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PREFIX-FREE LANGUAGES, SIMPLE GRAMMARS
REPRESENTING A GROUP ELEMENT, LANGUAGES OF

PARTIAL ORDER IN A GROUP

KRASSIMIR D. TARKALANOV

Abstract. We show each word in the Kleene closure of a pre�x-free language
over an arbitrary alphabet has only one presentation as a concatenation of
its words. It follows this language is the largest pre�x-free one in the closure
and both of them are simultaneously recursive or not recursive. We note if a
complete simple grammar generates words only from a pre�x-free language,
the generated language exhausts it entirely. Such particular results only for
word- and reduced word problem languages of a group can be found in [1,
4]. Using appropriate parts of the repeated in [4] construction from [1] we
construct entire simple grammars whose terminal set is the monoid generating
set of a group. The start symbol can be indexed by any element of the group
and then the corresponding grammar will generate only representatives of
this element. If all of them contain in its pre�x-free part, their set exhausts
this part according to the note above. Following [4] the reduced word problem
language must be a such part of the word problem language for a group with
�nite irreducible word problem and the simple grammar there. The answer
to the �nal question 5.3. [4] is absolutely analogous and simply follows the
proof from [1]. We give necessary and su�cient conditions which a language
must satisfy together with these [4] for a word problem language in order the
�rst one to assign a partial order in the group of the second one.

1. Necessary Preliminary Concepts
We will use concepts from [1,4] in sections 2 and 3, and in addition from [2] in

section 4. Our supplement is their concrete setting in an order, their connecting,
and some formulations. A de�nition 1.1. for entire simple grammar is added
below. We have corrected here the principle for a right inverse element as it is
in [4] with the principle for a left inverse element because the requirement for a
right one leads to another situation [3]. We note a generalization of the used in
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[4] syntactic congruence was used by us much earlier in [5], [6] for demonstration
a pure subsemigroup of a group can not be covered by a regular language and for
obtaining �nite homomorphic images of some semigroups.

For Reading Section 2. For any set Σ let Σ∗ denotes the set of all �nite words
in the elements of Σ, i.e. Σ∗ is the set of all �nite strings of these elements (Λ is
the empty word). The number of the symbols in a such word is its length. The
expression s ≡ t means s and t are identical as strings of symbols. The word st
is a concatenation of the word t after the word s. Any subset of Σ∗ is a language
in it. If L is a language, then its Kleene closure L∗ in Σ∗ is the language which
consists exactly of all �nite concatenations of the words from L. If t ≡ us, then u
is said to be a pre�x of t. It is a proper pre�x if it is nonempty and ends before
the end of t. Given a language L the notation MIN(L) denotes the set of all
words in L each one of which has no proper pre�x in L. A language L is said to
be pre�x-free if MIN(L) = L. MIN(L) is a pre�x-free language. Analogically,
about su�x-free languages.

A grammar is a four-tuple Γ = (N, Σ, P, S) where N is the set of its non-
terminal symbols, Σ is its set of terminal symbols all di�erent from non-terminal
ones, S is a non-terminal symbol of N called start symbol, and P is its set of
productions. Each production has the form α → β in which α and β are words
from (N ∪ Σ)∗ and α contains at least one non-terminal symbol. The word α1βα2

is directly derived from the word α1αα2 by this production. Each sequence of direct
derivations gives a derivation of its last word from the �rst one. The language
L(Γ) generated by the grammar Γ = (N, Σ, P, S) is the set of all words over the
terminal alphabet Σ which can be derived from the start symbol S. A grammar
Γ = (N, Σ, P, S) is context-free if each production has the form A → β where A
is a non-terminal symbol. The generated by context-free grammars languages are
context-free languages. Every such language can be generated by a grammar in
Greibach normal form. A context-free grammar is in Greibach normal form if it
contains no non-terminal symbols which do not participate in a derivation of some
terminal word and if each production has one of the forms

A → aB1B2...Bn,
A → a, or
S → Λ.
Here A is a non-terminal symbol, each Bi too and other than S, and a is a

terminal symbol. A grammar in Greibach normal form is simple if for each non-
terminal symbol and each terminal symbol no more than one production of the
indicated form is allowed, i.e. if A → aα and A → aβ are productions, then
α ≡ β and if S → Λ is a production, then it is only one. A language is simple
if it can be generated by a simple grammar. In [1], lemma 2. it is proven a
simple language is pre�x-free. The author uses only leftmost derivations at each
step of which the leftmost participation of a non-terminal symbol is separated: if
α1Aα2 → α1βα2 is a step in a leftmost derivation made by using the production
A → β, then α1 is a terminal word, i.e. it contains only terminal symbols. The
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author shows every word in a context-free language has a leftmost derivation which
can be obtained simply by changing the order in which productions are used in an
arbitrary derivation.

De�nition 1.1. A simple grammar is entire if for each non-terminal and each
terminal symbols it contains a production of the indicated above forms. Then it
contains only one production of the indicated forms for each pair of non-terminal
and terminal symbols. Some of the above concepts will be used for reading the
next section.

Other Concepts for Reading Section 3. In this section Σ will be a double
alphabet Σ = {x1, x2, . . . , xn; x1, x2, . . . , xn}. If ai is xi, then ai is xi; if ai is xi,
then ai is xi (i = 1, 2, . . . , n). For each word u ≡ ai1ai2 . . . aik

in Σ its inverse
word u is u ≡ aik

. . . ai2 ai1 in which the symbols are inverse and set in the inverse
order. Let G be a �nitely generated group with a monoid generating �nite set Σ (or
with a group generating set Σ+ = {x1, x2, . . . , xn} or Σ− = {x1, x2, . . . , xn}) and
with a �nite set of de�ning relators. Each element of the group G is presented by
words from Σ∗. The natural correspondence ϕ depicts each generator ai into the
element ϕ(ai) of G which contains ai. This correspondence is extended inductively
for each word and so we receive the natural homomorpphism ϕ of Σ∗ over G.
The word problem language of this group is the full prototype ϕ−1(1) of the unite
element 1 in G. The reduced word problem language is its part of all words each
one of which does not have a proper pre�x in it. If we denote the word problem
language with E (E = ϕ−1(1)) and the reduced word problem language with R,
then R = MIN(E) according to the above notation of the function MIN . The
irreducible word problem language is the set of all words from the (reduced) word
problem language which have no proper subwords from the word problem language.
It is not especially necessary to note these languages are shortly correspondingly
named word problem, reduced word problem, and irreducible word problem only
in [1, 4]. We prefer the terms with an added word "language" because they are
language interpretations related to the word problem in the theory of groups.

Additional Concepts for Reading Section 4. A group is partially ordered if
there is a partial order ≥ in it which is concerted with the group operation. That
means if a ≥ b in the group, then ax ≥ bx and xa ≥ xb in it. The multiplication
preserves the strong inequequality. The set of all strongly positive elements (i.e. of
the elements which are strongly bigger than the unite element) is called a strongly
positive cone of the partially ordered group and it is a pure subsemigroup of this
group. That means it is an invariant subsemigroup which does not contain the
unite element. Conversely, each pure subsemigroup assigns a partial order in the
corresponding group.
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2. Kleene Closures of Prefix-Free Languages in an Arbitrary
Alphabet and Entire Simple Grammars

In this section the alphabet Σ is arbitrary. The general properties of the pre�x-
free languages below are induced by the properties of word problem and reduced
word problem languages.

Proposition 2.1. Let R be a pre�x-free language in Σ∗ and R∗ is its Kleene
closure. Then

(1) Each word from R∗ has only one presentation as a concatenation of words
from R;

(2) MIN(R∗) = R;
This property can be expressed in an equivalent form:
(2') R is the largest pre�x-free language in R∗ (i.e. there exists no a pre�x-free

extension of R in R∗). R∗ by itself is not pre�x-free of course.
Proof. (1) If the word w from R∗ is empty (w ≡ Λ), there is nothing to prove.

Let w is a nonempty word from R∗ and it has two presentations as concatenations
of nonempty words from R:

w ≡ v1v2...vk, where v1, v2, ..., vk ∈ R, and
w ≡ w1w2...wl, where w1, w2, ..., wl ∈ R.
We have to prove k = l and v1 ≡ w1, v2 ≡ w2, ..., vk ≡ wk. The proof is

inductive with respect to the sum k + l of the numbers of the factors in these
presentations. Its minimal value is 2. Then w ≡ v1 ≡ w1 and the statement is
obvious. Let it be true for all natural numbers whose sum is less than k+l. The �rst
factors v1 and w1 from the pre�x-free language R in the indicated presentations
of w coincide because each one of them can't be a proper pre�x of the other one.
Therefore we have the presentations w′ ≡ v2...vk ≡ w2...wl of the remaining part
w′ of the word w after v1 (v1 ≡ w1). The sum of the numbers of the factors in
these presentations is k + l − 2. According to the inductive conjecture we receive
k − 1 = l − 1 and v2 ≡ w2, ..., vk ≡ wk for the all next factors.

(2) MIN(R∗) is the subset of all words in R∗ which one of which has no proper
pre�x in it (R∗). Each word in R has no proper pre�x in itself. It follows from this
each such word can not have a proper pre�x in R∗ because every word in R∗ is a
concatenation of words from R and, then, it would follow its �rst factor from R
would be a proper pre�x of a word in R. This is impossible because R is a pre�x-
free language. Therefore R v MIN(R∗). Conversely, each word in MIN(R∗) can
not have more than one factor in its presentation as a concatenation of R-words
because, in the opposite case, its �rst factor would be a proper pre�x of its in R∗.
Therefore MIN(R∗) v R and MIN(R∗) = R.

Our idea for the Kleene closure of an arbitrary pre�x-free language comes from
[1,4] where the authors prove statements for word problem and reduced word
problem languages in a double alphabet only:

Proposition 3.1. [4] The word problem of a group with respect to a monoid
generating set is the Kleene closure of its reduced word problem with respect to that
generating set.
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Proposition 3.2. [4] If W is the word problem of a group with respect to a
monoid generating set and R is the reduced word problem with respect to this set,
then R = MIN(W )∩ X+.

Lemma 4. [1] If π is a �nitely generated group presentation and L is pre�x-free
language such that WP0(π) v L ⊂ WP (π), then L = WP0(π). In the notations
of the author there WP (π) is the word problem (language) of π and WP0(π) is
its reduced word problem (language).

The property (1) is nowhere else indicated and obviously it is very important at
all due to the universal only one presentation. It has an application for the proof of
the simultaneous recursiveness below. Property (2) (indicated in [4], proposition
3.2, for reduced word problem and word problem languages only) is important due
to an uni�cation of di�erent requirements to the pre�xes in the de�nitions and,
in addition, then it is not necessary to show its equivalent form (2') as a property
which is separated from the presentation, as this is done above in [1], lemma 4.

Corollary 2.2. If R is a pre�x-free language in Σ∗ and R∗ is its Kleene
closure, then both of them are simultaneously recursive or not recursive.

The proof is practically the same as in [4], theorem 3.5., where the formulation
and the proof are again for reduced word problem and word problem languages
in a double alphabet only, but using the previous proposition of ours here and
without passing through the recursive enumerating of R.

Let R be recursive in Σ∗, i.e. there exists an e�ective procedure A for recogniz-
ing whether a word is from R or not. We will show then there exists an e�ective
procedure B for recognizing belonging of any word to R∗ without passing through
the recursive enumerating of R as it is in [4]. Let w is an arbitrary word from
Σ∗. We apply the algorithm A to its beginning. If A stops at some pre�x of w
showing this pre�x is from R, we denote it with v1, i.e. w ≡ v1w1, where v1 ∈ R.
In the opposite case if A passes the entire word w with an answer it does not
belong to R, then the algorithm B answers w does not belong to R∗ because every
word from R∗ is a concatenation of words from R. In the �rst case if w1 is empty
(w1 ≡ Λ) the algorithm B answers w ≡ v1 belongs to R and therefore it belongs
to R∗. If w1 is not empty, we apply the algorithm A to w1 for which we will have
two analogous cases. In the �rst one w ≡ v1v2w2 where v1 and v2 belong to R
(v1, v2 ∈ R). In the opposite one if A passes the entire word w1 with an answer
it does not belong to R, then the algorithm B answers w does not belong to R∗

because every word from R∗ is a concatenation of words from R.
This inductive process is �nite because every next applying the algorithm A is

to a shorter word. A very important note is this applying is in only one way which
is determined by the property (1) from proposition 1. above: each word from R∗

has only one presentation as a concatenation of words from R.
We will receive in this way �nally a single presentation w ≡ v1v2 . . . vkwk

(where v1, v2, . . . , vk belong to R, i.e. v1, v2, . . . , vk ∈ R) for which a next
applying the algorithm A can not separate a pre�x from R in wk. Therefore wk

is empty (wk ≡ Λ) in the �rst case or wk does not belong to R in the opposite
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second case when A passes it entirely with an answer it is not from R. In the
�rst case the algorithm B gives an answer the word w ≡ v1v2 . . . vk belongs to
R∗. In the second one its answer is the word w ≡ v1v2 . . . vkwk does not belong
to R∗ because every word from R∗ is a concatenation of words from R and there
isn't a way to receive a such concatenation for w due to its only one presentation
as a possible such concatenation according to the property (1). Therefore B is an
e�ective procedure for recognizing belonging of any word from Σ∗ to R∗, i.e. if R
is recursive, then R∗ is recursive too.

Conversely, let R∗ is recursive. The proof R is recursive is the same as in [4]
but based on the property (2) from proposition 1.: MIN(R∗) = R. We have an
algorithm for recognizing membership of R∗. We test a given word and all its
proper pre�xes for this membership. According to the de�nition of the function
MIN and the indicated property this word is from R if and only if when it belongs
to R∗ but no proper pre�x of its belong to R∗. So R is recursive.

Lemma 2.3. Let Γ = (N, Σ, P, S) be a complete simple grammar which gen-
erates only words from the pre�x-free language R in Σ∗. Then the generated by it
language L(Γ) covers the entire R, i.e. L(Γ) = R.

Proof. Let w is an arbitrary word from R. We have to prove it can be generated
by Γ. Due to the completeness of Γ (De�nition 1.1) there are enough productions
in P to continue a leftmost derivation of w. We will show no one derivation can
end before or after the end of w. If a derivation ends before the last letter of w,
then the derived proper pre�x of its belongs to R which is in a contradiction with
the given fact R is a pre�x-free language. If a derivation ends after the last letter
of w, then w from R would be a proper pre�x of the derived word again from R
which is again impossible. Therefore each derivation in Γ, which starts from the
�rst letter of w, ends immediately after its last letter and therefore w ∈ L(Γ).

A particular case of this statement is practically proved in [1], lemmas 5-8, but
in a very long way and again for reduced word problem language of a group only.
Probably this way has been a reason the proof to be repeated in the second part
of the proof of lemma 5.1. [4] , but brie�y inductively with respect to the length
of the word and again for this particular language only. We will note we don't
need here the property the generated by a simple grammar (simple) language is
pre�x-free in an arbitrary alphabet which is proved in [1], lemma 2. The above
lemma 2.3. can be formulated in the following more expressive form:

Lemma 2.3'. No one complete simple grammar can generate an absolute part
of a pre�x-free language.

3. Entire Simple Grammars Generating Only Representatives of Any
Fixed Element of a Group

In this section Σ is a double alphabet Σ = {x1, x2, . . . , xn;x1, x2, . . . , xn}. Let
G be a �nitely generated group with a monoid generating �nite set Σ and with a
�nite set of de�ning relators. Let a be either one of the generators xi or xi (a ≡ xi

or a ≡ xi, i = 1, 2, . . . , n), but a is the element of G whose a representative is
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a (the symbol a is from Σ, the element a is from G). We will construct many
complete simple grammars with one and the same set Σ of terminal symbols, with
di�erent sets of non-terminal symbols, di�erent initial symbols, and di�erent sets
of productions which will be assigned in one and the same way. The initial idea
comes from [1], lemma 15, it was used in the same way in [4], lemma 5.1. Our
modi�cations will be shown after the next proposition.

The basic part of the non-terminal symbols will be the set {..., na, na−1 , ...} of
2n symbols which correspond to the 2n elements a and a−1 of the group with
representatives the generators a and a. We add to them a set {ng′} of symbols ng′

which correspond to at one's own choosing chosen �nite number other elements g′

of this group. The set N{g} of the non-terminal symbols will be their union, i.e.
N{g} = {..., na, na−1 , ...} ∪ {ng′} = {ng}.
We construct an obviously complete system P of simple productions in the

following way: for every ng ∈ N{g} and every a ∈ Σ

ng → a is a production if g = a;
ng → a na−1g is a production if g 6= a and na−1g ∈ N{g};

If n1 ( g = 1) is a terminal symbol, all productions
of the form
n1 → ana−1

are among them because a 6= 1
and na−1.1 = na−1 ∈ N{g}.
ng → a na−1ng is a production if g 6= a and na−1g /∈ N{g}.

The initial start symbol S of a such complete simple grammar Γ = (N{g}, Σ, P, S)
can be any non-terminal symbol ng0 , i.e. S = ng0 (g0 is one of all participating
elements g of the group G).

Proposition 3.1. All words derived from each non-terminal symbol ng of the
just constructed complete simple grammar Γ = (N{g}, Σ, P, S) are representatives
of the element g in the group G with which ng is indexed.

The proof is by induction with respect to the length of the derivation and
repeats the �rst part of the proof of lemma 5.1 [4] and this of lemma 15 [1] but for
more general grammars. Any derivation of length one in Γ is of the type ng → a
and by de�nition if g = a only (a is a representative of g, i.e. a ∈ g). Let us
assume the statement is true for all derivations of lengths no more than m, m ≥ 1,
starting from any non-terminal symbol. Any derivation from ng of length m + 1
can start with one of the productions:

ng → a na−1g (if g 6= a and na−1g ∈ N{g}) or
ng → ana−1ng (if g 6= a and na−1g /∈ N{g}).
The lengths of the derivations which continue after those productions are no

more than m and we can apply the inductive conjecture to them. So, in the �rst
case the non-terminal na−1g on the right hand side derives a word u which belongs
to a−1g. The word au which will be derived from ng will belong to the element
aa−1g = g of G, i.e. au ∈ g.
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In the second case na−1 on the right hand side derives a word s which is from
a−1 in G. The other non-terminal symbol ng there derives a word t which is from
g. (The sum of the lengths of both last derivations is m.) The word ast which will
be derived from ng will belong to aa−1g in G, i.e. ast ∈ aa−1g = g.

This completes the inductive proof of the proposition.
MIN(g) is the set of all pre�x free words from the element g of the group G,

i.e. the set of all words from g which one of which has no proper pre�x in it. The
grammar from proposition 1. above is simple and complete. Therefore according
to lemma 2.3. from section 2. this proposition has the following

Corollary 3.2. For each element g0 of the group G such that ng0 is a start
symbol of the complete simple grammar Γ = (N{g}, Σ, P, S = ng0) if the generated
by this grammar representatives of g0 contain in MIN(g0), then L(Γ) coincides
with the set MIN(g0) of all words from g0 which have no proper pre�x in it, i.e.
L(Γ) = MIN(g0); brie�y: if L(Γ) v MIN(g0), then L(Γ) = MIN(g0).

In particular, if g0 = 1 (then the start symbol is S = n1), all words derivable
by Γ = (N{g}, Σ, P, S = n1) are from the word problem language of the group G.
The simple grammars from lemma 15 [1] and lemma 5.1 [4] for theorem 5.2 [4]
are constructed over a �nite irreducible word problem language. They satisfy the
conditions from corollary 3.2. here and we would have the proved there property
from the indicated lemmas as a

Corollary 3.3. (Theorem 5.2. [4]) If a �nitely generated group has �nite
irreducible word problem language, then it has simple reduced word problem lan-
guage.

NOTE: We will show some of the modi�cations which we promised in the be-
ginning of this section. First one is separating the elements a and a−1 of the
group whose representatives are the inverse generators a and a. It is not neces-
sary to prove especially a and a have inverse words, the corresponding products
with which are from the irreducible word problem language of the group. That is
correct simply because each one of them is obviously inverse to the other one and
the words aa and aa are obviously irreducible. We can add arbitrary elements of
the group to them and the same proof for generating only the indicated represen-
tatives goes. So, these modi�cations are signi�cant because they lead to the just
pointed freedom.

Statement 3.4. Each group with a simple reduced word problem language
with respect to some monoid generating set has a �nite irreducible word problem
language with respect to this generating set.

This statement is an answer to question 5.3. with which the paper [4] ends. For
its proof the notations of the type u−1 in lemmas 9. and 10. from [1] must simply
be substituted by notations of the type u where the word u is the inverse word of
u in a double alphabet.
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4. Languages of Partial Order in a Group
Let G be a (monoid) �nitely generated group with a generating set the double

alphabet Σ as in the previous section. Let the partial order in G be presented by
its positive cone P = P+ ∪{1}. Here P+ is the pure subsemigroup of the strongly
positive elements, i.e. it is an invariant subsemigroup of the group which does not
contain the unit element 1. Let P and P+ be the full prototypes of P and P+

correspondingly at the natural homomorphism ϕ of Σ∗ over G, i. e. ϕ−1(P ) = P
and ϕ−1(P+) = P+. Let E = P∩P. Then ϕ−1(1) = E (i.e. E is the word problem
language of the group G). We can name P a language of the positive cone in G
or a positive cone language.

The word problem language E in Σ∗ satis�es two conditions from
Proposition 3.3. [4] Let E be a subset of Σ∗; then E is the word problem of

a group if and only if it satis�es the following conditions:
(1) if α ∈ Σ∗, then there exists β ∈ Σ∗ such that βα ∈ E (αβ ∈ E stays here

incorrectly in [4]);
(2) if α ∈ E and uαv ∈ E, then uv ∈ E.
We denote here the word problem language by E instead by W as it is in [4].

The reason for the marked correction is indicated in the section for the preliminary
concepts.

Theorem 4.1. Let G be a �nitely generated group with a monoid generating set
Σ and E be its word problem language which satis�es the indicated above conditions
(1) and (2). If P+ is the cone of the strongly positive elements of some partial
order in G, then its full prototype P+ = ϕ−1(P+) at the natural homomorphism
ϕ satis�es the following conditions:

(3) if uv ∈ P = P+ ∪ E and α ∈ P, then uαv ∈ P;
(4) if α ∈ P+, then every β from (1), for which βα ∈ E, does not belong to

P+.
Conversely, if some language P+ in Σ∗ for which P+ ∩ E = ∅ satis�es the

conditions (3) and (4), then it assigns a partial order in the group G with a word
problem language E.

Proof. Let G be a partially ordered group with generators Σ and with a cone P
of the positive elements. Then the corresponding language of the positive cone in
Σ∗ is P = ϕ−1(P ). The language E = P∩ P is exactly the word problem language
of the group G and it satis�es the conditions (1) and (2). Let uv ∈ P and α ∈ P.
Then ϕ(uv) = ϕ (u)ϕ (v) = uv ∈ P , i.e. uv ≥ 1 and ϕ(α) = a ∈ P . From a ≥ 1
we receive uav ≥ uv and therefore uav ≥ 1. The last one means uav ∈ P because
ϕ(uav) = uav with which the condition (3) is proved. The product of two strongly
positive elements is again strongly positive from which it follows no one of the
factors (in (4), where we suppose the opposite) can be inverse to the other one.
This proves the last condition.

Conversely, suppose the language P+(P+ ∩ E = ∅) in Σ∗ together with E
satis�es the conditions (3) and (4). We construct a group G whose word problem
language is E according to the indicated proposition from [4]. We will show the
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image P+ = ϕ(P \ E) of P+ is a pure subsemigroup in G, i.e. P+ assigns a partial
order in it. We note before that the used in this proposition from [4] syntactic
congruence

α1 ∼ α2 ⇔ (ua1v ∈ E ⇐⇒ uα2v ∈ E for arbitrary u, v ∈ Σ∗) could be found
in the cited in [5], [6] paper by Rabin M.D. and D. Scott and monograph by S.
Ginsburg. It was shown in the section with preliminaries why a generalization of
its was introduced and used by us. in them.

Two corollaries from the property (3) are valid: (3a) if α, β ∈ P, then αβ ∈ P
and (3b) for every u ∈ Σ∗ and every α ∈ P the conjugate word uαu ∈ P. Really,
(3a): For the empty word Λ and β the word Λβ ∈ P. Then Λαβ ≡ αβ ∈ P; (3b)
uu ∈ E and α ∈ P. Then uu ∈ P and uαu ∈ P after (3).

Our goal is to prove P+ = ϕ(P+) is a pure subsemigroup in the already con-
structed group G. Let a, b ∈ P+. Then there exist prototypes α ∈ P+, β ∈ P+ of
theirs and αβ ∈ P due to (3a). It (αβ) can't be from E due to the condition (4).

We will show P+ = ϕ(P+) is invariant. Let a is an arbitrary element of P+

and u is an arbitrary element of the entire group G. Let α ∈ P+ is a prototype of
a and u ∈ Σ∗ is a prototype of u. Then uu ∈ E and from uu ∈ P and α ∈ P we
receive uαu ∈ P. Therefore u−1au = ϕ(uαu) ∈ P . It remains to prove u−1au 6= 1.
Really, if u−1au = 1, then a = 1 which contravenes a ∈ P+.

The theorem is proved. We would like to pay attention to the condition (3).
Obviously it is reversed to the condition (2) cited from [4] where it is proved
(as a consequence of its) a word problem language satis�es (3) too. It would be
interesting to prove or to disprove a

Conjecture 4.2. The condition (2) is a consequence from the condition (3) in
E.

section*References
[1] Haring-Smith, R.H. Groups and Simple Languages, Trans. Amer. Math. Soc.

1983, 279. 337-356.
[2] L. Fucks, Partially Ordered Algebraic Systems, �Mir�, Moscow 1965 (Translation

into Russian).
[3] M. Hall, Jr., The Theory of groups, The Macmillan Company, NY, 1959.
[4] Parkes, D.W. and Thomas, R.M. Groups with Context-Free Reduced Word Problem,

Communications in Algebra 2002, 30(7). 3143-3156.
[5] Tarkalanov K., The Context-free Languages and some Questions from Semigroup

and Group Theory, Annals Union of the Scienti�c Workers in Bulgaria, Br. Plovdiv, A
Scienti�c Session of the young Scienti�c Workers, 1979(1980). 131-142 (in Bulgarian).

[6] Tarkalanov K.D., Connecting Algorithmic Problems in Semigroups with the Theo-
ries of Languages and Automata, Studia Univ. �Babesh-Bolyai�, Mathematica, v. XLIV,
No 1, March 1999, 95-100.

Quincy College, 34 Coddington Street,Greater Boston, Quincy, MA 02169, USA
E-mail address: Ktarkalanov@hotmail.com


