
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIV, Number 2, 2009

HIERARCHICAL CLUSTERING IN LARGE OBJECT

DATASETS - A STUDY ON COMPLEXITY, QUALITY AND

SCALABILITY

ADRIAN SERGIU DARABANT AND ANCA GOG

Abstract. Object database fragmentation (horizontal fragmentation) deals
with splitting the extension of classes into subsets according to some crite-
ria. The resulting fragments are then used either in distributed database
processing or in parallel data processing in order to spread the computa-
tion power over multiple nodes or to increase data locality features on each
node. In this paper we propose an analysis on the application of hierar-
chical clustering over object datasets (databases). We use a hierarchical
clustering algorithm in order to split the object set into fragments and we
analyze their quality based on data accesses in a distributed system. In or-
der to measure the scalability of the algorithm we apply it consecutively to
a small, medium and large sized database. We also compare the obtained
results with those obtained with other fragmentation algorithms.

1. introduction

Splitting an object database into multiple subsets - usually named frag-
ments - is a process used whenever one needs to distribute computations over a
sets of nodes, each containing a subset of the total object database. Fragmen-
tation is used to improve locality features of datasets, processing parallelism
or a combination of both. The first approach is used when the entire object
set models informations from a real world macro-entity (like an organization)
that has a space distributed architecture (an organization with multiple of-
fices located in different geographical areas). The objects are divided into

Received by the editors: November 13, 2009.
2010 Mathematics Subject Classification. 68M14, 68P20.
1998 CR Categories and Descriptors. C.2.4 [Computer Systems Organization]:

Computer-Communication Networks – Distributed Systems ; E.1.2 [Data]: Data Structures
– Distributed Data Structures ; H.2.4 [Information Systems]: Database Management –
Systems.

Key words and phrases. clustering, distributed databases.
This work is supported by the Romanian Ministry of Education in the frame of PN2

ID550/2007.

37

38 ADRIAN SERGIU DARABANT AND ANCA GOG

subsets according to the affinity between the real entity modeled by each ob-
ject and the sets of locations. The main advantage of this approach is that
each location (node) already stores the maximum amount of local pertinent
information reducing thus the inter-node information exchange requirements.
Most applications running in a node will handle local informations in most of
the cases.

When parallel processing comes into discussion, one would like that when-
ever a data intensive request arrives in the (distributed) system it could be
divided into multiple sub-requests, each assigned to a different processing node
such that the maximum throughput is achieved. In this case data exchange
minimization in not the main goal. The main goal is to parallelize the process-
ing by dividing it over as many nodes of the system as possible. A single node
is subject to become a processing bottleneck as processing is always divided
over the entire system.

When both policies are needed (locality and parallelism) a request is di-
vided in multiple tasks that are assigned to the nodes of the system such that
only nodes that can provide data from their local storage to the final result
participate in task resolutions.

Experience shows that distributed databases do not evolve at the pace
of centralized systems. This is not due to the fact the we lack naturally dis-
tributed applications. On the contrary, most of today applications, from ticket
reservation to medical patient records management, are inherently distributed.
A common sense reason for this lack of development could be the complexity
involved in the design and management of distributed architectures. Com-
pared to centralized data stored, most known database distribution techniques
require a lot more apriori information about the data that would be stored and
applications that will run in the system than in centralized data stores. The
existing algorithms for relational database fragmentation [11] are either too
complicated to understand and follow or too sensitive to small changes in the
inputs, making them difficult to approach by the usual database administrator
(DBA).

2. Contributions

Our approach to object dataset fragmentation is based on the idea that a
distributed database as described above should be easy enough to design and
maintain. In this paper we present a fragmentation method using hierarchical
clustering algorithm [1]. The fragmentation quality is evaluated using a parti-
tion evaluation function already used in previous work [6, 4, 2, 5, 3]. The main
contribution here is to asses the validity of this partitioning method for differ-
ent sized databases. We also compare our results with those obtained in other

HIERARCHICAL CLUSTERING IN LARGE OBJECT DATASETS 39

similar works [9, 10, 4]. An application of a variant of the k-means algorithm
for clustering in fragmentation is presented in [7]. Most of the other methods
are based on variants of the relational database fragmentation algorithms.

We also strive to prove that the requirements of our method are far more
easier to accomplish and that the algorithm is almost automatic - i.e. it doesn’t
require a deep analysis of the potential data that will be stored in the database.
The algorithm is very simple and its application is almost immediate.

3. Numerical Model

The object data model formalization is based on one of the many equiv-
alent models in literature [8]. Hierarchical clustering splits a set of items (in
our case objects) according to their similarities on a common set of features
that can be quantified. We could let the set of features be values of the object
attributes or method results but this would lead to a classification based only
on attributes. Classifying the objects on their static data would certainly lead
to a set of fragments, but those fragments would not express at all the dynam-
ics of the system. This is hardly interesting for a distributed database where
data is only the static dimension. The dynamic part is represented by the
applications that access attributes and send messages to the objects according
to the class protocol. Our quantification of the features of each object will not
be value/attribute based but application based. The quantification leads to
a numerical representation of each object in a vector space. We classify then
objects into clusters according to their similarities in behavior in the context
of the running applications.

Let Class = {Ci∣Ci is a class in the system} be the set of all classes. The
extension of a class Ci, denoted Inst(Ci) is the set of all instances (objects) of
that class: Inst(Ci) = {Oj ∣ Oj is an instance of Ci}. We denote by Q ={q1
,. . . , q t} the set of all queries(applications) that will be running in the system.
It should be noted that only applications running with some frequency are
taken in account for quantification as those are the ones that will be most
influenced by the resulting clusters. Considering an SQL based system, each of
those applications will have filters of where clauses that will filter the accessed
objects. Let Pred={p1, . . . ,pq} be the set of all atomic predicates Q is defined
on. Let Pred(C)={p ∈Pred ∣ p imposes a condition to an attribute of class C
or to an attribute of its parent}.

Given the predicate p : C1.A1. . . .An µvalue, p∈Pred(Cn), where class Ci

is the complex domain of Ai−1, i = 2..n, and An is an attribute of Cn that has
a complex type(another object) or a simple type (scalar). µ ∈ {<,>,≤,≥,=
, ∕=,∈,⊃,⊇} is a filter operator, while value ∈ domain(An)

40 ADRIAN SERGIU DARABANT AND ANCA GOG

For each object Oi ∈ Inst(Cj) we can derive a vector having ∣Pred(C)∣
dimensions, each corresponding to a predicate and having a value of one if the
object is selected by that predicate or zero otherwise. All object vectors for
objects of a class C yield a matrix denoted object-condition matrix OCM(C):
OCM(C) = {aij , 1 ≤ i ≤ ∣Inst(C)∣, 1 ≤ j ≤ ∣Pred(C)∣}, where Inst(C) =
{O1, . . . Om} and Pred(C) = {p1, . . . , pn}.

Table 1 shows an example of a object-condition matrix. Each line in the
matrix is the object-condition vector of the corresponding class instance. The
features (is selected or not) of each object are only qualitative. If we want to
integrate some quantitative information about how objects are filtered by a
predicate we can add in the percent of objects that are filtered in the same
manner by a predicate. Right side of Table 1 shows the CVM.

OCM(C) p1 p2 p3 p4

O1 1 0 1 1
O2 0 1 0 1
O3 1 1 0 0
O4 0 0 0 0
O5 1 1 0 0
O6 0 1 0 0

CVM(C) p1 p2 p3 p4

O1 0.5 0.33 0.16 0.33
O2 0.5 0.66 0.84 0.33
O3 0.5 0.66 0.84 0.66
O4 0.5 0.33 0.84 0.66
O5 0.5 0.66 0.84 0.66
O6 0.5 0.66 0.84 0.66

Table 1. Object-condition and characteristic matrix for a class

A new matrix (characteristic vector matrix) CVM(C) = {wij ∣i = 1..m, j =
1..n} having same dimensions is obtained and defined as:

(1) wij =

∑
l=1..m,alj=aij

[(alj ∣alj = 1) + (1− alj ∣alj = 0)]

m

4. Hierarchical Clustering fragmentation

We obtain a numerical model that expresses the dynamic behavior of the
data in the context of user applications. The only missing thing is a measure
of similarity/dissimilarity between objects and an algorithm capable to take as
input the OCM or VCM matrices and produce the desired clusters by grouping
together only similar objects.

The similarity functions we used for our tests are based on some well known
metrics (euclidian and manhattan):

(2) dE(wei, wej) =

√√√⎷
n∑

k=1

(weik − wejk)2 , dM (wei, wej) =

n∑

k=1

∣weik − wejk∣

HIERARCHICAL CLUSTERING IN LARGE OBJECT DATASETS 41

(3) simE(Oi, Oj) = 1− dE(wei, wej)

∣Inst(C)∣ , simM (Oi, Oj) = 1− dM (wei, wej)

∣Inst(C)∣
The similarity functions have values between 0 (meaning that objects are

totally dissimilar) and 1 (meaning full similarity). The similarity needs to
be bounded so that we could asses 0 and full similarity. The hierarchical
clustering algorithm we used is presented bellow. The algorithm starts with
m = ∣Inst(C)∣ clusters, each containing a single object. The main iteration
unifies the two most similar clusters until the number of remaining clusters
drops bellow the desired number of clusters.

Algorithm HierachicalFragPrimar is

Input: C-class to cluster, Inst(C) - instances of C, similarity

function sim : Inst(C)xInst(C) −→ [0, 1],m = ∣Inst(C)∣, k-the number

of desired clusters where 1 < k ≤ m and OCM(C)/CVM(C)− wij.

Output: The set of clusters F = {F1, . . . , Fk}
Begin

For i=1 To |Inst(C)| do Fi = {wi};
F = {F1, . . . , Fm};
While |F|>k do

// Find (F ∗
u , F

∗
v) with the greatest similarity

(F ∗
u , F

∗
v) := argmax(Fu, Fv)[sim(Fu, Fv)];

Fnew = F ∗
u ∪ F ∗

v ;

F = F − {F ∗
u , F

∗
v } ∪ {Fnew};

End While;

End.

5. Results

The performance evaluation in the case of fragmentation is generally a
complex issue to be dealt with. Normally the generated fragments should
be allocated to the nodes of a distributed system. Then the applications
are run against the system and various parameters like execution times, data
transfer amounts, etc are measured. Since the allocation of the clusters to
nodes problem is by itself an entire research subject for which there is no yet a
linear solution, one can choose to do a simple allocation schema like: allocate
each cluster to the node where it is most used. This is the approach we used
in our tests. In order to be able to find the nodes where a cluster is most
accessed locally we need to apriori know:

42 ADRIAN SERGIU DARABANT AND ANCA GOG

∙ The objects that the application accesses, for each application and
class;

∙ The number of nodes in the system;
∙ The frequency of running a given application on a given node;

Given a system with S = {S1, . . . , SS} nodes, each application runs with
a certain frequency on each node of the system,freqSj (qi). We computed the
general impact application qi has on the clustering process as being the sum
of all frequencies over all the nodes of the system:

freq(qi) =
S∑

s=1

freqSs(qi)

By definition we only consider applications that have freq(qi) > 0. A
general frequency, freq(qi) = 0 means that the application is not running in
the system - so it is not useful for the clustering process.

We denote by pi ∈ qj the fact that pi is part of the filters (where clauses)
that define qi. We would like to capture the impact predicate pi has on the
clustering process according to its frequency of execution as well. This means
we need to weight the OCM/CVM matrices to take into account the frequency.
A predicate with a high execution frequency should have larger influence on
the clustering process than a predicate with a low execution frequency. Hav-
ing Q = {q1, . . . , qt} and FreqGen = {freq1, freq2, . . . , freqt}, 0 < freqi ≤
freqQMax, freqi ∈ Z . When a predicate pj is a filter in more than a single
application its frequency is the sum of individual execution frequencies of each
application that uses pj .

freq(pj) =
t∑

i=1,pj∈qi
freq(qi), 0 < freq(pj) ≤ freqMax ∈ Z

In order to use the predicate frequencies weights in the OCM/CVM ma-
trices we need to shift their values in a well know bounded interval, keeping in
the same time their semantic. After the interval shift we can directly weight
the OCM/CVM matrices:

(4) w‘
ij = wij × freq(pj)

t∑
i=1,pj∈qi

freqMax

For the numerical evaluation of the proposed model we consider small,
medium and large datasets. In order to asses the clustering quality we use
a set of applications with a predefined set of frequencies randomly chosen.

HIERARCHICAL CLUSTERING IN LARGE OBJECT DATASETS 43

We use the partition evaluator proposed in other similar works as [4, 2, 6] for
cluster quality:

(5) PE(C) = EM2 + ER2

The evaluator (PE) computes the cost of accessing local data (EM) and
remote data (ER) when running the set of user queries over the fragments of a
class. As the value of the cost increases, the quality of fragmentation is lower.

(6) EM2(C) =
M∑

i=1

T∑

t=1

freq2ts∗ ∣Accit∣ ∗
(
1− ∣Accit∣

∣Fi∣
)

(7) ER2(C) =
T∑

t=1

min

{
S∑

s=1

M∑

i=1

freq2ts ∗ ∣Accit∣ ∗
∣Accit∣
∣Fi∣

}

The EM term computes the local irrelevant access cost for all fragments
of a class. ER calculates the remote relevant access cost for all fragments of
a class. Accit represents the set of objects accessed by query t from fragment
Fi. The value freqts is the frequency of query t running on site s. In (6) s is
the site where Fi is located, while in (7) s is any site not containing Fi. M
is the number of clusters for class C, T is the number of queries and S is the
number of sites. The fragmentation is better when the local irrelevant costs
and the remote relevant access costs are smaller. Each term of PE calculates
in fact the average square error of these factors.

The quality of fragmentation expressed as the cost of evaluating queries
against the resulting database is expressed in Figure 1:

In Figure 1 we compare the application execution costs for a small database
clustered with the k-means algorithm (random initial centroids), hierarchical
clustering algorithm, single site database, fully replicated database and the
fragmented dataset when using the method exposed in [10]-Bai and in [9] -
Bel. According to the PE measure the single node database and full replication
both obtain very high, respectively high costs. This is mostly due to ER term
scoring very high in the case of single node database - most of the data is
accessed remotely in this case. For the fully replicated case the high score is
due to the local irrelevant accesses to data (EM).

We apply the hierarchical and k-means clustering to both OCM and CVM
matrices. The better results of the hierarchical clustering are due here to
the random initial centroids for the k-means method. Normally the k-means
algorithm should perform better in these scenarios, but the random choice
of the initial centroids often lead to lost clusters and bad results. Overall,

44 ADRIAN SERGIU DARABANT AND ANCA GOG

Figure 1. Cluster quality evaluation - PE measures.

on small databases the hierarchical clustering performs better than all other
methods. The best result is obtained when applying the algorithm on object-
condition matrices. The binary selection of predicates yields a better selection
than the quantification of selected/not selected percents of application objects.

Figure 2 shows the results from a scalability point of view. Three different
dataset sizes are tested: small, medium and large datasets. The small dataset
context has already been presented in Figure 1. With the significant growth
of the dataset, the inefficiency of randomness in centroid choosing fades away
and the k-means method takes its place with the smallest cost. Hierarchical
clustering scores linearly with the database size, as unifying entire clusters is
prone to introducing misplaced objects together with the good ones. At this
level hierarchical clustering is too coarse as it does not allow for individual
object placing in clusters. Bei and Bel methods are not very affected by the
size changes.

HIERARCHICAL CLUSTERING IN LARGE OBJECT DATASETS 45

Figure 2. Quality evaluation for small, medium and large datasets

6. Conclusions

Datasets and database fragmentation is a difficult subject to approach
from a practical point of view. Existing methods are far too demanding in
knowledge and experience for the average DBA to be able to perform them
correctly. In this paper we present a dataset fragmentation method based on
hierarchical clustering that is easy to apply. Basically, we need as input some
quantitative information about the applications that run in the system and
the sets of data selected by their filters. Building the OCM/CVM matrices
is straightforward and applying the algorithm does not require any additional
knowledge from the user. From the performance point of view the algorithm
produces clusters comparable in quality with other more elaborate fragmenta-
tion methods. We have also shown that our simple method yields good results
when evolving the database scale from small to medium.

References

[1] Han, J., Kamber, M., Data Mining: Concepts and Techniques, The Morgan Kaufmann
Series in Data Management Systems, 2000.

46 ADRIAN SERGIU DARABANT AND ANCA GOG

[2] Karlapalem, K., Navathe, S.B., Morsi, M.M.A. - Issues in distribution design of object-
oriented databases. In M. Tamer Ozsu, U. Dayal, P. Valduriez, editors, Distributed
Object Management, pp 148-164, Morgan Kaufmann Publishers, 1994.

[3] Karlapalem, K., Li, Q., Vieweg, S. - Method Induced Partitioning Schemes in Object-
Oriented Databases, In Proceedings of the 16th Int. Conf. on Distributed Computing
System (ICDCS’96), pp 377-384, Hong Kong, 1996.

[4] Ezeife, C.I., Barker, K. - A Comprehensive Approach to horizontal Class Fragmentation
in a Distributed Object Based System, International Journal of Distributed and Parallel
Databases, 33, pp 247-272, 1995.

[5] Karlapalem, K., Li, Q. Partitioning Schemes for Object-Oriented Databases, In Pro-
ceedings of the Fifth International Workshop on Research Issues in Data Engineering-
Distributed Object Management, pp 42-49, Taiwan, 1995.

[6] Darabant, A. S, Campan, A. - Semi-supervised Learning Techniques: k-means Cluster-
ing in OODB Fragmentation, In Proc of the IEEE Intl Conf on Computational Cyber-
netics ICCC 2004, pag: 333 338, Wien, Austria

[7] Darabant A. S., A new approach in fragmentation of distributed object oriented
databases using clustering techniques, in Studia Univ. Babes Bolyai Informatica, Vol I,
No 2, pag 91-106, 2005.

[8] Bertino, E., Martino, L. - Object-Oriented Database Systems; Concepts and Architec-
tures, Addison-Wesley, 1993.

[9] Bellatreche,L., Karlapalem, K., Simonet, A. - Horizontal Class Partitioning in Object-
Oriented Databases, In Lecture Notes in Computer Science, volume 1308, pp 58-67,
Toulouse, France, 1997.

[10] Baiao, F., Mattoso, M. - A Mixed Fragmentation Algorithm for Distributed Object
Oriented Databases, In Proc. Of the 9th Int. Conf. on Computing Information, Canada,
pp 141-148, 1998.

[11] Tamer, Oszu M., Patrick Valduriez. Principles of Distributed Database Systems,
Prentice-Hall, 1998.

Faculty of Mathematics and Computer Science, Babe-̧s-Bolyai University,
Cluj-Napoca, Romania

E-mail address: {dadi,anca}@cs.ubbcluj.ro

