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A METHOD WITH RANDOM MODIFICATION OF
GRADIENT COMPONENTS FOR CONVEX MODELS

PAVEL BALAN

ABSTRACT. A stochastic method is proposed and analyzed, that is a prob-
abilistic generalization of gradient method, for solving convex models with
restrictions. A random change of ”old” partial derivatives with "new” ones
is performed from one iteration to another. Convergence aspects of this
method are analyzed for the case when the step is adjusted programmati-
cally. Certain conditions are indicated, that ensure its convergence to the

optimal solution with probability 1.

1. INTRODUCTION

Current method has an iterative approach of “Connection-Disconnection”
type. Using two random variables a series of indices is generated for next
iteration. One is meant to be used for target function and the other one -
for function that describes the restriction. Distribution laws that can be used
can be a priori set or can be modified within iterations. Usage of different
distribution laws may increase convergence speed of the method. Generated
indices suggest what components of movement vector should be modified.
“Old” components are replaced with corresponding partial derivatives with
the same indices from the above mentioned series. The idea of “Connection-

Disconnection” mechanism is following: if the restriction inequality is satisfied
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at the current iteration, then the vector that determines the movement direc-
tion is built using partial derivatives of target function; otherwise this vector

contains only partial derivatives of the function from restriction.

2. A METHOD WITH RANDOM MODIFICATION OF GRADIENT COMPONENTS
FOR CONVEX MODELS

The following problem is considered:

F(z) — min

(1) p(z) <0
re X

where X represents a compact and convex set in Euclidian space E™.

Suppose that problem (1) is solvable.

Let us define V(X,¢) = mgXV(x,s) - vicinity with € radius of X set. By
V(x,e) is marked the vicinity with radius € > 0 of the point =z € E™, or,
formally:

Viz,e)={y € E": |z —y| <e}

Let’s admit for some e > 0 that F(z) and ¢(z) are convex and differen-
tiable functions (with continuous gradients) on V' (X, €). Therefore, for Vz € X
are defined the following vectors:

(gF71(£U), - ,gpvn(ac)) = gF(-T) — gradF(:p) _ <dF(fL') dF(x))

dey 77 dzy,
do () de(x)
e Gom(@)) = — grad p(z) =
(091(2)s -1 80n(2) = 95(0) = prad p(a) = (22020, 220
Obviously, the norms [lgr(2)] = |32, (@), ()] = | 62, (x) are
=1 =1

continuous functions on X compact and, consequently, a constant C' exists, so
that [lgr(2)]| < C, g,(@)]| < C for Va. Hence [lgri(@)]| < C. llgoa(a)] < C.,
Vi=1,n, Vxr € X.

The numerical method that is proposed to solve the problem (1) has an
iterative approach. Assuming that we are positioned on k' iteration the

schema is following;:
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Step 1. Two random variables ¢*, ¢)F are simulated in series my > 1, I, > 1 of
independent probes with discrete distribution laws a priori defined:

g1l 2 ... n YF 1 | 2 || n

P | PE | Pk, | .. | PE, PP | PSy| - | P,

That 1s on every 1terat10n k the sets Ik = {11,12, oy imy by JE =
{j1,72,- ., 41, } of elements that are independent realizations of £F ok

variables with distribution laws defined above are generated, where

@ PE, > P> 0,¥i=1,nYk=0,1,...
P}, > Py >0,Yi=1,n,Yk=0,1,...
Particularly, we can take my = [ = 1, that is a single simulation is

accomplished for every random variable &*, 1% on every iteration.

Step 2. gh(z*), gé(mk) vectors are calculated according to the rule:

(3)

X o K & k [ gF 5 le¢Ik

gF(x )_ (gF’l,...,gFJa...agF,n)7 9p; = %ﬁ)’ ifi eI
k(oky — (K k k b | 9o iTiE Tk
gw(x ) = (9%17 o 7gg0,i’ c. 7g¢,n> ) ggp,i - ds;ilz)’ ifi ¢ Jk
Vi=1,n

Step 3. The element z**! is determined according to relation:
(4) o - H (5?k+1) . where ZF+1 = 2k _ gk
X
II (:Z"kH) represents the projection of element Z**! on the set X.
Starting point z¥ is arbitrary taken from X (it can be indicated under
g y

certain considerations for some concrete situations).
Step 4. The numerical sequence {nk} is defined in following way:

5) 7 ={ o 0770 Yk =12,
0, for gk =0

¢° is considered to be an arbitrary, but bounded vector.
Necessarily, classical requirements are imposed on sequence {py} to ensure
the convergence from probabilistic point of view of the iterative process (4)
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which have the form:

[ee]
6 > 0 0: -
(6) pk_,pkk:;o,gpk 00

Additionally we will require existence of such a number £ > 0, that for
Vr € (0,2] and V7 € (0,1) the convergence of the series occurs [1]:

o0 Lika) B 0, if pp >rork=0
(7) ZT < oo, L(k,r)=

k k
=0 sk, if > pr<rand oo o=
l=k—sp, l=k—s;—1

In other words si, is the biggest integer number among all numbers j > 0
k
that satisfies the relation Y py.
l=k—j
Remark 1. Particularly, it is easy to show that numerical sequence pp =

ﬁ, R >0, a € (0,1] satisfies the conditions (6)-(7).

B.T. Polyak proposes a schema to solve general convex models [4]. This
is a deterministic ”connect-disconnect” schema where the vector ¢¥ defines

movement direction and is formulated in following way:

= = {FFE. o) <o

grad ¢ (zF) , if o (zF) >0
But actual method proposes another representation of movement vector g*:

®) o = () = {gi (@) e @) <m

gl (x%), if o (2%) > 7
Remark 2. The iterative process can be modified in following way: different
distribution laws can be taken for random variables €8, ¥*, from one iteration
to another, with the condition that relation (2) holds. This can favour the
increase of convergence speed of the sequence {xk}

Applicability of described method can be confirmed, first of all, by estab-
lishing convergence, in probabilistic terms, of sequence {azk} towards optimal
domain of solutions X*. A special interest represents the convergence with
probability 1 (only this type of convergence can be accepted with confidence
from applied point of view).
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Theorem 1. For fized Ve > 0, all elements of random sequence {:ck}k>0,
obtained as a result of application of described method, are localized almost
certain (with probability 1) in vicinity V (X*, 2¢e), but excepting a finite number

of elements. Formally this can be represented in the following way:

P{G: lim min xk—x*Hzo}zl,

k—oozx*eX*
where ¥ = 2% (0) and 6 = (90,91, L .),
oF = (io,il, e ,ik) € B*- - algebra generated by
Cartesian product ((In x Jo) x (I1 X J1) x ... x (I X Jk)).

Proof. If X C V (X*,2¢) then the statement is obvious.
Let’s admit X\ V (X*,2¢) # @. A problem of the form:

F (x) — min

o0
Q o (x) <7,k >0, Tk = 0, 37 ppTh = 00, 7E — 00
k=0

zeX
is associated to initial model (1) on every iteration k.

Two stages for proof development will be accentuated.

Stage 1. Firstly the existence of a subsequence {l‘kl} C {xk} k>0 that almost
certain is contained in Vx (X*, ¢) will be demonstrated, i.e.
P{3{ah} c {a"},0g ot € Vi (X7,0)} = 1.
Let’s suppose the contrary. In this case for some ¢ € (0, 1) a natural
number K, can be indicated such that the following event is produced
(10)
Ay = {3K, k> K,

‘fL’k - x*” >e, orz® ¢ Vy (X*,¢), Va* e X*}
with probability P (A1) > q.

Let’s denote X, = X \ V (X*,¢).

Since F'(z), ¢ (z) are convex and differentiable, the following in-
equalities are valid:

for Va* € X*, VaF € X.
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Let us denote Ap = Xmin N [F (z) — F («*)]. Evidently, Ap > 0,
reXe,x*eX*
if e > 0.

Taking into consideration all properties enumerated above, two con-
stants C7; > 0, Co > 0 may be chosen, such that |2/ —2"| < C4,

Vo' 2" € X and H%&x) < (Cy, Vre X.
If (l‘k) < 1, and zF € X, then F (:Uk) — F(z*) > Ap, or
dF (zF
() <d(x)$k —x*> > Ap
dF(z*) g *> (dF(xk) k *>

5 -z , L x
< dx T dx AF
chgzk) . ka _ x*H CyCh C1C5

Also, if ¢ (mk) > 73, for 2% € X, then:

(12) (W,wk — :U*) > T

dx
dr > dx > The
dgo(gg;k) ‘ . ka _ x*H Cy(C1 C1Cy

Let’s consider some numbers g, 65, from intervals (0, CAla ) ) (0, CI’CCQ)

and label §;, = min {5 Jal 6!;}. As a result the following inequalities may
be obtained:

dF(:ck) dF(ack)

f), ok o) 2 0 [ - (04) <
" (w,xkx*) > 20 dwc(lik)’ . kafx*H, ifcp(xk) > Tk
Particularly, éF, 5:2 may be chosen as centres of intervals (0, %),
(0 cter)
(14) Sp = _BF gk — Tk

2(C1Cy)’ = 2(C1Cy)

The following events are being considered
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A’f = {(nk,xk — sc*) > 65, ka — x*| ,Va* € X*}. Obviously, the
opposite event with regards to A% has the following form
Ak ={3z* € X*: (nF, 2% —2*) < & ka - :E*H}

oo o0 .
Then Dy = {k UK 'ﬁk A’l}, or, in other words, occurs all A¥(k >
=Ks 1=
K,), without, perhaps, a finite number. It is obvious that D; =
kcr)WOK OijZﬁ , or, in other words, an infinite number of events IIf
=Ks 1=

are produced.
Let us evaluate P (A1). In order to do this let’s represent

P(Al) :P(AlﬂDl)—i—P(Al ﬂD71)

Both terms from last expression will be estimated.
From the realization of event A1 N D follows the existence of such
a natural number K5 < oo that for all £k > K and Vz* € X* following

inequality occurs

(15) (nk,xk - x*) > 0y, H:Uk —z"

Taking into consideration (15), for k& > Ks we have the following
sequence of relations:

o+t — a2 ||* < [|a* — prn* — 2 ||* =

— o = 2| = 2 (o — ) + ] <

<Jla* — | — 20030 [ — ¥+ 42 <

< HZL’k — l'*HQ — ka(_;kE + ,Oz =

et = 2| = e (2B — )

Because pg kjgo 0, for some K,: ép > (552 or ) = 5@, as soon as
k > K,. According to (9), (14) for some K. > K,: pr < dxe, as soon
as k > K.. Evidently, for k > k = max {Ks,K:}:

2 2 _
oo < ot e
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2 2 _
Hifk —a*|| < 2Pt =2t — ppo1Opoie <
- < <
< |27 —a*|| — e (pp—20k—2 + Pr—10k—1) » - -
k
2 X 2 _ 2
kaﬂ | < |lz¥ —z*|| - EZpi(si or H:z:l€+1 -z <
i=k
IAC * 2 - )
< ||z —a*|| — EZpi(S:O
i=k

Due to imposed conditions on 73 in (9), based on relation (14), we get:

k

2 €

—75 iT; — 00, for k — oo
2(C1Cy) ,%p

k+1 %

2 ~
x < H$k — ¥

We obtain a contradiction because the norm of any vector, moreover
its square value, cannot be negative. Therefore, the realization of event
A1 N Dy implies realization of an event, that is practically unrealizable,
P = {Hmk“ — 2P <0,k — oo}. That is P (A1 N Dy) < P (Fy) =
0. It means that P (A;) =P (A1 ﬂﬁl) )

Let us evaluate P (A1 N ﬁl) The following event Bf is defined:

pr ={at least one time among iterations of the form j = k — s, k
is generated every possible value of the discrete random variable £¥}.

BZZ ={at least one time among iterations of the form j = k — s, k
is generated every possible value of the discrete random variable 1)*}.

Bf = BN BE.

Simulation of variables ¢* and ¥* is produced in parallel and inde-
pendently. Thanks to the fact that B}?, BZ; events are independent,
follows that P (BY) = P (Bf) - P (BE).

Let us prove that P (Bf) e 1. Contrary is supposed: P (Bf) <

p <1, for Vk. We have P (BE) = 1— P (Bf) and P(Bf) = 1-
P (BE).
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- Bk S k) ok
It is absolutely clear that P (BF) <> (1 — P& Z) — 0, P (Bf;) <
i=1 ’

k—o0

n
1—PE )" — 0. Indeed, if we label P = min{ Pr, P, !, the fol-
. 1 wvl k—>00 75 i
1=

lowing sequence of relations takes place:

P (BT&) <3 (1 —Ps’fi)sk < n- max (1 —ngi)sk <
=1

1<i<n
<(wn(1-R))" <(vna-p)*.
P (3752) < l; (1 — Pd’f’i)Sk < n- max (1 — P{Z’i)wc <

1<i<n

<(vi(i-r))" < (via-py

Because k — oo, then s, — 0o and *%/n — 1+0. For an arbitrary, but
fixed value 7 € (1 — P,1): 3K, € N, so that for k¥ > K, takes place
inequality */n (1 — P) < 7 < 1. Thus, (%/n (1 — P))* < 7% — 0.
Or P (Bil’%> < 7% and P <§£> < 75k, It means that P <B7§> — 0 and

P <F§) — 0, or, P(Bf;) — 1 and P(Bf;) — 1 for K — oo. These

considerations conclude to the fact that P (Bf) — 1.

The realization of event Bf means follovvilrlgl:f ”O;Jenovation” of all
components of the vectors giﬂ_s’“ and gf;_sk is performed during s
iterations starting from k — s till k& (inclusively). In other words,
movement vector ¢g* contains as its components all partial derivatives,
all evaluated after iteration k — sy.

The realization of event Bf and the fact that partial derivatives of
functions F' (z), ¢ (z) are continuous, conclude to realization of follow-

ing event:

. k ~
g — Lpégi ) <FE, if«p(xk) > Tk

Taking into consideration (18), continuity of dot product and satis-
faction of conditions (10), (13), we can draw a conclusion that event

A’f is realized starting with some k = k = max {KT, I%}
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Thus, BY C A}. In this case P (BY) < P (Af) and, therefore
P <A7’f) <P (Ff) But, according to (2), (7) and (17) follows:

P (Ef) < P that is Y P (ATf) <S°p (Bjc) < 3R < o
k=0 k=0 k=0

We are in such situation that the conditions of the Borel-Cantelli
lemma [3] are satisfied. It means that P (D;) = 0. Therefore, ¢ <
P(Ay) = P (A, nDy) < P (Dy) = 0. Thus, g = 0.

A contradiction has been obtained, because we have supposed that
g > 0. Thus, it exists a subsequence {azkl} C {xk } k>0 that almost
certainly is contained in Vx (X*,¢).

Stage 2. Further will be proved that all elements of sequence {xk}, without just

a finite number, belong to set Vx (X*,2¢) with probability 1.

Following events are defined:

Ay = {3{ak} c {a*} : {2k} C Vx (X*,e)}
By = {3{z"n} c {ak} : {Fm} € Vx (X*,2¢)}

Next, P (Bg) will be appreciated. We will find out that P (Bg) =
P (B2 N As). Indeed,

P (B) =P ((B2NA2) U (BaNAz)) =P (BaN Ag)+P (BaNAp) =
P (By N Az), because P (Bg N /Tg) <P (A72) =0.

Further, following event will be considered: Dy = Ao N Bsy. Suppose
that P (D) > 0. Realization of event Dy means that the transfer from
Vx (X*,¢e) to X \ Vx (X*,2¢) and vice versa takes place infinitely.

Let us denote by:

K7 - the first iteration the event {xKl € Vx (X*, 5)} is produced,

K - the first iteration the event {:BK2 € Vx (X*, %5)} is produced,

K3 - the first iteration theinequality p, < 2ed is satisfied,

f_{ = max {Kl, K27K3}.

In case that for some k > K and zF ¢ Vx (X*, %5) is satisfied
inequality that defines event A¥, then following sequence of inequalities
occurs:

4 = o] < ¥ = a* = i (2B — ) < [ = "

Ha:k — x*H > €.

2
, because
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That is, as soon as k > K and 2 ¢ Vy (X*, %5) means that:

*

(20) Hmk+1 —r*

<o

Since pg P 0, will appear K* > K with property that 2% ¢
—00
Vx (X*,2¢) \ Vx (X *, %5) This will happen certainly. Particularly,
for pr < 5:

o4 =t < ot ot = <o < 5

Therefore, there exists a value k that satisfies zF € Vy (X*,2¢) \
Vi (X*,32).

According to (20), ||#%" T —2*| < ||#%" — 2*||. In the case that
K7 ¢ Vy (X*, 3¢), then we have H$K*+2 -zt < Hl‘K*_H - x*H <
< ||a®" —*||, and so forth, for all j > 0 that satisfy 2™t ¢
Vx (X*, %5), takes place

(21) min |58+ — g Ko g

r*eX*

< min < 2e

rreX*

T

Let us denote {xkl}l>1— sequence of all elements {xk} with the
property that k! > K*,:;kl € Vx (X*,2¢) \ Vx (X*,3¢) and zH' -1 ¢
Vx (X*,3¢). Then for I > 1,k! < j < k! and 27 ¢ Vx (X*, 3¢) the
following inequality occurs:

(22) min Mo g
r*reX*

< 2e

z’ —x*H < min
r*eX*

X

Thus, in other words, admitting that for some K elements of type
ok ¢ Vx (X*, %5) ,k < 00,k > K satisfy inequality from event A%,
then event Bs cannot occur with positive probability. Supposition
that Ds is realized means that beyond layer Vx (X * %5) penetration of
layer X \ Vx (X™, 2¢) takes place only when infinitely is produced event
Aflf considered previously. But P (ﬁl) = 0. So, the conclusion that
can be drawn is that the transfer from layer Vy (X*,2¢)\ Vx (X*, 3¢)
into layer X \ Vx (X*,2¢) occurs only a finite number of times. That
is, P (D2) = 0, and implies P (Bz) = 0.

Theorem is proved. O



36 PAVEL BALAN
3. CONCLUSIONS

Elaborated method is especially practical for models where modification
of gradients is “relatively slow”. Such models are often encountered in eco-
nomical, technical problems etc. It represents a significant generalization of
methods meant to solve extremum problems. It can be classified as a di-
rect method of optimization and does not use penalty functions or Lagrange
function — common toolkit used to solve such kind of problems.
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