
STUDIA UNIV. BABE��BOLYAI, INFORMATICA, Volume LI, Number 1, 2006

COMPONENTS MODELING IN UML 2

JEAN-MICHEL BRUEL AND ILEANA OBER

Abstract. The Object Management Group (OMG) has recently recom-
mended for adoption the proposal that will be the basis for the new version
of the Uni�ed Modeling Language � UML. In this version 2.0 of UML, the
component model has been completely modi�ed. The �rst goal of this paper
is to describe this new model. The second goal is to study if it is really more
than a notation improvement. We go through the requirements for a general
component modeling language, the existing e�orts in this area, and the new
UML 2.0 model itself.

1. Introduction
Nowadays, even the simplest software systems are complex. Generalization of

the client/server architecture, importance of the notion of services, distributed in
di�erent nodes of the system, and distantly available, real-time and critical aspects
more and more involved, are some of the reasons for such a complexity. As a matter
of fact there is a big issue in the use of reusable pieces of software components. But
when it comes with components and composition, there are two complementary
problems to solve [12]: �[. . . ] how to meet requirements using component-based
designs and how to design components that work well together.�

Components and composition have been an active research topic for a long time
now. But it is undoubtable that there is no such a usage of software components
as in hardware for example. One of the reason advocated by international surveys
is the lack of support for composition description and evaluation [24]. Not so long
ago, when you typed �Component Modeling Language� in a web-search engine,
not only you did not �nd so many links, but you found among the �rst ones a link
to the Rational Rose web page. Looking through this page, and also through the
recently adopted U2-partners proposal for the upcoming 2.0 version of the UML,
it seems that UML 2.0 aims to be, among other things, a component modeling
language [23].

Received by the editors: June 10, 2006.
2000 Mathematics Subject Classi�cation. 68N99.
1998 CR Categories and Descriptors. D2.2 [Software Engineering]: Design Tools and

Techniques � Object-oriented design methods.

79



80 JEAN-MICHEL BRUEL AND ILEANA OBER

We do not aim here to fully explore the requirements for a potential component
modeling language (see e.g., [19, 2] for such requirements), but we intend to give
a critical overview of the new UML support for components using the following
organization: in section 2 we will describe composition models and languages; in
section 3 we will describe the UML 2.0 component model; in section 4, we will
present ongoing e�orts that aim at providing good support for composition; in
section 5 we discuss this model from a critical point of view; and we will conclude
in section 6.

2. Composition models and languages
Component based development o�ers a means to deal with the increasing soft-

ware complexity. We do not start with the rather philosophical and surely con-
troversial question on what it is a component. Instead we will focus on the main
issues related to components.

According to various authors [18, 25] components are characterized by their
interfaces, which specify their possible interaction with their environment and
o�er a basis for establishing the compatibility between two or several components.
The provided interfaces specify how a component can be used and summarize what
it o�ers to the outside world. Besides the provided interfaces, a component should
specify what the deployed environment should provide in order for the component
to be able to o�er the functionality speci�ed in the provided interface [20]. These
context dependencies are speci�ed using required interfaces.

For a good component speci�cation, the structural speci�cation of components
done in terms of provided and required interfaces should be complemented with
a component contract [6, 17]. Specifying required interfaces is a �rst step in this
direction, however it only covers the structural/signature level. More advanced
techniques for component speci�cation include invariants, pre- and post-conditions
of the services o�ered/required by the interfaces, various kinds of logics, automata-
like speci�cation techniques for component abstractions, etc. The nature of the
component contract, and of the contract speci�cation technique varies depending
on whether the component is viewed as a unit with state (as argued in [18]), or a
stateless unit (as argued in [25]).

The component contract can be speci�ed at various levels of abstraction and
can address various needs.

[6] de�nes a four level contract framework, where each level corresponds to a
class of contracts (from the �rst to the forth): syntactic, behavioral � described in
terms of pre- and post-conditions and invariants, synchronization, and quality of
service. In this framework, contracts corresponding to the �rst two levels can be
checked statically (provided that enough veri�cation theoretical background exists
), while the last two levels are basically focused on dynamic behavior and on the
integration of the component on the execution platform.



COMPONENTS MODELING IN UML 2 81

One important and much studied issue in this context is the component com-
position: gathering together various components into a working system. Related
to this, lots of e�orts address the impact of composition on the properties of the
composed components. A thorough analysis of the composition, formalizing it as
an operation that considers the components and their integration constraints can
be found in [14]. The paper also proposes a framework for component composition.

In what follows we present a list of expected features needed for a good com-
ponents model. This list is established independently of UML, and will serve as
as a basis for discussing the properties of the component model o�ered by UML.

Precise modeling concepts. Since the component modeling o�ers an abstract
view of the system under modeling, it is crucial to have unambiguous de�nitions
and a precise semantics of the basic modeling concepts.

Expressive power. For this the parts that need to be covered [15] are: (i) in-
terface speci�cation: it should be possible to associate sets of interfaces to a
component speci�cation and to specify their relationship with the component,
i.e. whether they are required or o�ered; (ii) semantic speci�cation: de�ne and
document semantic information about the component's operations; (iii) extra-
functional properties speci�cation: such as quality of service (QoS) and timing.

Modeling features. [9] de�nes several key requirements for a component model.
Among the most general we mention: (i) encapsulation and identity; (ii) compo-
sition: the model should not only support dynamic composition, but also support
di�erent semantics of composition; (iii) life-cycle: a general model should support
di�erent forms of components throughout the entire development life-cycle.

3. UML 2.0 component model
Backwards compatibility and the possibility to include architecture represen-

tation into UML models have been the key concerns in the de�nition of the new
UML version. The component model itself has been improved, the overall concept
of composition has been integrated, even at class level. We will �rst introduce the
concepts and then discuss their pluses and minuses.

3.1. New concepts and improvements. Justifying the drawbacks in the UML
1.5 version in terms of composition is out of the scope of this paper. For an intro-
ductory illustration of some major di�culties in using the UML 1.5 composition
model, see [7]. UML 2.0 [23] provides support for decomposition through the new
notion of structured classi�ers1. A structured classi�er is a classi�er that can be in-
ternally decomposed (Classes, Collaboration, and Components). New constructs
to support decomposition have been introduced: Part, Connectors, and Ports. Note
that Part is a new name, but not a new concept. UML 2.0 allows the speci�cation of

1In this paper, we use Sans Serif font to highlight the new UML 2.0 concepts.



82 JEAN-MICHEL BRUEL AND ILEANA OBER

physical components such as in UML 1.5, of logical components, i.e. speci�cation
level components (e.g., business components, process components) as well as de-
ployed components (such as artifacts and nodes). A component is viewed as a "self
contained unit that encapsulates state + behavior of a set of classi�ers". It may
have its own behavior speci�cation and speci�es a contract of provided/required
services, through the de�nition of ports. It is hence a substitutable unit that can
be replaced as long as port de�nitions do not change. Notice that the notion of
"change" here is not de�ned and has to be taken at a syntactic level only. Notice
also that ports are not reserved to components, but are available for any structured
classi�er.

Three new constructs are part of the component model. Note that those con-
structs can be used together with any composite diagram. These new concepts
are:

Part: something that is internal to a composite structure. This is not much
di�erent from UML 1.5 except that aggregation applies to properties as
well as association ends. This is due to the uni�cation of attributes and
associations. Notice that instances (of a class) and parts have similar
notations, which might be confusing. The part names are not objects
identi�er, but role names. Parts have to be seen as roles, and instances
as the realization that satisfy these roles.

Connector: expresses the relationship between parts and between ports. It is a link
(an instance of association) that enables communication between two or
more instances, in addition to everything that ordinary links enable (e.g.,
navigating to a neighboring object to retrieve a property from it, modify
it, destroy it, etc.). It may be realized by pointer, network connection,
etc.

Port: a kind of part, but mainly used to represent the connection point via
which messages are sent to/received by a component (or a class). Ports
have a type which is given by a set of interfaces (provided and required)
and can be described with a state machine. UML 2.0 has introduced a
speci�c kind of state machines (that describes usage protocols of parts
of the system): protocol state machines, and hence renamed the previous
state machine (for describing the behavior of some entities): behavioral
state machine.

The interface represents a signature given in terms of a set of public features
(operations, attributes, signals). Interface attributes as well as association between
interfaces is new in UML 2.0. The interface use has been extended from UML 1.5: a
classi�er or a port may implement or require an interface, in addition to providing
an interface. Interfaces can be attached to ports. A required interface attached
to a port characterizes the behavioral features that the owning classi�er expects
from its environment via the given port, while a provided interface attached to a



COMPONENTS MODELING IN UML 2 83

port characterizes the behavioral features o�ered by the owning classi�er via the
given port. Note the distinction between a port and an interface: an interface
speci�es a service o�ered/required by a classi�er, while a port speci�es the services
o�ered/ required by the classi�er via that particular interaction point (port). It is
possible to attach to a port or to an interface, a protocol state machine that allows
the de�nition of a more precise external view by making dynamic constraints on
the sequence of operation calls and signal exchanges explicit. The protocol state
machine of a port (if present) shall be compatible with the protocol state machines
of all interfaces attached to it. However, this �compatibility" notion is not de�ned
in the proposal.

3.2. Component Diagrams. In UML 1.5, component diagrams were support
for physical components only. In UML 2.0, extends component diagrams from
addressing physical components to logical ones. Also it allows component-based
software engineering CBSE as it is now possible to trace from logical to physical
components.

There is two possible views for components models: (i) an external one (�black
box" view), where the focus is on contracts linking the component to its clients in
terms of provided services; (ii) an internal view (�white box" view), hidden from
the clients, where the focus is on how the component is organized in terms of parts,
sub-components, connectors, etc.

There is two speci�c connectors for components: (i) an assembly connector is
the link between a required (socket) and a provided (lollipop) interface of the
same time; (ii) a delegation connector connects a port on the container to/from an
internal port/part that has a compatible interface of the same kind (both provided
or both required). An arrow indicate the delegation direction. To be more precise,
connectors are between parts/ports that have compatible interfaces of di�erent
kinds (one provided, one required). It is one way to wire components together
(the other way is to use dependencies as in UML 1.5 version, but these do not
have an instance level counterpart).

3.3. Support for composition. New constructs and new approaches have been
introduced in UML 2.0 with direct impact on the support for composition. To
describe the links between a composite and its sub-components, UML 2.0 uses
several notions of components. BasicComponents and PackagingComponents are
capabilities of components modeled in separate packages for convenience of imple-
mentation. PackagingComponents are an extension of BasicComponents to de�ne
the grouping aspects of packaging components. A basic component inside a pack-
aging component is informally called a nested component. Note that this notion
is di�erent from the one of a part, which is not speci�c to components, and which
de�ne an element of an internal structure. As we have shown, the internal struc-
ture of a component can be described by a component diagram. In fact, despite
the added/modi�ed notations for components constructs, the main change, or the



84 JEAN-MICHEL BRUEL AND ILEANA OBER

one to most impact the ongoing research (such as ours [3]) is the introduction of
the StructuredClass �rst class element, and, at a lower level, the new distinction of
required interface. Components communicate together via messages going through
their ports, using the same idea as processes in SDL [11] or capsules in ROOM
[22]. Note that components can also communicate directly point to point, using
the same schema as in the Corba Component Model (CCM [10]). Nevertheless it
has to be conclude that components add only a little to structured classes as far
as composition is concerned.

4. Existing efforts
Several working directions projects address the issue of UML components. We

can classify them into the following categories:
• commercial tools - the various existing commercial UML tools o�er sup-

port for compositional modeling in UML to various extents, most often
on the model editing level. Few tools, such as Rhapsody,Telelogic Tau 2,
etc. o�er support for more advanced component related treatment such
as component speci�c code generation, veri�cations, symbolic execution,
etc.

• standardization - related e�orts: EDOC and SPT.
• research projects ACCORD, AIT-WOODDES, OMEGA, CML etc.

In what follows we give some more details on the e�orts mentioned at the previous
last two points.

The EDOC (Enterprise Distributed Object Computing) [21] has a standard
pro�le for UML, which introduces the notion of Component Collaboration Ar-
chitecture (CCA), where some concepts such as process components, ports and
connections are de�ned.

The UML Pro�le for Schedulability, Performance and Time (SPT) [22] o�ers
no particular treatment to components, although it is implied that the compo-
nent approach is suitable for the real-time domain. When describing concurrency,
components are mentioned as one of the di�erent kinds of concurrent units.

ACCORD is a French project aiming to de�ne a Platform Independent com-
ponent model, based on UML [27]. The proposed model uses the extension mecha-
nisms of UML 1.5 to support concepts such as components, ports and connectors.
In this model, component operations are attached to ports and the architectural
constraints are expressed in the means of OCL meta-level constraints. One of the
main contributions of this project is that to illustrate the derivation of a general
model towards Platform Speci�c Models (PSMs) such as CCM or EJB.

Related to ACCORD, the AIT-WOODDES project focused on the speci�ca-
tion of embedded real-time systems. One of the results of the project is a speci�c
component model [26] using concepts developed in ACCORD project with speci�c
real-time aspects.



COMPONENTS MODELING IN UML 2 85

The IST project OMEGA aimed to develop a methodology for modeling real-
time and embedded systems in UML, with the aid of formal techniques. In this
context, the e�orts go towards both �nding the best theoretical framework for
veri�cation in this precise context, and towards implementing them into tool sets
developed on the top of UML commercial tools. In this context, a particular
attention is given to the use of an appropriate component model, important for
enforcing property-preserving re�nement and for enabling e�cient validation. The
OMEGA component model is based inspired from the UML 2.0 component model,
however the tool sets was built upon UML 1.5 tools, for commercial tool availability
reasons.

The CML project [8] is an ongoing project aiming at the de�nition of a general
purpose component model, based on the UML notation, and on a formal frame-
work based on the Whole-Part Relationship (WPR). Two notions of composability
are used: horizontal composability - component binding and cooperation in dis-
tributed systems and vertical composability - whole (container) components pro-
cess requests of client components. Part components are fully encapsulated (into
whole components) and are not units of deployment in this particular context,
they provide implementations for the components that they belong to by means
of delegation. This approach [4] proposes to extend the semantic properties of the
whole-part relationship [3] by adapting its formal base to software composition.

5. UML 2.0 components analyzed from different perspectives
5.1. Critical point of view on the new UML 2.0 artifacts. UML 2.0 pro-
vides useful notation artifacts that were missing in UML 1.5 [7]. We believe those
improvements are not enough. This is why we have developed our own approach
of composition using UML 2.0 [4], and why certainly others will do the same in
the near future. Our theoretical framework is based on an adaptation to CBSE
of a formalization of the whole-part relationship (WPR) [3]. We have extended
the semantic properties of the WPR by adapting its formal base to software com-
position. We have determined which properties apply to component composition
and de�ned formally these properties. We ground our approach on metamodeling
and assertions in order to constrain the speci�cation of composition relationships.
Constraints are added to components at implementation time via generated con-
tracts. In our approach, the notion of Whole component can be linked to the one
of PackagingComponent and the Part components to the BasicComponent one. The
bene�ts of our approach is the well de�nition of precise properties to characterize
composition. For details and illustration of our approach, see [4, 5].

5.2. Support for composition. The requirements of the OMG RFP were ex-
plicit in terms of CBSE support: support for component assembly and plug-
substitutability, support for the speci�cation of common interaction patterns that
might occur between components, support for modeling of component execution



86 JEAN-MICHEL BRUEL AND ILEANA OBER

contexts (e.g., EJB and CCM containers), and support for pro�les de�nitions for
speci�c component architectures models (such as EJB, CORBA, and COM+).
The e�ort of the proposal to address these requirements is undoubtable as we
have described in section 3. Most of the construct needed for CBSE support have
been introduced. A set of recommendation had been produced based on the several
UML 2.0 RFI responses. In terms of composition, they were mainly: (i) improve
the semantics and notation to support component-based development, (ii) better
support for interfaces, and (iii) usage protocol for interfaces formalization. As we
have mentioned before, the �rst point have been missed, in our opinion, in the
sense that there is no semantic provided for the added constructs.

To summarize the pluses of the new UML 2.0 constructs we could say that it
provides: means to express architecture, means to express component contracts,
and more expressive communication description. And in terms of the minuses,
we could say that: there is too many overlapping constructs, relationship between
the various constructs are not clear, and the semantics has too many traps (e.g.,
misuse of new concepts) and lacks (e.g., of explanation and illustration of the usage
of new concepts, informal assumptions, . . . ).

5.3. Support for Agile Modeling. As an illustration of the concrete use of the
improvements brought by the new version, let us mention some of those made by
Scott Ambler in its overall Agile Modeling approach [1]. Here are some examples of
his proposal. In the Component Diagram, Ambler suggests that the ports should
be linked to one interface only. This seems to be only informally assumed in some
of the UML 2 spec, but there is no explicit restriction of the number of interfaces
on a port. This simpli�es the delegation mechanisms (internal structure). Three
di�erent relationships between ports and parts have been identi�ed: (i) delegates,
which is the usual relationship between a port and a part in UML 2.0. (ii) stereo-
typed delegates, which speci�c notation comes in replacement of the previous in
order to prevent confusion with the unidirectional association, which has the very
same drawing. (iii) realizes, which indicates that it is the realization of a port.
Ports are viewed in this case as logical modeling constructs realized by physical
constructs such as classes.

Another example is the use of class to systematically implements ports (using
the Façade design pattern [13]). These classes implement the public operations
required by the interfaces.

The main conclusion of the use of UML 2.0 from an agile point of view is the
fact that it eases the application of the heuristics that were already de�ned in
terms of good practices by supplying new and useful constructs (di�erentiation
between application, infrastructure and domain components, de�nition of compo-
nent contracts, etc.).

5.4. Expressive power of the architecture description. [16] presents a deep
analysis of UML 1.5's expressive power for modeling software architecture, in a way



COMPONENTS MODELING IN UML 2 87

natural to the way this is done in traditional architecture description languages.
In the followings we start from the results of this analysis, and try to see how
they are a�ected by the changes made in UML 2.0, and to what extent UML 2.0
answers or not the speci�c needs of software architecture modeling.

In [16], Medvidovic et al. identify a minimum set of requirements for evaluating
the ability of UML to be used in software architecture modeling e�ciently. In order
to do this the authors apply two approaches for supporting architectural concerns
within UML: the �rst is based on using UML "as it is", and the other on using
standard UML extension mechanisms. The results of this study are that UML can
be used to address architectural concerns, although this requires some extra-e�orts
and its it has some drawbacks when compared to the use of classical ADL for the
same purpose.

The general conclusion is that the extensible design of UML renders it applicable
to system architecture modeling. However, as the language was not primarily
designed for this, there are some drawbacks in using UML for this purpose. Some
architecture modeling speci�c concepts are missing, and they need to be added
in UML, e.g. using extension mechanisms. As a result, the rules of architectural
style (present in ADLs and maintained by ADL supporting tools) have to be
managed and applied by the modeler and need to be documented in addition to
the system/architecture modeling. This makes the design more di�cult to manage
and to maintain.

Another conclusion regards the modeling of behavior and interactions in the
architecture modelled using UML 1.5. This is possible using sequence diagrams,
collaboration diagrams, or state machine diagrams. However it is hard to establish
the relationship between the speci�ed behavior and the architectural elements, and
it is hard to ensure that the intended behavior is correctly modelled in UML.

Apart of the general points mentioned before, we extract here those that seemed
to us among the most noteworthy with respect to UML 1.5 suitability for archi-
tecture modeling:

(1) For UML 1.5 classes it is only possible to specify the list of events it can
receive, not of those that can be sent. This is di�erent from the common
practice when using ADLs;

(2) As UML was primarily designed to address various kinds of concerns,
although it can handle architecture speci�c needs, architecture modelers
�nd the support for these aspects partially su�cient;

(3) Some of the software architecture-speci�c concepts are conceptually dif-
ferent of those existing in UML (and more generally in object-oriented
design). It is the case for example of connectors. They can indeed be
abstracted by a UML class (e.g., by using stereotypes), however some of
the properties ADL connector's properties need to be explicitly modelled
in UML. This is the case of some ADL, where connector interfaces are



88 JEAN-MICHEL BRUEL AND ILEANA OBER

context re�ective. In UML this needs to be explicitly modelled, which
makes the use of connectors in UML 1.5 heavier.

(4) The UML tool support do o�er (as far as the authors of the cited paper
and ourselves are aware) some of the features regularly o�ered by ADL
supporting tools. In particular, the part concerning the infrastructure
of the systems modelled (that enforces the desired topology, interface
and interactions between system components) is not covered by general
UML tools, and not o�ered by other UML supporting tools.

In the study above mentioned, among the weaknesses of UML 1.5 in supporting
architecture modeling was the lack of some software architecture speci�c concepts.
The situation changed a bit with the new UML 2.0, as some of these concepts are
added to the language de�nition. In the followings, we will discuss on how much
this impacted on the language ability to be used in architectural description.

The add of concepts like port, port instance, connector, and architecture diagram
enriches the expressive power of UML, when it comes to architecture modeling.
Indeed, having these concepts explicitly at language level (not having to model
each of them) increases the readability of architecture designs done with UML,
and avoids the use of conventions. However, as for the moment only very limited
tool support exists for UML 2.0, it is hard to assess the impact of this improvement
on the architectural modeling: how well the UML tools will manage the desired
topologies, interfaces and interactions between system components.

A step forward was also done towards modeling the behavior and interactions
in architecture modeling, by adding the possibility to specify/constrain the be-
havior as observed at ports or interfaces through protocol state machines. We see
however a problem in the abundance of means existing in UML 2.0 to specify be-
havior and interactions in architecture, especially as the relationship between the
various means is not clearly speci�ed in the standard. Without a good modeling
methodology and the right tool support, we fear that the new additions will not
be used, due to the risk of confusion.

If we look at the list of more precise points raised on the UML 1.5 ability to
address architecture modeling needs, we notice that some of them (point 1 and
3) are partially solved by adding new concepts to UML. Although it is still not
possible to specify what events can an object generate to its environment, using
implemented and required interfaces, it is possible to give information on both
directions of the interaction of an object with its context.

Our discussion represents a �rst level analysis on the use of UML 2.0 for software
architecture modeling, having as starting point the extensive study performed on
UML 1.5 in [16], and the new UML 2.0 standard. This allowed us to infer the e�ect
of the UML evolution. A deeper analysis, similar to the one performed for UML
1.5 is probably needed to correctly asses all the details of the UML 2.0 ability to
address architecture modeling.



COMPONENTS MODELING IN UML 2 89

6. Conclusion
This paper aimed at discussing whether the recently adopted UML 2.0 proposal

was good or not in terms of composition support. We have presented in this
paper a brief overview of the new UML component model and we have done
our best to found some good arguments in favor of the a�rmative answer to
this question. It is undoubtable that the improvements at the notation level will
be useful for component-based systems developers. The new component model is
more expressive and �exible than the one o�ered in the old version of the language.
The main requests formulated in the RFI have been answered. However, some
points still remain to be clari�ed, especially when it comes to the combined use of
various concepts. This may require a non minor amount of work, if one wants to
keep using all the concepts o�ered by UML 2.0. The application of the UML 2.0
on concrete case studies will tell how well new UML component model is adapted
to the industry.

A step forward on the way of applying UML on system engineering is repre-
sented by the SysML initiative. SysML is a modeling language for systems en-
gineering applications called Systems Modeling Language. SysML will customize
UML 2.0 in order to support the speci�cation, analysis, design, veri�cation and
validation of complex systems that include hardware and software components. It
will be interesting to also follow what the people who already had some proposals
for UML support for components, as presented in section 4, will answer to this
same question. This might lead to interesting developments in this area.

References
[1] Scott W. Ambler. The O�cial Agile Modeling Site � The Diagrams of UML 2. Available at

http://www.agilemodeling.com, 2003.
[2] ARTIST. Component-based Design and Integration Platforms : Roadmap. Technical Report

W1.A2.N1.Y1, Project IST-2001-34820, 2003.
[3] Franck Barbier, Brian Henderson-Sellers, Annig Le Parc-Lacayrelle, and Jean-Michel Bruel.

Formalization of the Whole-Part Relationship in the Uni�ed Modeling Language. IEEE
Transactions on Software Engineering, 29(5):459�470, May 2003.

[4] Nicolas Belloir, Jean-Michel Bruel, and Franck Barbier. Whole-Part Relationships for Soft-
ware Component Combination. In Gerhard Chroust and Christian Hofer, editors, Proceed-
ings of the 29th Euromicro Conference on Component-Based Software Engineering, pages
86�91. IEEE Computer Society Press, September 2003.

[5] Nicolas Belloir, Fabien Roméo, and Jean-Michel Bruel. Whole-Part based Composition Ap-
proach: a Case Study. In Proceedings of the 30th Euromicro Conference � Component-Based
Software Engineering Track (Euromicro'2004), March 2004. To be published.

[6] Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and Damien Watkins. Making com-
ponents contract aware. IEEE Computer, 13(7):38�45, 1999.

[7] Conrad Bock. UML 2 Composition Model. Journal of Object Technology, 3(10):47�73,
November-December 2004.

[8] Jean-Michel Bruel. CML � Component Modeling Language: project proposal. Technical
report, French National Sciences Funds, 2003.



90 JEAN-MICHEL BRUEL AND ILEANA OBER

[9] E. Bruneton, T. Coupaye, and Jean-Bernard Stefani. Recursive and Dynamic Software
Composition with Sharing. In Proceedings of 7th International Workshop on Component-
Oriented Programming � WCOP02 at ECOOP 2002, June 2002.

[10] CCM. CORBA Component Model. OMG Report ptc/02-08-03. URL: http://www.omg.org/.
[11] Laurent Doldi. UML 2 Illustrated � Developing Real-Time & Communications Systems.

TMSO, October 2003.
[12] Desmond D'Souza and Alan Cameron Wills. Objects, Components and Frameworks With

UML: The Catalysis Approach. Addison-Wesley, 1998.
[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.
[14] Gregor Goessler and Joseph Sifakis. Composition for Component-Based Modeling. In Pro-

ceedings of FMCO, November 5-8, 2002, volume 2852. LNCS, 2003.
[15] Frank Lüders, Kung-Kiu Lau, and Shui-Ming Ho. Building reliable component-based software

systems, chapter Speci�cation of Software Components, pages 23�38. Number 2. Artech
House Publishers, Boston, 2002.

[16] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and J. E. Robbins. Modeling software ar-
chitectures in the Uni�ed Modeling Language. ACM Transactions on Software Engineering
and Methodology, 11(1), 2002.

[17] Bertrand Meyer. Contracts for components. Software Development Online, July, 2000.
[18] Bertrand Meyer. The grand challenge of trusted components. In ICSE 25, Portland, Oregon,

May 2003. IEEE Computer Press, 2003.
[19] Oscar Nierstrasz and Theo Dirk Meijler. Requirements for a Composition Language. In Pro-

ceedings of ECOOP 94 workshop on Models and Languages for Coordination of Parallelism
ad Distribution, LNCS, pages 147�161. Springer Verlag, 1994.

[20] A. Olafsson and D. Bryan. On the need for required interfaces to components. In Special
Issues in Object-Oriented Programming � ECOOP 96 Workshop Reader, pages 159�171.
dpunkt Verlag, Heidelberg, 1997.

[21] OMG. UML Pro�le for Enterprise Distributed Object Computing Speci�cation (EDOC).
OMG document, Object Management Group, may 2002.

[22] OMG. UML Pro�le for Schedulability, Performance, and Time Speci�cation (PST), Draft
Adopted Speci�cation. OMG document, Object Management Group, January 2002.

[23] OMG. Uni�ed Modeling Language: Infrastructure and Superstructure, version 2.0. OMG
document formal/05-07-05 and formal/05-07-04, Object Management Group, March 2006.

[24] High Con�dence Software and Systems Coordinating Group. High Con�dence Software and
Systems Research Needs. Technical report, InteragencyWorking Group on Information Tech-
nology Research and Development, january 2001.

[25] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-
Wesley, ACM Press, NY, 1999.

[26] Francois Terrier and Sébastien Gérard. UML 2: Component model and RT feedback of
AIT-WOODDES project to the U2 proposal. In Workshop SIVOES-MONA - UML'2002,
Dresden, 2002.

[27] Tew�k Ziadi, Bruno Traverson, and Jean-Marc Jézéquel. From a UML Platform Independent
Component Model to Platform Speci�c Component Models. In Jean Bezivin and Robert
France, editors, Workshop in Software Model Engineering, 2002.

LIUPPA, Université de Pau et des Pays de l'Adour, 64000 Pau, France
E-mail address: Jean-Michel.Bruel@univ-pau.fr

IRIT, Université Paul Sabatier, Toulouse, France
E-mail address: ileana.ober@irit.fr


