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AN EVOLUTIONARY MODEL FOR SOLVING MULTIPLAYER
NONCOOPERATIVE GAMES

RODICA LUNG(1) AND D. DUMITRESCU(2)

Abstract. Computing equilibria of multiplayer noncooperative normal form
games is a difficult computational task. In games having more equilibria
mathematical algorithms are not capable to detect all equilibria at a time.
Evolutionary algorithms are powerful search tools for solving difficult opti-
mization problems. It is shown how an evolutionary algorithm designed for
multimodal optimization can be used for solving normal form games.

1. Introduction

Game theory is one of the fields of mathematics that has the largest impacts in
the economic and social fields.

What economists call game theory psychologists call the theory of social situa-
tions, which is an accurate description of what game theory is about [1]. There are
two main branches of game theory: cooperative and non cooperative game theory.
Non cooperative game theory deals largely with how intelligent individuals inter-
act with one another in an effort to achieve their own goals. That is the branch
of game theory discussed here.

Solving multiplayer normal form games presenting multiple Nash equilibria is a
difficult task that is addressed here by using evolutionary algorithms (EAs). The
aim is to show that EAs can be used to detect multiple solutions of a game by
transforming the game into a multimodal optimization problem.

2. Prerequisites

Notations and basic notions related to game theory that are necessary for this
work are presented in this section.

A finite strategic game is defined by Γ = ((N, Si, ui), i = 1, N) where:
• N represents the number of players;
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• for each player i ∈ {1, ..., N}, Si represents the set of actions available
to him, Si = {si1, si2, ..., sim}; S = S1 × S2 × ... × SN is the set of all
possible situations of the game;

• for each player i ∈ {1, ..., N}, ui : S → R represents the payoff function.

The following notations are based on [6]
Let Pi be the set of real valued functions on Si. The notation pij = pi(sij) is

used for elements pi ∈ Pi.
Let P = ×i=1,...,NPi and m =

∑n
i=1 mi. Then P is isomorphic to Rm.

We denote elements in P by P = (P1, P2, ..., PN ) where Pi = (pi1, pi2, ..., pimi).
If p ∈ P and P ′i ∈ Pi then (P ′i , P−i) stands for the element Q ∈ P that satisfies

Qi = P ′i and Qj = Pj for j 6= i.
Let ∆i be the set of probability measures on Si. We define ∆ = ×i=1,...,N∆i.

Elements pi ∈ ∆i are real valued functions on Si: pi : Si → R and it holds that

∑

sij∈Si

pi(sij) = 1, pi(sij) ≥ 0, ∀sij ∈ Si.

We use the abusive notation Sij to denote the strategy Pi ∈ ∆i with pij = 1.
Hence, the notation (Sij , P−i) represents the strategy where player i adopts the
pure strategy Sij and all other players adopt their components of P .

The payoff function ui is extended to have domain Rm by the rule

ui(P ) =
∑

s∈S

P (s)ui(s),

where

P (s) =
N∏

i=1

Pi(si).

A strategy profile P∗ = (P1∗, P2∗, ..., PN∗) ∈ ∆ is a Nash equilibrium (NE) if
for all i ∈ {1, ..., N} and all Pi ∈ ∆i, we have

ui(Pi, P−i∗) ≤ ui(P∗).
Thus a strategy profile P∗ is a Nash equilibrium if no player can unilaterally

increase its payoff when all the other keep theirs unchanged. A normal form game
can present more than one NE. Nash [8] proved that there exists at least one NE
for any normal form game.

The problem of finding the NEs of a normal form game can be formulated as
the problem of detecting all the global minima of a real valued function [5]. This
function is constructed using three functions: x, z and g, all defined on P and
having values in Rm. We define the ijth value for this functions for any p ∈ P,
i ∈ {1, ..., N} and Sij ∈ Si as
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xij(P ) = ui(Sij , P−i)(1)
zij(P ) = xij(P )− ui(P )(2)
gij(P ) = max(zij(P ), 0)(3)

We define the real valued function v : ∆ → R by

v(P ) =
N∑

i=1

mi∑

j=1

(gij(P )2).

Function v is continuous, differentiable and satisfies the inequality v(P ) ≥ 0 for
all P ∈ ∆.

A strategy profile P∗ is a NE if and only if is a global minimum of v, i.e.
v(P ∗) = 0 [5, 4].

3. Evolutionary multimodal optimization

The main problem in dealing with multimodal optimization is to detect and
preserve both local and global solutions.

Over the years, various population diversity mechanisms have been proposed
that enable Evolutionary algorithms (EAs) to evolve and maintain a diverse pop-
ulation of individuals throughout its search, so as to avoid convergence of the
population to a single peak and to allow EAs to identify multiple optima in a
multimodal domain. However, various current population diversity mechanisms
have not demonstrated themselves to be very efficient as expected. The efficiency
problems, in essence, are related to some fundamental dilemmas in EAs imple-
mentation. Any attempt of improving the efficiency of EAs has to compromise
these dilemmas, which include:

• The elitist search versus diversity maintenance dilemma: EAs are also
expected to be global optimizers with unique global search capability to
guarantee exploration of the global optimum of a problem. So the elit-
ist strategy is widely adopted in the EAs search process. Unfortunately,
the elitist strategy concentrates on some “super’ individuals, reduces the
diversity of the population, and in turn leads to the premature conver-
gence.

• The algorithm effectiveness versus population redundancy dilemma: For
many EAs, we can use a large population size to improve their effec-
tiveness including a better chance to obtain the global optimum and
the multiple optima for a multimodal problem. However, the large pop-
ulation size will notably increase the computational complexity of the
algorithms and generate a lot of redundant individuals in the popula-
tion, thereby decrease the efficiency of the EAs.
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Two main evolutionary approaches to multimodality have been adopted:

• Implicit approaches that impose an equivalent of either geographical
separation or of speciation

• Explicit approaches that force similar individuals to compete either for
resources or for survival

4. Roaming optimization

A recent evolutionary approach to multimodal optimization called Roaming
optimization (RO)[2] is presented.

Within Roaming, the tasks of exploitation and exploration are separated. The
first one is performed by a group of elitist individuals belonging to an external
population called the archive while the second one is realized by subpopulations
evolving in isolation.

One of the problems facing multimodal optimization techniques is how to decide
when an optimum has been detected. Roaming surpasses this problem by intro-
ducing a stability measure for subpopulations. This stability measure enables the
characterization of subpopulations as stable or unstable.

A subpopulation is considered stable if no offspring is better in terms of fitness
function than the best individual in the parent population. Subpopulations that
produce offspring better than the best parent are considered unstable and evolve
in isolation until they reach stability.

The best individual in a stable subpopulation is considered to be a potential
local optimum and included into the archive using a special archiving strategy.

The number of subpopulations is a parameter of the algorithm and it is not
related to the expected number of local optima. This confers flexibility and ro-
bustness to the search mechanism.

The archive contains individuals corresponding to different optimum regions.
The exploitation task is realized by refining the elite individuals in the archive.

The output of the algorithm is represented by the archive - the set of elitist
individuals containing local optima.

5. Deflection technique

The deflection technique [3] is an alternative technique that allows the detection
of multiple optima during a single run of an optimization algorithm. Let f : D →
R, D ⊂ Rn be the original objective function under consideration.

Let x∗i , i = 1, ..., k be the k optima (minima) of f . The deflection technique
defines a new function F : D → R as follows:

F (x) = T1(x; x∗1, λ1)−1 · ... · Tk(x; x∗k, λk)−1f(x)
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where λi, i = 1, ..., k are relaxation parameters and Ti, i = 1, ..., k are appropri-
ate functions in the sense that the resulting function has exactly the same optima
as f except at points x∗i , i = 1, ..., k .

The functions

Ti(x;x∗i , λ1) = tanh(λi||x− x∗i ||), i = 1, ..., k,

satisfy this property, known as the deflection property as shown in [3].
When an algorithm detects a minimum x∗i of the objective function, the al-

gorithm is restarted and an additional Ti(x; x∗i , λi) is included in the objective
function F (x).

6. Experimental results

Roaming optimization is used to solve several normal form games presenting
multiple NE. Results are compared with those obtained by two types of heuristics
- differential evolution (DE) and particle swarm optimization (PSO) - adapted to
detect multiple solutions using the deflection technique. Experimental set-ups and
results regarding DE and PSO presented in [9] are used here. Six variants of DE
and two variants of PSO were used.

Results are also compared with those obtained using the state-of-art software
GAMBIT (ver. 0.2007.01.31) [7], which computes NE by solving systems of poly-
nomial equations.

6.1. Test problems. The following test problems presenting multiple NE, avail-
able with the GAMBIT software are considered.

GAME1. This is a four players each having two strategies available normal form
game. GAME1 has three NE. The corresponding GAMBIT file is 2×2×2×2.nfg.

GAME2. This is a game with four players, each having two strategies available,
having five NE. The corresponding GAMBIT file is g3.nfg.

GAME3. This is a five player game, with two strategies available to each player,
having five NE. The corresponding GAMBIT file is 2× 2× 2× 2× 2.nfg.

GAME4. This is a three player game, with two strategies available to each of
them, having nine NE. The corresponding GAMBIT file is 2× 2× 2.nfg.

6.2. Experimental set-up. The parameter setting for RO are presented in table
1. Common parameters used to run DE1-6, PSOc and PSOi are presented in table
2.
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Table 1. Parameter settings for Roaming

Parameter GAME1 GAME2 GAME3 GAME4
Subpopulations number 10 10 10 30
Size of subpopulations 10 5 5 3
Number of generations 200 200 300 500
Iteration parameter 1 1 1 1

Table 2. Parametter settings for DE and PSO

Problem Pop. size Iterations/restart No. restarts
GAME1 20 1000 8
GAME2 20 1000 10
GAME3 50 2000 10
GAME4 10 1000 15

6.3. Dealing with constraints. In order for a point X = (xij)i=1,...,N ;j=1,...,mi

to be a NE it must satisfy the constraints naturally arising from the condition
X ∈ ∆, which is

mi∑

j=1

xij = 1, ∀i = 1, ..., N.

To evaluate the fitness of each individual X the following normalization is used:

x′ij =
||xij ||∑mi

j=1 ||xij || ,

which ensures that X ′ ∈ ∆. This normalization is used only to compute the
fitness value of individuals and not to constraint the population to lie in ∆.

6.4. Results. Descriptive statistics presenting the mean, standard deviation, min
and max number of NE obtained for each problem by each method over 30 runs
are presented in tables 3-6.

7. Conclusions

Detecting multiple Nash equilibria of multi-player games is a difficult task that
most of the times is addressed by applying an algorithm several times. When the
number of equilibria or the number of player increases classical approaches are
difficult to apply and not always successful.

Evolutionary algorithms designed to detect multiple optima can be used to find
Nash equilibria because solving a normal form game is equivalent to finding all
the minima of a function constructed from the game.
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Table 3. GAME1 results - number of NE detected

Technique Mean St. Dev Min Max
RO 3 0 3 3
DE1 2.97 0.18 2 3
DE2 2.93 0.25 2 3
DE3 2.97 0.18 2 3
DE4 3 0 3 3
DE5 3 0 3 3
DE6 3 0 3 3
PSOc 2.97 0.18 2 3
PSOi 3 0 3 3
GAMBIT 3 0 3 3

Table 4. GAME2 results - number of NE detected

Technique Mean St. Dev Min Max
RO 5 0 5 5
DE1 4.73 0.45 4 5
DE2 4.30 0.47 4 5
DE3 4.63 0.49 4 5
DE4 4.33 0.48 4 5
DE5 0.87 0.51 0 2
DE6 4.47 0.51 4 5
PSOc 4.67 0.48 4 5
PSOi 4.90 0.31 4 5
GAMBIT 5 0 5 5

Table 5. GAME3 results - number of NE detected

Technique Mean St. Dev Min Max
RO 5 0 5 5
DE1 3.10 0.55 2 4
DE2 1.20 0.71 0 3
DE3 3.17 0.75 2 4
DE4 3.03 0.72 2 5
DE5 1.63 0.76 0 3
DE6 2.57 0.82 1 4
PSOc 3.00 0.69 2 4
PSOi 3.37 0.72 2 5
GAMBIT 5 0 5 5
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Table 6. GAME4 results - number of NE detected

Technique Mean St. Dev Min Max
RO 8.83 0.46 7 9
DE1 6.70 1.09 4 9
DE2 7.17 1.05 5 9
DE3 7.27 0.87 6 9
DE4 7.90 0.76 7 9
DE5 6.80 1.13 4 9
DE6 7.57 0.90 5 9
PSOc 7.03 0.76 5 9
PSOi 6.90 0.96 5 9
GAMBIT 7 0 7 7

Thus six instances of the Differential Evolutionary algorithm and two of the
Particle Swarm Optimization algorithm have been adapted using a deflection tech-
nique to detect multiple optima. Results are compared with an evolutionary algo-
rithm designed for multimodal optimization called Roaming optimization.

Numerical experiments indicate that EAs are efficient in this task. Among
evolutionary techniques, Roaming proved to have the best results for the test
problems taken into account.
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