
KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2007
Cluj-Napoca (Romania), June 6–8, 2007, pp. 244–251

A VIEW ON FAULT TOLERANT TECHNIQUES APPLIED FOR
MEDIOGRID

DACIAN TUDOR(1), VLADIMIR CRETU(2), AND HORIA CIOCARLIE(3)

Abstract. In this paper we analyze the characteristics of fault tolerance for
grid systems, which serves as a basis to identify the features and techniques

of the Globus framework and the way these can be applied for the MedioGrid

project. Based on the general MedioGrid architecture and the fault tolerant
analysis, we suggest an extension of dynamic replication strategies to address

data life cycle using dynamic policies. Finally, we highlight some directions

in order to enhance the fault tolerance at the MedioGrid application level,
both simple and parallel.

1. Introduction

Classic systems approach fault tolerance by either avoiding error conditions,
through structured programming and certified component reuse, or using error re-
duction techniques by enforcing strong testing techniques. In case of grid systems
which exhibit dynamic and unforeseen interactions between their heterogeneous
components, which reside in different administrative and privileged domains, such
approaches are not feasible and insufficient. One of the main reasons is complex-
ity as grid applications have a high degree of asynchronous protocol interactions.
By its unpredictable nature, grid systems supply an execution environment where
execution guarantees can be hardly satisfied. Another factor which makes compli-
cates execution guarantee is the high execution time as some applications might be
running even days or weeks until the results are obtained. In addition, applications
might require multiple resources which are located in different administrative do-
mains which can be error prone too. Defects might be exacerbated as well by the
service composition, specifically, the fact that a grid service might invoke several
other grid services. The failure of one of the invoked service might turn against the
caller service, leading to return an error on its caller too. As the service composi-
tion protocol is non-deterministic, the potential grid errors are non-deterministic
too.

2000 Mathematics Subject Classification. 68M14.
Key words and phrases. Grid computing, Fault Tolerance, MedioGrid.

c©2007 Babeş-Bolyai University, Cluj-Napoca

244



A VIEW ON FAULT TOLERANT TECHNIQUES APPLIED FOR MEDIOGRID 245

All these new introduced condition in grid systems lead us to the idea that for
grid systems, one must rely on a more complex fault model. In this paper we ana-
lyze a fault tolerance model for distributed systems through the grid perspective,
then we are highlighting the Globus approach for the fault tolerance model and
finally we evaluate the applicability of fault tolerance techniques on the MedioGrid
project.

2. A VIEW ON FAULT TOLERANCE FOR THE GRID

When referring to a fault tolerant systems, we refer to a system which supplies
a set of services to its clients, according to a well defined contract, in spite of error
presence, through detecting, correcting and eliminating errors, while the systems
continues to supply an acceptable set of services [1]. A fault tolerance model
highlights possible causes and conditions where errors might appear, with the goal
of improving system characteristics do detect and eliminate errors.

The main approach to attack fault tolerance is rollback technique [2], which
implies application state logging at a certain time interval and restoring the last
stable state in case the application is detected as entering a critical state. The
used techniques are either check pointing types [3] where the application state is
expected, or logging techniques [4] which implies application message logging and
handling. For data grid systems, one of the most common and widespread fault
tolerance techniques is provided by replication techniques, at both data provider
and computing resources. In the later case, a certain application can be running
in parallel on multiple resources and in case of error conditions, computation
is continued on the healthy and active resources. Another approach is process
migration when the executive state is becoming critical.

Based on [12], we present and discuss the main classes of errors that might
appear in the grid systems.

2.1. Network errors. Network errors are environmental errors caused by the
communication channel and basically refer to package losses on the transmission
path or corrupted incoming packages on the receiving path. These errors can be
corrected by the network transmission protocol and in cases where no correction
can be applied the communication path between the two endpoints is considered
broken.

2.2. Timing errors. Timing errors are errors that can occur either at the begin-
ning of the communication as a result of the impossibility to establish a connection,
or during the communication flow when for example the response time of the caller
exceeds the response time expected by the caller. In case of grid systems which
exhibit large and variable communication latencies, such timing conditions add a
nondeterministic component to the expected approximate time.



246 DACIAN TUDOR(1), VLADIMIR CRETU(2), AND HORIA CIOCARLIE(3)

Figure 1. Grid Software Error Classes

2.3. Response errors. Response errors are caused by a service which returns
values outside of the expected boundaries by the caller. In such situations, com-
ponents have to be able to validate a certain response and to appropriately handle
the exceptions. A system that is designed as a state machine, can execute un-
controlled transitions in the state space which can be further propagated to other
services as a result of the grid service composition.

2.4. Byzantine errors. Byzantine errors are arbitrary errors that could appear
during the execution of an application. They refer to catastrophic conditions such
as crashes and omission errors. A system entering in a Byzantine state has an
undefined behavior which might be caused either by the execution impossibility
or erroneous execution, or by arbitrary execution outside of the one specified by
design.

2.5. Physical errors. Physical errors refer to critical conditions of the physical
resources such as processor, memory, storage or communication medium. Such er-
rors have to be detected and corresponding resources be declared as non-functional.

2.6. Life cycle errors. Life cycle errors are particular to components which ex-
pose services which can expire at a certain moment. They can apply to component
versioning as well. An example of this condition is updating a service while its
clients expect that the service is working properly according to its previous spec-
ification. Service changes could be both syntactical and structural with different
implications on the service callers.

2.7. Interaction errors. Interaction errors are caused by incompatibilities at the
communication protocol stack level, security, workflows or timing. These are the
most common errors in large scale grid systems because all these conditions appear



A VIEW ON FAULT TOLERANT TECHNIQUES APPLIED FOR MEDIOGRID 247

while running the applications and the environmental and interaction states cannot
be reproduced during the application testing phases. We expect that for complex
grid applications to observe a high probability of interaction error occurrence.
Some of these, as for example the ones due to different security levels, could be
isolated and eliminated during the testing phases in a high percentage as there is
a limited number of calls between virtual organizations.

3. FAULT TOLERANCE IN GLOBUS

Globus Toolkit [4] offers a reference implementation of grid standardized pro-
tocols, together with a set of tools and helper services in order to facilitate grid
application development and deployment. In terms of the fault tolerance condi-
tions presented in the previous section, one of the most important services are
data transfer services, replication and grid execution management services.

The most basic data transfer service which serves as a basis for all other data
manipulation services is GridFTP service, which represents an implementation
of the grid extended well known FTP protocol. Its extended features for the grid
include security level integration, parallel data transfer flows, partial transfers, au-
tomatic setting of TCP transfer buffers, transfer flow monitoring and restarting.
The most interesting part of the GridFTP component in the context of building
fault tolerant data services, is that Globus does not supply a server side library,
thus peer-to-peer transfer scenarios cannot be constructed using Globus. In addi-
tion, it requires a preinstalled GridFTP server which reduces the degree of resource
discovery and automatic replacement in case of physical damage.

Reliable File Transfer service (RFT) provides a Globus service which guaran-
tees a successful file delivery between grid nodes in the presence of failures during
a given transfer operation. Transfer status is kept into a database which sup-
plies the necessary information to eventually resume the transfer. Globus uses a
SOAP description for the transfer request and the GridFTP protocol to initiate
the transfer. RFT offers support for concurrent transfer flows which gives good
performance for modest size parallel file transfers.

The Data Replication Service (DRS) is a higher level Globus service which gives
support for automatic file replication between multiple sites and it is working as
following:

• Grid clients specify a set of files to be replicated to other nodes.
• Each node uses RLS to determine which are the files that are missing

locally and where these files are available.
• The missing files are replicated locally by submitting a RFT request to

the RFT service.
• After the files are locally replicated they are registered to LRC.

Analyzing data management services, we can notice that the Globus solution
is mostly a static solution based on fixed configuration sets of grid components.



248 DACIAN TUDOR(1), VLADIMIR CRETU(2), AND HORIA CIOCARLIE(3)

Hypothetical situations where a damaged grid node is dynamically replaced by
another one reduce to the a priori determination of replacement nodes. Globus
does not offer support for peer-to-peer data sharing with automatic discovery of
candidate nodes for such a service.

At the execution level, Globus offers an interface to launch and monitor jobs on
grid nodes through the GRAM service. The GRAM service takes care for input
and output data transfers as well as the security level integration. For execution
planning, GRAM supplies a ”plug-in” architecture which permits an extension to
adapters for local resource schedulers. One can notice that the Globus execution
level offers only job state checking during execution. The fault tolerance level has
to be assured by the concrete implementation of the resource scheduler. One of the
most popular resource schedulers is Condor [6]. Condor offers technical support
for fault tolerance by providing job migration and check pointing mechanisms.
The fault tolerance level of Condor takes care of restarting monitoring and job
submission services in case a local error occurs. In case of network type errors,
Condor can restore the communication flow as soon as the nodes become available
and can restore the previous state through persistent state logging mechanisms.
In cases where the grid nodes which execute the job are detected as faulty nodes,
Condor implements a job migration policy to other available nodes which are
continuously monitored through a dedicated service.

4. FAULT TOLERANCE IN MEDIOGRID

In case of the MedioGrid system [6] , we consider the main error sources as
being caused by communication path corruption, failure of the processing or data
units and application specific errors.

Communication path failure can lead to the impossibility to communicate with
the parallel processes spawn across the grid to solve a certain environmental prob-
lem. It is desired that the entire operation is not restarted as a whole, but only
specific computations that are assigned to the processing units who cannot com-
municate anymore with the rest of the systems. Using a fault tolerant scheduler
like Condor [6] removes the impossibility to continue computations on an alter-
native resource. The GRAM architecture and the interaction with the scheduler
are presented in Figure 2. We consider communication path failure as an extreme
failure condition that can be compensated by providing alternative communication
paths which requires more research into the problem of network design which is
not in the scope of the MedioGrid project.

Referring to computing resources and excluding the ones that are managing
data, any error at this level is detected and managed by the Condor job scheduler.
The support offered by Condor is sufficient to get the job execution to its end,
even if nodes are signalling errors.

Data unit failures are mainly addressed by the data model and the level of data
replication [8]. The proposed replication solution, which is supported by Globus



A VIEW ON FAULT TOLERANT TECHNIQUES APPLIED FOR MEDIOGRID 249

Figure 2. GRAM Architecture, as presented in Globus [4]

toolkit, represents a static solution which can handle the failure of up to two data
storage units, considering the primary replication group composed of three data
resources. A solution which offers a configurable degree of fault tolerance and
also addresses the data life cycle is to supply a data management service which
guarantees the existence of a file f in the MedioGrid network as being replicated
in n locations. At the present form of the MedioGrid system, n is equal to 3 and
replication is fixed.

The proposed service achieves a rule based variable replication. The rules de-
termine the replication degree in respect to the data use rate and data age. It is
expected that users are accessing more recent data than older ones. These policies
come to enforce the data life cycle management in contrast to the current system
that keeps data at three fixed locations. Such a service can be implemented based
on existing Globus services and existing higher level dynamic replication strategies
for grids as the ones presented in [13].

In addition to the availability aspect of data replication in MedioGrid, which has
been a goal from the beginning, we would like to extend the dynamic replication
scope to address the data life cycle as well. One of the drawbacks of the fixed
replication solution is that data is always replicated with the same ratio even if its
usage rate is low. Such solution is simply wasting storage that could be used for
newer data items.



250 DACIAN TUDOR(1), VLADIMIR CRETU(2), AND HORIA CIOCARLIE(3)

At the application level, fault tolerance has to components: execution context
and the application code itself. At the execution context, the analysis boils down
to the resource scheduler and its capabilities to support fault tolerance. As far as
the application code is concerned, we distinguish two cases: when the applications
runs stand alone and when the application is a parallel application comprising
several grid concurrent jobs.

The fault tolerance level for a simple application can be achieved by using grid
check-pointing strategies [9]. The idea of the project is to provide transparent
check-pointing support for Java applications, by capturing and restoring local
and global states through the use of an execution coordinator. There are more
particular approaches which aim to offer a certain degree of fault tolerance for Java,
which consist basically of a fault tolerant RMI layer. Such layer replaces remote
references automatically in case a reference is in the impossibility to execute an
operation over a connection. The applicability of such strategies is dependent on
the algorithms and decided at this point in time.

In case of a parallel application containing more collaborative or independent
tasks which are running in parallel, the Condor job scheduler mentioned in the
previous section is being able to launch only one job. The are a series of efforts
towards a MPI-like fault tolerant solution [10, 11], but they are still considered
immature to be used in a real grid application. Techniques based on GridRPC
to obtain a fault tolerant service have main target applications that are running
uninterruptible computations, where stopping the calculus for a limited duration is
not critical. One the other pole, MedioGrid applications aim to provide the result
immediately, which reduces the applicability of these techniques for our project.
Of course, in case of some grid operations which have to be completed without
any timing constraints, such techniques could be applied for MedioGrid too.

5. CONCLUSIONS

In this paper we have presented a view on fault tolerance for grid systems and
we have evaluated the main solutions and concepts provided by the Globus toolkit
to construct fault tolerant grid applications. As a result of the analysis, we con-
cluded that Globus provides limited support for fault tolerant services, both at
data management and task execution, but provides the necessary basic concepts
to build higher level services. One of the major drawbacks of the Globus solution
is the built-in static configurations which limits dynamic service construction us-
ing Globus components. Based on our analysis of the main grid error classes, we
have assessed the MedioGrid system in terms of fault tolerance and we suggested
a dynamic data replication extension based on configurable life-cycle policies. De-
pending on the MedioGrid applications, we have given a few directions towards
adopting supplemental fault tolerance levels in terms of parallel applications.



A VIEW ON FAULT TOLERANT TECHNIQUES APPLIED FOR MEDIOGRID 251

References

[1] Avizienis, A.,“The N-version Approach to Fault-Tolerant Software” - IEEE Transactions on

Software Engineering - vol. 11 1985

[2] Manivannan, D., Singhal, M.,“Quasi-synchronous checkpointing: Models, characterization,
and classification”. In: IEEE Transactions on Parallel and Distributed Systems. Volume 10.

(1999) 703-713

[3] Alvisi, L., Marzullo, K., “Message logging: Pessimistic, optimistic, causal, and optimal”.
Software Engineering 24 (1998) 149-159

[4] Globus toolkit homepage, http://www.globus.org, Globus Alliance 2006
[5] Condor homepage, http://www.cs.wisc.edu/condor/

[6] Ordean, M., Melenti, C., and Gorgan, D., “Mediogrid system in meteorological and envi-

ronment applications”. International Conference on Advances in the Internet, Processing,
Systems and Interdisciplinary Research, IPSI - 2005 Amalfi, Italy, pp: 203-207, ISBN: 86-

7466-117-3, 2005

[7] Muresan, O. and Gorgan, D., “Arhitectura retelei MedioGrid”. Atelier de Lucru MEDIO-
GRID vol 1, ISBN: 973-713-090-1, Ed MEDIAMIRA Cluj-Napoca, 2006.

[8] Colesa, A., Ignat, I., Opris, R., “Providing High Data Availability in MEDIOGRID”, 8th

International Symposium on Symbolic and Numeric Algorithms for Scientific Computing,
Timisoara, Romania, September 26-29, 2006

[9] Stone, N., Simmel, D., and Kielmann, T., “GWD-I: An architecture for grid checkpoint

recovery services and a GridCPR API”. Grid Checkpoint Recovery Working Group Draft
3.0, Global Grid Forum, http://gridcpr.psc.edu/GGF/docs/draft-ggf-gridcpr-Architecture-

2.0.pdf, May 2004.

[10] Graham, E. F., and et al., “HARNESS and fault tolerant MPI”, Parallel Computing, vol.
27, pp. 1479-1496, 2001.

[11] Bosilca, G., and et al., “Mpich-v: Toward a scalable fault tolerant mpi for volatile nodes”,
in Proceedings of Supercomputing, 2002.

[12] ]Townend, P., Xu, J., “Fault Tolerance within Grid environment”, Proceedings of AHM2003,

page 272, 2003
[13] Ranganathan, K., Foster, I.T., “Identifying Dynamic Replication Strategies for a High-

Performance Data Grid”, Proceedings of the Second International Workshop on Grid Com-

puting Vol. 2242, pages: 75-86, 2001

(1) Computer Science and Engineering Department, ”Politehnica” University of
Timisoara, V. Parvan street, no. 2, 30023, Timisoara, Romania

E-mail address: dacian@cs.utt.ro

(2) Computer Science and Engineering Department, ”Politehnica” University of

Timisoara, V. Parvan street, no. 2, 30023, Timisoara, Romania

E-mail address: vcretu@cs.utt.ro

(3) Computer Science and Engineering Department, ”Politehnica” University of

Timisoara, V. Parvan street, no. 2, 30023, Timisoara, Romania
E-mail address: horia@cs.utt.ro


