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PROTEIN FOLDS
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Abstract. The vast majority of animal toxins acts either on sodium or
potassium channels. These channels regulate neuronal activity by either in-
hibiting or activating various neuronal systems. Toxins have been a useful
tool for mapping the distribution of various channels types within a variety
of organisms. The aim of this paper is to present an automated approach
for detecting whether a toxin acts on voltage-sensitive sodium versus potas-
sium channels. In addition, our consensus sequence is also able to reliably
determine whether the toxin acts as a gate modifier or pore blocker (> 93%
accuracy). Lastly, we present evidence regarding the existence of two new
putative potassium channel gate binding motifs through the use of a learning
vector quantization neural network.

1. Introduction

Evolution has endowed animal species with the ability to produce a bewilder-
ing array of toxic substances, for both protection and predation. The effects of
toxins range from being mildly irritating to lethal on the inflicted victim. Toxins
can be broadly classified as either venoms or poisons. Toxins interfere with the
normal functioning of specific cell types within the prey organism, although the
mechanism(s) of action of several toxins remain to be elucidated [6].

Considering the wide range of toxicities exhibited by animal toxins, it would be
very helpful to be able to have a structure function relationship for a given toxin.
This task has not yet been accomplished, as there appears to be a small number
of structural features (i.e. protein folds) for the vast array of toxins that produce
overlapping mechanisms of action (e.g. αα or βαββ, [7]). This lack of specificity
has made the automated determination of site of action versus structure very
difficult. What is still required is a clear consensus sequence that relates structure
to site of action. We have attempted to address the issue of generating a consensus
sequence, focusing solely on potassium and sodium channels [2]. The challenge has
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been to find a direct association between the structure of the toxin and its specific
site of action.

There are several internet-based databases that contain specific information
about various toxins ([9], http://www.ncbi.nlm.nih.gov/, http://ca.expasy.org/,
http://www.expasy.org/sprot/tox-prot etc.).

In this work, we sought to determine if we could discover one or more con-
sensus sequences for sodium and potassium channels. In addition, we wished to
determine if a consensus sequence could be obtained, providing a classification
based on whether they acted on the pore or the gate. The results would allow
one to determine directly from sequence databases whether the toxin acted on
sodium/potassium channels and also whether they would inactivate the channel
either by binding to the gate or by blocking the channel pore.

This paper is organized as follows: the next section presents a description of
the basic methodology employed, followed by a presentation of the major results,
and lastly by a brief conclusion section.

2. Methods

This study entailed the use of several internet based protein structure reposi-
tories. The basic outline of our consensus development strategy is as follows:

1. Obtaining the toxins targeting sodium and potassium channels.
2. Refining toxins by extracting the active forms.
3. Separate toxins based on their site of actions.
4. Using various consensus sequence extraction tools sat as PRATT.
5. Comparing the resultant consensus sequences thus obtained by doing a search

through the PDB looking to see what the sensitivity and specificity of the resultant
hit list was.

6. PRATT consensus builder was employed.
7. Database search using the generated consensus sequences.
8. Repeat from step 2 as necessary.

Below we describe the process in more detail.

2. 1. Obtaining the toxins targeting Na and K Voltage gate ion channels: The
keywords ’potassium channel inhibitor’ were entered into the SRS on the ExPASy
server returning a list of peptide toxins targeting Kv channels, returning a list
of 155 peptides. Sequences were in FASTA format and output saved into a text
document named Master-K.txt. FASTA format was chosen as it is recognized
by many types of bioinformatics analysis tools available online [7]. The process
was repeated for the Sodium channel toxins using the keywords ’Sodium channel
inhibitor’, returning 283 toxins.

Refining toxins by extracting active forms: Toxins in ExPASy can contain en-
tire active sequences but sometimes contain Signal peptides and/or Propeptide
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sequences. These regions were removed in order to obtain active peptide sequences
only, as programs may take those features to generate results. Under the region
’Features’ is where details are presented if available, that describes details such as
domains and disulphide bonds, e.g. Charybdotoxin b precursor from the scorpion
Leiurus quinquestriatus hebraeus, SWISSPROT id P59943:

MKILSVLLLA LIICSIVGWS EAQFTDVSCT TSKECWSVCQ RLHNTSIGKC
MNKKCRCYS

Key/From/To/Length/Description ⇒ [SIGNAL/1/22/22/”by similarity”]
MKILSVLLLA LIICSIVGWS EA
(leaving the active peptide):
QFTDVSCT TSKECWSVCQ RLHNTSIGKC MNKKCRCYS
These features in ExPASy are not all experimentally derived and have been

assigned 3 types of comments [7]: (a) Potential, (b) Probable and (c) By similarity.
’Potential’ -there is some logical evidence that given annotation could apply.

This non-experimental qualifier is often used to present the results from protein
sequence analysis tools if the results make sense in respect to a given protein
[1], [2]. ’Probable’ -is a stronger indicator than ’Potential’ and is based on some
experimental evidence, that the given information is expected to be found in the
natural environment the protein [3], [4].’By similarity’ -facts proven for the protein
or part of it, and then transferred to other protein family members within a certain
taxonomic range. Sites within conserved domains to each other include active
sites and disulfide bonds [5]. The Master files contain active toxin peptides, were
’saved as’ Primary files: Prim-Na.txt and Prim-K.txt files. Master files remained
untouched since downloading.

Separating toxins by site of action: The toxins in the Primary files were sep-
arated by site of action, sites where determined through literature reading from
associated links of ExPASy. The resulting data was stored on disc for further
analysis (see below).

Prim-K.txt: K-pores.txt & K-gaters.txt
MasterNa.txt: Napores.txt & Na-gaters.txt
K-files: SWISSPROT ID’s for each toxin in the Prim-K.txt file was entered

into ExPASy. The resulting page has links to related (published) literature that
was reviewed to determine the toxin as a pore blocker or a gate modifier. Once
determined, the toxin entry was cut and pasted into the respective file.

Na files: The process for Kv toxins was repeated, however due to the structural
differences between the channels, Nav was found to have 6 binding sites, 5 of which
are associated with the gate (sites 2-6) and site 1 the pore.

Veratridine, Batrachotoxin and Grayanotoxin are toxins acting on site 2, but
are not peptides. They were not present on the list of the ExPASy output for
Sodium channel inhibitors. Brevetoxin and Ciguatoxin acting on site 5 again are
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not peptide toxins that were returned on the output for Sodium channel inhibitors,
therefore these toxins will be excluded.

PRATT Consensus builder: PRATT (http://www.ebi.ac.uk/pratt/) is part
of EBI (http://www.ebi.ac.uk) and generates consensus sequence motifs from un-
aligned fasta files. ExPASy has many other databases and tools for analysis of
proteins and PROSITE will be initially used to search against the generated con-
sensus. PRATT search input parameters can be modified to the user preferences,
i.e. consensus must match at least 50% of inputted sequences. The output of
PRATT is in PROSITE format and feed directly into the PROSITE database
search [9].

2.2. Database search: PROSITE is a database that can be searched when a
Motif is entered as a parameter (http://www.ExPASy.org/prosite/). The website
is able to understand patterns and motifs by using the accepted one letter abbre-
viations of the amino acids (e.g. G is Glycine), i.e. the usual format of a typical
pattern/motif can be something like:

G-[ASP]-V-X(2)-GLA-SP,
where letters correspond to their aminoacids, ’-’ separates the next aminoacid,

X calls for any aminoacid (the number in the brackets determines how many of
the preceding letter), {∗} -aminoacids within curly braces are not to be included
in the pattern/Motif search.

Example of interpretation: ”Starting with a Glycine, followed by Alanine, Serine
or Proline, followed by a Valine, then by any 2 aminoacids, followed the aminoacid
order Glycine, Leucine and Alanine and finally ending on any aminoacid barring
Serine or Proline”.

3. Results

Potassium - GATE: The gate (voltage sensor) of the Kv channel currently has
two known folds targeting it. These folds are: βββ, 310ββ and 2 non-categorised
folds ββ and ββββ.

The consensus that was applied to the structures was:
C-X(3)-[WMILF]-X(9,10)-C-X(0,3)-[REKH]-X(1,5)-C-X(3,10)-C
This consensus finds 19 out of the 20 toxins that have been classed to target the

potassium gate. The only toxin that does not contain this consensus is Kappa-
conotoxin BtX from the Cone snail.

3.1. POTASSIUM-PORE: Starting with the potassium channel pore con-
sensus,

C-X(9,12)-C-X(2,5)-C,
Folds include: βββ, αα (hairpin), αα (helical cross), 310αα, αβ, βαββ and

310ββα
βββ PRATT ouput: CXK7A-CONPU∗: 8- 26: Cfqhlddccsrk-CnrfnkC.
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3.2. SODIUM-PORE: Site 1 is the pore of the sodium channel. The folds
that recognize the Nav Pore are: ββ, βββ and βαββ. The Pore consensus will be
applied to a structure that represents each fold.

C-x(3,6)-C-x(4,6)-C-[ACGN].

Matches 15 out of 16 known Nav pore blocking toxins.
Example displayed: ββ-Conotoxin GS. CXGS-CONGE: 9-20: grgsr Cppqc–

Cmglr–CGrgnpq

3.3. SODIUM-GATE: Site 3 best consensus for C-X(6,9)-C-X(0,6)-C
This consensus matches some toxin sequences six times, Neurotoxin Tx2-6 from

the Brazilian armed spider. As a result alignment B will be chosen as it matches
some toxin sequences only 3 times.

C-x(5,7)-C-x(10,13)-C

All folds except ββαββα target site 3 of the sodium channel. Each fold type
will be shown ββ Robustoxin (funnel web spider)

TXDT1-ATRRO: 1-20: Cakkrnw-Cgknedcccpmk–C iyawy
TXDT1-ATRRO:14-31: gkned Cccpmk–Ciyawynqqgs—Cqttit

Finally, a consensus was determined for all potassium and sodium channel tox-
ins. This produced an interesting output, in that the individual consensus se-
quences seem to be the reverse of each other.

Potassium toxins C-X(9,12)-C-X(2,6)-C,
Sodium toxins C-X(3,6)-C-X(5,9)-C.
The potassium toxin consensus has a long spacer region between the first and

second Cystiene and the sodium has a longer spacer region between the second and
third Cystiene. The predominant type of channel toxin for the potassium channel
seems to be Pore specific and for the sodium channel the gate conversely. The
relationships between these observations are not clear but may help to understand
the differences between the two types of ion channel toxins.

In our previous work [2], we have noticed that there were 2 unreported potas-
sium channel gate modifiers -with the ββ and ββββ folds. It is well known that the
ββ fold is found in conotoxins, but these act on sodium channels as pore blockers,
not gate modifiers. Our initial study of these toxins suggested that these 2 motifs
are also able to bind to potassium channels as well. Table 1 summarizes statistics
of the overall consensus sequences for each of the categories.

Table 1. The summary statistic
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Target Number Consensus Sequence % Found
K Pore 127 C-X(9,12)-C-X(2,5)-C 93.7%
K Gate 20 C-X(3)-[WMILF]-X(9,10)-C-X(0,3)- 95.0%

[REKH]-X(1,5)-C-X(3,10)-C
Na Pore 16 C-X(3,6)-C-X(4,6)-C-[ACGN] 93.75%
Na Gate 247 C-X(3,6)-C-X(9,11)-C 93.9%
All K 145 C-X(11,14)-C-X(2,5)-C 91.72%
All Na 262 C-X(3,6)-C-X(10,13)-C 93.13%

This result was based on motif matching from our selected database extracted
from various toxin repositories. We sought to strengthen the case for these two
new putative potassium gate modifiers in this study.

To provide additional support for this hypothesis, we generated a classifier
based on a self-organized type of neural network -the learning vector quantization
(LVQ2.1). LVQ is a supervised version of vector quantization, similar to Self-
Organizing-Maps (SOM). LVQ can be understood as a special case of an artificial
neural network, applying a winner-take-all Hebbian learning-based approach. It
can be applied to pattern recognition, multi-class classification and data compres-
sion tasks. LVQ algorithms directly define class boundaries based on prototypes,
a nearest-neighbour rule and a winner-takes-it-all paradigm. The main idea is to
cover the input space of samples with ”codebook vectors” (CV), each representing
a region labelled with a class. A CV can be seen as a prototype of a class member,
localized in the centre of a class or decision region (”Voronoi cell”) in the input
space. As a result, the space is partitioned by a ”Voronoi net” of hyperplanes
perpendicular to the linking line of two CVs (mid-planes of the lines forming the
”Delaunay net”). A class can be represented by an arbitrarily number of CVs,
but one CV represents one class only. In terms of neural networks a LVQ is a
feedforward net with one hidden layer with Kohonen neurons, adjustable weights
between input and hidden layer and a winner takes it all mechanism. The basic
LVQ algorithm -LVQ1- tends to push CVs away from Bayes decision surfaces. In
order to get better approximations of the Bayes rule by pairwise adjustments of
two CVs belonging to adjacent classes, in LVQ2 (LVQ2.1 too) adaptation only
occurs in regions with cases of misclassification in order to get finer and better
class boundaries. To conclude, a main advantage of using LVQ is that it creates
prototypes that are easy to interpret for experts in the field.

The code vectors were selected randomly from the set of sequences that were
found during our motif search (see Table 1 for details). After seeding the code
book vectors by randomly selecting members from of each of the classes (pore
blockers - sodium/potassium and gate modifiers - sodium/potassium), the rest of
the candidates from the consensus search were presented to the network. If the
putative consensus were indeed from a different class then the others, they would
tend to aggregate in the vicinity of their respective code-book vectors. A critical
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feature in this type of neural network is a distance metric. We encoded the motifs
according to aminoacid letter and number of residues. We therefore presented the
sequences according to the motifs presented in Table 1. An X(3,6) for instance is
matched with the letter ’X’ and the numbers 3-6 in the form of a set of strings
XXX, XXXX, XXXXX, XXXXX. Then we used the ordinal position within the
alphabet as the distance metric to calculate which code book vector a particular
consensus sequence was closest too. We performed a 10-fold cross validation,
partitioning the dataset into disjoint sets of 10 randomly selected elements until
all of the consensus sequences were used as code book vectors. The results indicate
that the two new sequences did map to the potassium gate modifier, indicating
that they were closest to this code book vector than to any other code book vector.

4. Conclusions

In this study we developed a set of consensus sequences that could differen-
tiate potassium from sodium channel acting toxins. Our methodology was able
to generate consensus sequences for potassium gate and pore blockers (2 and 3
respectively) as well as sodium channel gate and pore blockers (4 and 5 respec-
tively). In addition, we were able to come up with a consensus sequence that was
able to generically differentiate potassium from sodium channel toxins (6 and 7
respectively). No literature report has provided a consensus sequence that could
distinguish pore from gate blockers for either sodium or potassium channels and
this is the novel result from this study. When the consensus sequences we have
generated are entered into a standard protein sequence database such as PDB, we
find that the accuracy, in terms of number of hits per known number of toxins
acting on that particular site, is quite high -on the order of 93% or higher in this
study. It should be noted however that consensus generation has been optimal
when sequence numbers are low or toxins are from a related family. The toxins
that act on the channels in this project are from a wide range of organisms.

This approach provides additional evidence that there are two more gate mod-
ifier motifs: ββ and ββββ. The ββ motif is similar to a subset of toxins that are
sodium channel pore blockers, yet there is no evidence reported in the literature
that indicates they bind the gate (voltage sensor) of potassium channels to our
knowledge. This is still a preliminary result and further work must be performed
to strengthen the case for this argument. If it holds true, then there will be a total
of 10 potassium channel motifs, although one may cross-react with one or more
sodium channel pore(s) and potassium gate(s).
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