
paper.

2. RefactorErl

RefactorErl is a tool that is developed for refactoring programs written in Erlang,
both simple ones and large-scale telecom applications. The tool makes use of a gram-
mar description based on an XML description, and specific knowledge of Erlang’s
semantics that provides the necessary information for refactoring.

The tool currently supports 15 refactorings. These refactorings are the following:

• Expand fun expression,
• Merge expression duplicates,
• Eliminate variable,
• Inline function,
• Extract function,
• Generalise function,
• Reorder function parameters,
• Tuple function parameters,
• Move function between modules,
• Move record between modules,
• Rename function,
• Rename variable,
• Rename module,
• Rename record and
• Rename record field.

Our refactoring tool has gone through serious modifications since its first proto-
type implementation. As we have gathered more knowledge about the requirements
and possibilities of refactoring, we have redesigned the representation of Erlang pro-
grams inside RefactorErl. With this redesign, the refactorings have been much easier
to implement than in the previous versions.

2.1. Language specific model. Besides a general, language-independent refactor-
ing software infrastructure [3, 4, 21, 23], a language specific model supporting refac-
toring concepts proved to be useful. Based on that model a model-driven architecture
can be developed. In order to guarantee consistency and to avoid ad-hoc and conflict-
ing solutions, all the components of the refactoring tool (i.e. the parser, the semantic
analyser, the code generator, the construction utilities for insertion and replacement
of code parts, and the source code formatter) are either generated from, or controlled
by, the same model. This is a declarative approach which maintains the refactoring-
specific lexical, syntactical and static semantical rules of the investigated language
as data. Modifying these data should result in the (as far as possible) automatic
adaptation of the code of all the components of the refactoring tool.

MODELING SEMANTIC KNOWLEDGE IN ERLANG FOR REFACTORING 9

-define(START, 1).

Figure 1. global.hrl

-module(demo).

-export([sum_n/1]).

-include("global.hrl").

sum([]) ->

0;

sum([H|T]) ->

H + sum(T).

sum_n(N) ->

Lst = lists:seq(?START, N),

sum(Lst).

→

-module(demo).

-export([sum_n/1]).

-include("global.hrl").

sum([]) ->

0;

sum([H|T]) ->

S = sum(T),

H + S.

sum_n(N) ->

Lst = lists:seq(?START, N),

sum(Lst).

→

Figure 2. Merging sum(T).

For example, our tool represents the model as an XML-document containing in-
formation about the lexical and syntactical rules of Erlang together with instructions
for creating the internal representation of programs. This format was chosen be-
cause it is easy to maintain, should the language definition change. Furthermore, it
can be handled easily with XMErl [26], a standard Erlang tool for traversing XML
documents, and it can be easily transformed with e.g. XSLT tools.

2.2. A detailed example. The left side of Figure 2 shows a module that con-
tains a function sum_n/1 to sum numbers from an initial value (?START, defined
in global.hrl, see Figure 1) to the argument N. This function creates a list that
contains the values to be summed, then calls sum/2, which sums the elements of a
list.

sum([]) ->

0;

sum([H|T]) ->

S = sum(T),

H + S.

sum_n(N) ->

sum((lists:seq(?START, N))).

→

sum([], Z) ->

Z;

sum([H|T], Z) ->

S = sum(T, Z),

H + S.

sum_n(N) ->

sum((lists:seq(?START, N)), 0).

→

Figure 3. Inlined Lst, generalising over zero.

10 Z. HORVÁTH ET AL.

sum([], Z) ->

Z;

sum([H|T], Z) ->

S = sum(T, Z),

plus(H, S).

plus(H, S) ->

H + S.

sum_n(N) ->

sum((lists:seq(?START, N)), 0).

→

sum([], Z, _Op) ->

Z;

sum([H|T], Z, Op) ->

S = sum(T, Z, Op),

Op(H, S).

plus(H, S) -> H + S.

sum_n(N) ->

sum((lists:seq(?START, N)), 0,

fun(H,S) -> plus(H, S) end).

→

Figure 4. Function plus extracted, generalising over Op.

sum([], _Op, Z) ->

Z;

sum([H|T], Op, Z) ->

S = sum(T, Op, Z),

Op(H, S).

plus(H, S) -> H + S.

sum_n(N) ->

sum((lists:seq(?START, N)),

fun(H,S) -> H + S end,

0).

→

sum([], _Op, Z) ->

Z;

sum([H|T], Op, Z) ->

S = sum(T, Op, Z),

Op(H, S).

plus(H, S) -> H + S.

sum_n(N) ->

sum((lists:seq(?START, N)),

fun(H,S) -> H + S end,

0).

→

Figure 5. Inlined plus, reordering the parameters of sum.

Let us first use the RefactorErl tool to extract the call to sum(T) in the sec-
ond clause of sum/1 to be bound by a new variable S. This can be done using the
transformation Merge Expression Duplicates; the transformation actually merges all
instances of the selected expression. The result of the transformation can be seen on
the right side of Figure 2.

Next, let us eliminate the variable Lst. The result of the transformation can be
seen on the left side of Figure 3. The place where the variable was applied, the first
argument of the function sum/1 in the body of function sum_n/1, has been changed,
and the variable binding Lst = lists:seq(?START, N) has disappeared. Note that
the current transformation creates a superfluous pair of parentheses; this will be
improved in a later version of RefactorErl.

From the following examples on, the first three lines of the module are not re-
peated.

In the next step, we generalize the function sum/1 by the expression 0 that can
be found in its first clause. This transformation makes the selected expression a

MODELING SEMANTIC KNOWLEDGE IN ERLANG FOR REFACTORING 11

fold([], _Op, Z) ->

Z;

fold([H|T], Op, Z) ->

S = fold(T, Op, Z),

Op(H, S).

plus(H, S) -> H + S.

sum_n(N) ->

fold((lists:seq(?START, N)),

fun(H,S) -> H + S end,

0).

Figure 6. Renamed sum to fold.

parameter of the function, and all function applications that call this function will
have the selected expression inlined. The result of the transformation can be seen on
the right side of Figure 3.

Let us continue by extracting the expression H+S to a new function plus/2. Only
the name of the new function has to be given; the refactoring detects the free variables
in the selection. The left side of Figure 4 shows the module after the extraction.

Let us generalize the sum/2 function once more along the application of the newly
generated plus/2 function. This makes the function sum/2 gain one more argument
becoming sum/3. At the place of the function application, we have to pass the ap-
propriate function; since the selection along which the generalization takes place may
contain a more complex expression than a function call, the expression wrapped in
a closure is passed. In a future version of this refactoring, the simpler fun plus/2
expression may be used in this place. In the first clause of sum/3, Op is not used,
therefore we write _Op to avoid compiler warnings.

As the next step (seen on the left side of Figure 5), we inline the body of the
recently created fun expression in order to simplify the expression. This transforma-
tion replaces the function application with the body of the function. It is very useful
if the function has only one clause, preferably with a simple body; in more complex
cases, where the function contains more clauses, the transformation is still possible,
but the resulting expression is harder to read.

Let us change the order of the last two parameters of sum/3. This transformation
has to change the order in all clauses of the function definition, as well as all function
applications.

As the final step our example, we notice that the function sum/3 has indeed
become more general, therefore we rename it to fold/3. The result of our transfor-
mations can be seen in Figure 6.

12 Z. HORVÁTH ET AL.

3. Knowledge representation

RefactorErl represents an Erlang program as a “program graph”: a directed,
rooted graph with typed nodes and edges. The skeleton of this graph is the abstract
syntax tree of the program. Apart from syntactical information, the graph contains
lexical and semantical information as well. These latter kinds of information are
provided as additional nodes and edges in the graph. For example, each function
in the program is represented as a semantic node in the graph; the definition of
the function and all the calls to the function are linked to this semantic node with
semantic edges. The maintenance of semantic information is useful for boosting side
condition checking. Usually, the hardest part of refactoring is not the application of
the requested transformation, but the evaluation of the conditions that are required to
hold for the refactoring to be safe. These conditions often depend on a large amount
of semantical information – which can be efficiently picked out from the program
graph. Apparently, the stored semantical information, similarly to the AST, must be
updated when a transformation is applied.

Lexical information, such as the tokens produced by the scanner, is also essential.
Even information about the whitespace separating the tokens must be kept available
so that the refactoring tool can preserve the layout of the refactored program.

The kinds of semantic information to be gathered and maintained by the refac-
toring tool depend on the transformations the tool supports. The RefactorErl tool
is designed to be open-ended: it should be possible to implement a new refactoring
with the relevant semantical analysis and add them to the refactoring framework. To
achieve this goal, the semantical analyses are organized into independent modules,
and result in independent sets of semantic nodes and edges in the program graph.
Examples of semantic analysis modules are analysing scopes, analysing function def-
initions and calls, or analysing variable bindings. Also, new semantic analyses are
easy to add to the system. One such planned but not already realised analysis col-
lects connections between variables along the data flow.

Interestingly, the concept of using a program graph in order to represent seman-
tic knowledge about source code is not bound to any specific programming language.
Therefore, we have created a language independent framework for building and main-
taining a program graph. Within this framework, we have implemented an Erlang
specific model that reflects the semantics of this language, see Figure 7. The services
of the framework enable the development of important components in the Erlang spe-
cific model such as the semantic analysis modules and the layout preserving parser.

RefactorErl also includes a query language, similar to XPath [25], for retrieving
information from the program graph. Links of the graph can be traversed forwards
and backwards, and filtering by semantical information is also supported.

To optimize the shape of the program graph for fast information retrieval, the
syntax of the language is reflected in the tool at two levels of abstraction. In the
more abstract view there are four syntactical categories: files, forms, clauses and ex-
pressions. Files (including header files) contain forms. Forms can be, among others,
function definitions, which are made up of one or more clauses (clauses are basic
building blocks of several compound expressions as well, such as case-expressions).

MODELING SEMANTIC KNOWLEDGE IN ERLANG FOR REFACTORING 13

Figure 7. Scanning, preprocessing and parsing in RefactorErl

The right-hand side of a clause is a sequence of expressions (and the left-hand side
of a clause contains further expressions such as patterns and guards). The rich syn-
tactical structure of Erlang (reflected in the close to fifty rules of the grammar) can
be abstracted into these four kinds of graph nodes. Many details of the syntax are
encoded in the types of the graph edges, forming the less abstract syntactic view of
the language.

The low number of types of syntax nodes improves efficiency of the queries writ-
ten in the query language. Another important source of efficiency is that chains
of applications of the same production rule are not represented by an unbalanced
tree, but rather by a single graph node, which collects all of the syntax edges of the
productions, retaining the order of the edges.

In order to improve the reusability of the refactoring infrastructure, one could
design the model of the refactored programs as general and language-independent
as possible. Our experience in refactoring Clean [20] and Erlang did not foster this
approach. Even in these two functional languages, the syntactic and semantic differ-
ences are so significant that it is not worth to introduce a common model, not even
with language-specific extensions (like in [21]). Our approach is to keep the focus of
the tool on a single language, and achieve a level of precision and efficiency that is
sufficient to make the tool applicable in practice.

4. The scope of knowledge representable in the model

Some features of the Erlang language are advantageous for refactoring: side effects
are restricted to message passing and built-in functions, variables are assigned a value
only once in their lifetime, and code is organised into modules with explicit interface

14 Z. HORVÁTH ET AL.

definitions and static export and import lists. There are, however, some features that
are disadvantageous for refactoring, e.g. the possibility to run dynamically constructed
code, and the lack of programmer defined types. For a more detailed analysis see [8].

Refactorings, by definition, should preserve semantics. Unfortunately, it is prac-
tically impossible to guarantee this in the case of a language supporting reflection.
Worse still, industrial Erlang code makes use of such facilities very frequently. On the
one hand, if we design a conservative refactoring tool that always refuses to perform
transformations which might alter the meaning of the refactored program, we might
end up with a tool that, albeit perfectly safe, is completely useless in practice. On
the other hand, a tool offering insufficient support for the preservation of semantics
will never be used in practice: nobody will ever dare to refactor large programs with
it. A good refactoring tool will be sufficiently safe, but not too restrictive. To achieve
this, the decision mechanism in the tool should be customizable and/or interactive.

Since in general it is not possible to completely determine the meaning of an
Erlang program by static analysis, a refactoring tool might decide to compensate for
otherwise unsafe transformations. Inserting dynamic checks into the refactored pro-
grams often helps to bring a refactoring into effect depending on run-time information.
Consider the following example. In Erlang, it is possible to construct a function call
by computing the name of the function to be called and the actual arguments, and
passing them to the built-in function apply. There are various ways of computation
that are very hard to analyse by only examining the source code. It is possible to
receive the function name through message passing, which requires data flow analysis
in most of the cases to trace the origination. It is possible to have the user input the
name of the module to be called.

Still another example, used in real life, is to store the names of the modules in a
database and retrieve them from there. Let us suppose that the functions store_mod,
store_fun, and store_args store the the name of a module, the name of a function,
and arguments respectively into a database. Furthermore, let the functions read_mod,
read_fun, and read_args retrieve the said information from the database. Then the
code fragment on the left will apply m:f/2 (that is, the binary function f from module
m) on the actual arguments 1 and 2. A refactoring tool has no chance to find out
by static analysis that m:f/2 is executed here. The only way to preserve program
behaviour when refactoring m:f/2, for example by swapping its arguments, is to insert
dynamic checks. The previous call to apply/3 could be replaced with the expression
shown on the right-hand side of Figure 8, assuming that M, F, A, A1, and A2 are fresh
variables.

5. Conclusions

In this paper, we have presented a tool for refactoring Erlang programs called
RefactorErl. RefactorErl collects, stores and maintains lexical, syntactical and se-
mantic information about Erlang source code. The tool is based on domain specific
expert knowledge about semantics preserving program transformations, while im-
proving the quality of the software product in the most common cases at the same
time.

MODELING SEMANTIC KNOWLEDGE IN ERLANG FOR REFACTORING 15

store_mod(m),

store_fun(f),

store_args([1, 2]),

...

apply(read_mod()

, read_fun()

, read_args()

)

→

store_mod(m),

store_fun(f),

store_args([1, 2]),

...

M = read_mod(),

F = read_fun(),

A = read_args(),

case {M,F,A} of

{m,f,[A1, A2]} -> m:f(A2, A1);

_ -> apply(M,F,A)

end

Figure 8. Compensation for swapping the arguments of the func-
tion m:f/2.

We have developed a language dependent model for Erlang that serves as the
basis of the tool: the model contains the semantic analyses and the semantics based
program transformations. It is reasonable to refine this model step-by-step to reach
the desired level of syntactic and semantical coverage; also, the model has to be
flexible enough to follow changes in the language definition. We also have developed
a language independent framework in which the model has been implemented. The
framework enables us to produce and manipulate a program graph based on the
lexical, syntactic and semantic information about the source code.

References

[1] Barklund, J., Virding, R., Erlang Reference Manual, 1999.

Available from http://www.erlang.org/download/erl spec47.ps.gz.

[2] Brett D., et al., Automated Testing of Refactoring Engines, In Proc. of the the 6th joint meeting
of the European software engineering conference, pages 185-194, Dubrovnik, Croatia, 2007.

[3] Charles, P., Fuhrer, R.M., and Sutton, Jr., S., M., IMP: a meta-tooling platform for creating

language-specific IDEs in Eclipse, In Proc. of the 22nd IEEE/ACM International Conference
on Automated Software Engineering, pages 485-488, Atlanta, Georgia, USA, 2007.

[4] Ducasse, S., Gı̂rba, T., and Nierstrasz, O., Moose: an Agile Reengineering Environment In
Proceedings of ESEC/FSE 2005, September 2005, pages 99-102.

[5] Eötvös Loránd University, Refactoring Erlang Programs (project homepage).

http://plc.inf.elte.hu/erlang/

[6] Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D., Refactoring: Improving the

Design of Existing Code., Addison-Wesley, 1999.

[7] Fowler, M., Refactoring Home Page. http://www.refactoring.com/.
[8] Kozsik, T., Csörnyei, Z., Horváth, Z., Király, R., Kitlei, R., Lövei, L., Nagy, T., Tóth, M., Vı́g,

A., Use Cases for Refactoring Erlang Programs. To appear in Central European Functional
Programming School, Revised Selected Lectures, Springer LNCS series.

[9] Li, H., Reinke, C., and Thompson, S. J., Tool support for refactoring functional programs. In

Proceedings of the ACM SIGPLAN workshop on Haskell, Uppsala, Sweden, pages 27–38, 2003.

[10] Li, H., Thompson, S.J., Lövei, L., Horváth, Z., Kozsik, T., Vı́g, A., and T. Nagy, T., Refactor-
ing Erlang Programs. In Proceedings of the 12th International Erlang/OTP User Conference,

November 2006.

16 Z. HORVÁTH ET AL.

[11] Li, H., Thompson, S.J., Testing Erlang Refactorings with QuickCheck. In Proc. of the 19th In-
ternational Symposium on Implementation and Application of Functional Languages, IFL2007,

Freiburg, Germany, Septemper 2007.

[12] Lövei, L., Horváth, Z., Kozsik, T., Király, R., Vı́g, A., and Nagy, T., Refactoring in Erlang,
a Dynamic Functional Language., In Proceedings of the 1st Workshop on Refactoring Tools,

pages 45-46, Berlin, Germany, July 2007.

[13] Lövei, L., Horváth, Z., Kozsik, T., Király, R., Introducing records by refactoring. In Proceedings
of the 2007 ACM SIGPLAN Erlang Workshop, pages 18-28. ACM Press, 2007.

[14] Lövei, L., Horváth, Z., Kozsik, T., Király, R., and Kitlei, R., Static rules of variable scoping in

Erlang, In Proceedings of the 7th International Conference on Applied Informatics, volume 2,
pages 137-145. 2008.

[15] Mitchell, B.,S., A heuristic search approach to solving the software clustering problem, PhD
thesis, Drexel University, Philadelphia, PA, USA, 2002.

[16] Nyström, S., A soft-typing system for Erlang, Proceedings of the 2003 ACM SIGPLAN workshop

on Erlang, pp. 56-71, Uppsala, Sweden, 2003.
[17] Robbes, R., Lanza, M., The ”Extract Refactoring” Refactoring, In Proceedings of WRT 2007

(1st International Workshop on Refactoring Tools), pp. 29 - 30, Berlin, Germany, 2007.

[18] Roberts, D.: Practical Analysis for Refactoring, PhD thesis, University of Illinois at Urbana
Champaign, 1999.

[19] Roberts, D., Brant, J., and Johnson, R., A Refactoring Tool for Smalltalk, Theory and Practice

of Object Systems. V3 N4, October 1997.
[20] Szabó-Nacsa, R., Diviánszky, P., and Horváth, Z., Prototype environment for refactoring Clean

programs., In The Fourth Conference of PhD Students in Computer Science (CSCS 2004),

Szeged, Hungary, July 1–4, 2004. Full paper is available at http://aszt.inf.elte.hu/~fun ver/

(10 pages).

[21] Tichelaar, S., Ducasse, S., Demeyer, S., and Nierstrasz, O., A Meta-model for Language-
Independent Refactoring, Proceedings of International Symposium on Principles of Software

Evolution (ISPSE ’00), IEEE Computer Society Press, 2000, pp. 157-167, Kanazawa, Japan,

November 2000.
[22] Vinju, J.J.: Uptr: a simple parse tree representation format, In Software Transformation Sys-

tems Workshop, October 2006.

[23] Vinju, J.J, Analysis and Transformation of Source Code by Parsing and Rewriting, PhD thesis,
November 2005.

[24] Wloka, J., Hirschfeld, R., and Hänsel, J., Tool-supported Refactoring of Aspect-oriented Pro-
grams, In Proceedings of the Conference on Aspect-oriented Software Development (AOSD),

pages 132-143, Brussels, Belgium, March 31 - April 4, 2008.

[25] World Wide Web Consortium: XML Path Language (XPath) Version 1.0. W3C Recommenda-
tion, Nov. 16, 1999, http://www.w3.org/TR/xpath.html

[26] Wiger, U., XMErl – Interfacing XML and Erlang, In the Sixth International Erlang/OTP User

Conference (EUC 2000), Stockholm, Sweden, October 3, 2000.
http://www.erlang.se/euc/00/xmerl.ppt

(1) Department of Programming Languages and Compilers, Eötvös Loránd University,
Budapest, Hungary

KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2009
Cluj-Napoca (Romania), July 2–4, 2009, pp. 17–25

AN OVERVIEW OF DISTRIBUTED USAGE CONTROL
– EXTENDED ABSTRACT –

ALEXANDER PRETSCHNER

Abstract. Usage control generalizes access control to what happens to data in
the future (“delete after thirty days,” “do not copy,” “notify owner upon ac-
cess.”) Distributed usage control is about defining and enforcing usage control
requirements on data after giving it away. It is relevant in the areas of data pro-
tection, the management of intellectual property, the management of secrets, and
compliance with regulations. In this extended abstract, we provide an overview
of the field. We introduce fundamental concepts, requirements, policy specifi-
cations, policy analyses, dissemination models, the enforcement of usage control
requirements at different levels of abstraction, and the challenges ahead.

1. Introduction

Ever increasing amounts of digital data require procedures and mechanisms for
secured access to and usage of that data. Because we live in an interconnected world,
this problem not only extends to the original provider of a data item, but also to
all those parties who have, transitively, received a—possibly modified—copy of this
data item. The subject of usage control [13, 6] is the definition and enforcement of
access control requirements that relate to actions and state information before data
is released, and also to usage control requirements that relate to actions and state
information after the data is released. We distinguish between two kinds of require-
ments, provisions that reflect access control requirements, and obligations that reflect
requirements on the future usage [6]. Usage control requirements include permissions
(“song may be played at most twice,” “document must not be printed,” “financial
statements must be retained for at least five years”) and duties (“data owner must be
notified upon each access,” “song must be paid for after listening five times,” “data
must be deleted after thirty days”). While both kinds of requirements are stipulated
in usage control policies, we will only be concerned with obligations in this extended
abstract.

1.1. Relevance. Usage control is relevant in at least the areas of privacy, the man-
agement of intellectual property, the management of secrets, and compliance with
regulations. In terms of privacy, users may want, among other things, their medical

Key words and phrases. Access Control, Usage Control, Enforcement, Policies, Trust.
This work was supported by the FhG Internal Programs under Grant No. Attract 692166 as well

as by the EU under the project FP7-IST-IP-MASTER.

c©2009 Babeş-Bolyai University, Cluj-Napoca

17

18 ALEXANDER PRETSCHNER

information, loyalty card records, telecommunication connection records, and banking
information to be kept under wraps (sometimes they may not, as the current immense
popularity of largely unprotected social network sites shows). At least in Europe, in
addition to EU-wide legal requirements, current developments clearly indicate a po-
tential or actual political fallout when large sets of citizen or customer data become
available.

In terms of intellectual property, business processes are increasingly implemented
in a distributed manner, fueled by an increasing trend to outsourcing. To create
added value, this requires the exchange of usually confidential information, including
blueprints, results of experiments, and the like. Companies may have an interest that
such data is solely used according to their expectations. As far as digital rights man-
agement is concerned, artists may be granted a vested interest in receiving royalties
for their artwork.

In terms of secrets, most administrations, state departments, intelligence agencies
and the military may want to have control over how specific information is dissemi-
nated.

Finally, usage control is becoming increasingly mandatory. Regulations such as
the EU directive 95/46/EC require data to be collected and used according to a spec-
ified purpose; the Sarbanes-Oxley Act (SOX) requires specific data to be retained for
five years; and the US Health Insurance Portability and Accountability Act (HIPAA)
stipulates strict documentation requirements on the dissemination of data [9].

1.2. Big Picture. We assume the following scenario. A consumer wants to get
access to data. To do so, negotiations on the terms and conditions of usage take place
with the provider. The negotiations result in a policy that encodes rights and duties
related to the data item and that reflects regulations, non-disclosure agreements, or
any legally binding contract. After checking if the consumer can enforce the policy,
the provider sends both data and policy to the consumer. In order to prevent simply
throwing away the policy, this is likely to involve some encryption mechanism. At the
consumer’s side, the data is stored so that only well-specified enforcement mechanisms
can access it. This, again, is done by cryptographic means; such ideas are currently
implemented at different levels of abstraction, including the operating system where
so-called data caging takes place. The mechanisms are configured by the policy.
Consumers attempt to use (render, process, execute, disseminate) the data. The
enforcement mechanisms then either check if this is allowed, by turning the attempted
usage into an actual usage, or if a policy violation has occurred, report the violation.

1.3. Overview. Challenges related to usage control roughly encompass the specifica-
tion of requirements, including their evolution upon dissemination; the enforcement of
respective policies; and the assessment of how easily these enforcement mechanisms
can be circumvented. These issues are considered in the remainder of this paper,
mostly from the perspective of our own work, which is explained by the very nature
of this article.

AN OVERVIEW OF DISTRIBUTED USAGE CONTROL 19

2. Requirements, Policies, Analysis, and Evolution

Usage control requirements can be classified into permissions and duties. Both
kinds usually specify conditions in which data may be used or in which actions need
to be taken. Conditions relate to time (“within thirty days”), cardinality (“copy at
most three times”), purpose (“personal use only”), events (“upon access”), and both
the technical (“Windows RMS must be installed”) and organizational (“virus scanner
databases need to be updated every week”) environments [7, 16].

Many policy specification languages have been defined (including [1, 4, 24, 23, 7]),
a few of them also with formal semantics.1 This formal semantics, by its very nature,
however is restricted to the aspects that are captured by temporal, modal, and first-
order logics. Propositions (“print,” “copy,” “delete”) are, essentially because of their
high level of abstraction, much harder to define precisely.

In current languages, policies are mostly specified in terms of events (“play,”
“copy,” “delete”). For well-specified rendering devices in a DRM context that make
use of a standardized ontology, this is often sufficient. However, as we will see, usage
control requirements can be enforced at different levels of the software stack. One
level includes the operating system; relevant events are then system calls. Exhaus-
tively defining the notion of “deletion” in terms of sequences of system calls (unlink,
mv to a null device, overwrite, ...) seems like a Sisyphean endeavor. One possible
remedy is to track data flow through the system, and encoding as abstract state the
(overapproximated) mapping from data containers to data items. Deletion in state-
based terms means that in a given state, no container may contain the data item.
Similarly, prohibiting dissemination can be expressed by stating that the a data item
is in at most one data container.

It is useful to distinguish between three kinds of policies. Specification policies
declaratively state what should be the case (“no non-anonymized data must leave the
system”). The decision of how to enforce a policy—by modification, inhibition, or
execution—is done in implementation policies. The example policy can be enforced in
at least two ways: by modifying the data record’s name, birthdate, and address fields
into blanks; and by simply blocking all data packets which are not anonymized in the
sense that their name, birthdate, and address fields are not blanks (which of course is a
very rough definition of anonymization). Implementation policies usually come in the
form of classical operational Event-Condition-Action rules, where the condition must
be specified over the present and the past rather than the future (otherwise it could
not be checked). Finally, configuration policies are rights objects that can directly
be understood by implementations of enforcement mechanisms. In model-driven en-
gineering terms, configuration policies are platform-specific while specification and
implementation policies are platform-independent.

At the abstract level, checking if an implementation policy makes sure that a
specification policy is fulfilled amounts to checking entailment of logical formulae.
Respective reasoning technology can also be used to assess the consistency or sub-
sumption relationships between policies [19].

1Note that we tacitly assume policies to be data-centric rather than server-centric; this is not a
conceptually fundamental distinction, however.

20 ALEXANDER PRETSCHNER

When data is disseminated, some policy will have to be associated with it as well.
In some sense, this policy should at most be a “strengthened” version of the original
policy—otherwise, a subject could send the data item to itself, together with a relaxed
policy that allows everything and requires nothing. Strengthening permissions can be
done by restricting them; strengthening duties should then, dually, mean that they are
increased. By ordering events in lattices and specifying lower and upper bounds for
both permissions and duties, one can uniformly express the strengthening of policies
as a combination of logical entailment and interval reduction [20, 19].

Widely applicable usage control frameworks must cater to the problem of policy
management as well, including overwriting and revoking policies as well as handling
conflicting policies.

3. Enforcement

The fundamental problem of enforcing usage control requirements is that a data
provider usually has no control over nor inspection into the IT infrastructure of a
data consumer (note that the roles dynamically change upon re-distribution of data).
In order to prevent simple interceptions or retrievals of sensitive data, data must
be stored and transmitted in encrypted form. Moreover, at the consumers’ side,
tamper-proof and trustworthy monitoring and control devices must be in place. These
devices can come as special rendering software (such as the Adobe Acrobat Reader
in conjunction with the respective rights management system), or as add-ons to a
system, similar to malware intrusion detection systems.

3.1. Reactive and Preventive Enforcement. One way of enforcing usage control
requirements is by observation, or reactive. Provided that adherence to policies can
be monitored, one can at least detect the violation of a policy and react by undoing
the violating action, by penalizing the wrong-doer, or by performing compensating
actions. This is similar to how human law enforcement works [14].

Another way of enforcing respective properties is by control, or preventive. The
goal here is to prevent a policy violation from happening. Rather than observing
events post factum, one must usually observe requests, anticipate the events that
would be a consequence of these requests, and then either inhibit the request, modify
it, or execute some action. For instance, a policy “no non-anonymized data may leave
the system unnoticed” can be enforced by dropping the request that asks for a non-
anonymized data item (inhibition); by anonymizing the data item (modification); or
by logging the event that the data item was released (execution) [17, 16]. Whether
a reactive or a preventive enforcement strategy is to be chosen cannot be decided in
general; this depends on the trust relationship of provider and consumer, and also the
value of the data items that are exchanged [18].

Particularly enforcement by control can quickly become impossible. This is often
the case when media breaks occur. Once a song is played, i.e., transformed into sound
waves and has thus left the scope of a controlled (the boundaries of which need to
be defined), one can externally record and replay it. Similarly, a document can be
printed or photographed from a screen, thus rendering most control devices useless.
Watermarking schemes have been developed for these situations. Their purpose is to

AN OVERVIEW OF DISTRIBUTED USAGE CONTROL 21

subject such data to the possibility of more or less random observation mechanisms,
and hoping that non-rightful possessors of data will be deterred.

On the other hand, enforcement by control may turn out to be too intrusive. If
usage control is applied to Java API calls, for instance, then one can of course block
calls that are considered sensitive, e.g., calls to text message APIs in mobile phones.
However, unless the original system is programmed defensively and always anticipates
the potential failure of a method invocation, this is likely to lead to a crash—many
exceptions tend to be caught only at the bottom-most stack frame. This problem turns
out to be particularly challenging in asynchronous communication infrastructures such
as service-oriented architectures.

In any case, there never is complete security in life or it would be too restrictive
or too expensive anyway. We believe that increasing the barriers for accessing and
using data in non-permitted ways is sufficient in a large majority of cases. Security
in the sense of usage control must be subject to risk analysis, and we believe in the
idea of just-right-security, similar to the analogous concept of just-right-reliability [12].
Needless to say, we are of course aware that any solution is most likely to encompass
both technical and organizational means.

3.2. Signaling, Monitoring, and Enforcement proper. We have alluded above
that enforcement mechanisms can abstractly be perceived as sets of Event-Condition-
Action rules. Conditions relate to the current state of the system (which in many cases
encodes past events); events are triggers; and actions define whether or not an event is
inhibited (which requires the distinction into requests and actual actions), modified,
delayed, or if another action is to be executed. From an architecture perspective, this
necessitates three components: signalers that make events visible so that a monitor
can check if the condition is true, and enforcement components that perform the
respective action. Consider a policy that requires a movie to be played at most three
times before it is paid for. A signaler must provide information on payments and
whether the movie is played or attempted to be played; a monitor must count the
number of times the movie is played; and the enforcer must then issue a payment or
block the attempt to play the movie. Note that these components can but need not
necessarily reside on one single machine [15].

Monitoring can be achieved by many different technologies, including rewriting
logics, state machines that implement policies, and complex event processing tech-
nologies (where it is then usually called aggregation). For signalers, it is likely that
the subsystem that generates events must be instrumented; this is sometimes but not
always the case for monitors.

3.3. Levels of Abstraction. Enforcement, which from now on we understand to in-
clude signaling and monitoring, can be implemented at different levels of the software
stack. Consequences include both the universe of discourse of the policy language (for
instance, messages vs. files and natural language terms such as deletion vs. unlink())
and—of course depending on the chosen trust or attacker model—the guarantees

22 ALEXANDER PRETSCHNER

that can be given. It is likely that a combination of several—rather than one single—
enforcement mechanisms at different levels will be necessary to provide guarantees
(e.g., dissemination requirements relate to both files and screenshots).

The lowest level at which software-based usage control can be applied is the
CPU/virtual machine: specific calls or references to memory cells can be blocked or
modified. At this level, data flow within an application (or business logic) or between
processes can be controlled or at least monitored. If the content of a file is written to
a specific memory location, for instance, then subsequent reading operations can be
detected.

The next level is the interface to the operating system. At this level, system call
interposition can take place: system calls that access specific files, for instance, can be
monitored and possibly modified or blocked. Re-distribution at a rather rough level
can be controlled: if a process has accessed a file, it is possible to forbid all subsequent
communication with other processes, file systems, networks, etc. This is likely to be
considered an impediment by the users. Examplary base technologies include systrace
[22] for OpenBSD and the Detours framework for Microsoft Windows [8].

At the level of the runtime system, calls to libraries can be monitored, blocked,
and modified. Specific library calls and their parameters for communication can be
prohibited, for instance, which provides a more fine-grained control than prohibiting
all future communication. One example is the Polymer system that modifies Java
byte code on the go [5].

At the level of dedicated application wrappers, applications can be controlled on
the grounds of abstractions that relate to the specific application. As an example,
the UNO framework for OpenOffice allows to control copying text between specific
documents rather than generally prohibiting copy and paste.2

At the level of applications, all kinds of usage control can be implemented. How-
ever, the question arises how the guarantees can be assessed. This is of course simpler
if pre-defined components are installed at the consumer’s side and data is only given
to the client if the respective components are in place.

If we distinguish between end-user applications and infrastructure applications,
such as the X11 server or the window manager, then control can also be exercised at
the level of infrastructure applications. Controlling access to clipboards, for instance,
can also take place at the level of the X11 server. Another example are data base
systems with usage control mechanisms in place [2].

Usage control can also be implemented at the levels of wrappers for services
[9, 3, 18]. The AXIS framework, for instance, allows the definition of handlers that
intercept incoming and outgoing messages. Wrappers can also be written in an ad-hoc
manner and are likely to operate at the level of messages (but need not necessarily,
depending on the implementation).

Finally, usage control that operates on messages can be implemented at the level
of the enterprise service bus. This is the least intrusive yet most vulnerable approach:

2The latter is all that can be expected at the level of the X11 server because the X11 server
knows about windows, possibly mapping them to processes, but not about single documents that
are simultaneously opened by one process.

AN OVERVIEW OF DISTRIBUTED USAGE CONTROL 23

XML tags can simply be compromised. At the level of an orchestration engine for
service-oriented architectures, reactions to a policy violation can be initiated.

Note that in general the step from a lower-layer enforcement framework to a
higher-layer enforcement framework is possible but non-trivial, particularly so if in-
formation flow is to be taken into account. One can monitor both the explicit and
the implicit flow of sensitive data through a Java program. However, if this data is to
be rendered on a screen, an AWT or Swing method will be invoked which will then
call some native routines which, in case of a Unix system, will invoke X11 libraries.
Respective interfaces that help identifying the flow of sensitive data across the levels
must be defined.

3.4. Assurance. Among other things, the above logical architecture requires sig-
nalers to be complete and trustworthy. There must be means to make sure that sig-
nalers are not simply switched off. Monitors must be guaranteed not to miss events,
and they must also be guaranteed to run as long as usage control is, according to
the provider, to be exerted. Finally, the actions executed by a mechanism must be
definitive and not easily overwritten.

Data providers likely want to know if a suitable enforcement framework is in place
at the consumer’s side [17]. Upon negotiation [21] over a data item to be released,
the provider wants to know if the consumer can enforce the requirements as specified
in the policy. At the logical level, this again boils down to an entailment problem
[17]. At the more technical level, we believe that remote attestation on the grounds of
trusted computing technology [3] is a promising candidate technology in this respect.

A further challenge obviously relates to the management of cryptographic keys
that are the prerequisite for avoiding the simple interception and unconstrained usage
of data before it enters the respective enforcement mechanisms.

4. Conclusions

Distributed usage control is about making sure that a data consumer handles
data according to the rules as set forth by the data provider. Without entering the
moral discussion of whether or not this is always desirable, we see usage control as an
indispensable enabler when it comes to data protection or privacy, the management
of intellectual property in distributed business processes, the management of secrets,
and compliance with data-related regulations.

In this article, we have provided a big picture of the field, ranging from the model
world (requirements, policies, analysis problems) to implementations of enforcement
mechanisms that, in addition to fulfilling their functional specifications, must also be
tamper-proof.

There are many open research, engineering and business problems left. Starting
with the latter, it is not entirely clear what adequate business models are, and who
is going to pay for usage control—the idea of usage control as an enabler must also
be translated in business terms. Research problems in particular include problems
related to suitable trust models; policy management schemes in different organiza-
tional settings (enterprises; the Internet); the conceptually clean connection between
different levels of abstraction for enforcement; the difficult problem of de-classification

24 ALEXANDER PRETSCHNER

when information flow is tracked; a better understanding of information flow, includ-
ing quantitative measures [11, 10]; and the question of how we can, qualitatively or
quantitatively, measure the guarantees that a usage controlled system can provide. Fi-
nally, engineering problems relate to efficient signaling, monitoring, and enforcement
technologies at different levels of abstraction, secure key storage, and the question of
how it can be assured that a particular mechanism is in place at the consumer’s side.

5. Acknowledgment

We would like to thank T. Walter and C. Schaefer from DOCOMO Euro-Labs
for many fruitful discussions. D. Hupel, C. Lorini, O. Maschino, M. Radulescu, and
S. Willenbrock commented on an earlier version of this article.

References

[1] Open Digital Rights Language - Version 1.1, August 2002. odrl.net/1.1/ODRL-11.pdf.
[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic databases. In VLDB, pages 143–154,

2002.
[3] B. Agreiter, M. Alam, R. Breu, M. Hafner, A. Pretschner, J. Seifert, and X. Zhang. A Technical

Architecture for Enforcing Usage Control Requirements in Service-Oriented Architectures. In
Proc. ACM workshop on Secure Web Services, pages 18–25, 2007.

[4] M. Backes, B. Pfitzmann, and M. Schunter. A toolkit for managing enterprise privacy policies.
In Proc. ESORICS, LNCS 2808, pages 162–180. 2003.

[5] L. Bauer, J. Ligatti, and D. Walker. Composing Security Policies with Polymer. In Proc. PLDI,
pages 305–314, 2005.

[6] M. Hilty, D. Basin, and A. Pretschner. On obligations. In Proc. ESORICS, Springer LNCS 3679,
pages 98–117, 2005.

[7] M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and T. Walter. A Policy Language for Distributed
Usage Control. In Proc. ESORICS, pages 531–546, 2007.

[8] G. Hunt and D. Brubacher. Detours: Binary Interception of Win32 Functions. In Proc. USENIX
Windows NT Symposium, pages 135–143, 1999.

[9] V. Lotz, E. Pigout, P. Fischer, D. Kossmann, F. Massacci, and A. Pretschner. Towards System-
atic Achievement of Compliance in Service-oriented Architectures: The MASTER approach.
Wirtschaftsinformatik, 50(5):383–391, October 2008.

[10] S. McCamant and M. D. Ernst. Quantitative information flow as network flow capacity. In Proc.
PLDI, pages 193–205, 2008.

[11] C. Mu. Quantitative information flow for security: a survey. Technical Report TR-08-06, De-
partment of Computer Science, King’s College London, September 2008.

[12] J. Musa. Software Reliability Engineering. AuthorHouse, 2004.
[13] J. Park and R. Sandhu. The UCON ABC Usage Control Model. ACM Transactions on Infor-

mation and Systems Security, 7:128–174, 2004.
[14] D. Povey. Optimistic security: a new access control paradigm. In Proc. workshop on new security

paradigms, pages 40–45, 1999.
[15] A. Pretschner, M. Hilty, and D. Basin. Distributed Usage Control. CACM, 49(9):39–44, Sep-

tember 2006.
[16] A. Pretschner, M. Hilty, C. Schaefer, F. Schütz, and T. Walter. Usage Control Enforcement:

Present and Future. IEEE Security and Privacy, 6:44–53, July/August 2008.
[17] A. Pretschner, M. Hilty, C. Schaefer, T. Walter, and D. Basin. Mechanisms for Usage Control.

In Proc. ASIACCS, pages 240–245, 2008.
[18] A. Pretschner, F. Massacci, and M. Hilty. Usage Control in Service-Oriented Architectures. In

Proc. TrustBus, pages 83–93, 2007.

AN OVERVIEW OF DISTRIBUTED USAGE CONTROL 25

[19] A. Pretschner, J. Rüesch, C. Schaefer, and T. Walter. Formal Analyses of Usage Control Policies.
In Proc. AReS, 2009.

[20] A. Pretschner, F. Schütz, C. Schaefer, and T. Walter. Policy evolution in distributed usage
control. In Proc. 4th Intl. Workshop on Security and Trust Management, pages 97–110, 2008.

[21] A. Pretschner and T. Walter. Negotiation of Usage Control Policies—Simply the Best? In Proc.
AReS, pages 1035–1036, 2008.

[22] N. Provos. Improving host security with system call policies. In Proc. SSYM, pages 257–272,
2003.

[23] W3C. The Platform for Privacy Preferences 1.1 (P3P1.1) Specification, 2005.
[24] X. Wang, G. Lao, T. DeMartini, H. Reddy, M. Nguyen, and E. Valenzuela. XrML – eXtensible

rights Markup Language. In ACM workshop on XML security, pages 71–79, 2002.

Fraunhofer IESE and TU Kaiserslautern, Germany
E-mail address: alexander.pretschner@iese.fraunhofer.de

