
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LI, Number 1, 2006

SUPPORTING MULTIMEDIA STREAMING APPLICATIONS
INSIDE THE NETWORK

ADRIAN STERCA, FLORIAN BOIAN, DARIUS BUFNEA, CLAUDIU COBÂRZAN

Abstract. There are many reasons for quality degradation of multimedia
streams inside the network. Two of the most important ones are related to
the UDP protocol and the Random-Drop policy implemented inside most of
the routers currently deployed on the Internet. We intend to discuss, in this
paper, some of multimedia streaming applications’ problems centered around
the UDP protocol and Random-Drop policy. We also present some mech-
anisms to alleviate these problems. More specifically, we present a queue
management algorithm PDQMAMS (Priority-Drop Queue Management Al-
gorithm for Multimedia Streams) for supporting the quality of multimedia
streams inside the network.

1. Introduction

As multimedia encoding standards like MPEG and H.264/AVC become more ef-
ficient and as new digital video processing tools are developed, multimedia stream-
ing applications gain a more important percent of the data transferred over the
Internet. However, the current Internet does not support the high bandwidth and
low latency demands of multimedia applications. Hence, communicating partners
need to adapt to rapidly changing connection parameters and also to provide the
best use of the scarce bandwidth of nowadays networks. Because of the latter
reason, most of multimedia streaming applications choose to use UDP instead of
TCP as the transport protocol, trading speed over reliability.

UDP offers several advantages over TCP, the most important being its speed.
But the speed of UDP comes with a cost: it is unreliable and not responsive to
congestions. Because UDP is unresponsive to congestion, it can cause the occur-
rence of congestion and can lead to unfairness against TCP-friendly flows. Most
of the routers in the Internet use a Random Drop policy for freeing up space when
congestion occurs and the queue is full. This policy gives multimedia packets an

Received by the editors: April 2, 2006.
2000 Mathematics Subject Classification. 90B18, 68M20.
1998 CR Categories and Descriptors. 90B18 [Operations research, mathematical

programming]: Operations research and management science – Communication networks;
68M20 [Computer science]: Computer system organization – Performance evaluation; queue-
ing; scheduling;

37

38 ADRIAN STERCA, FLORIAN BOIAN, DARIUS BUFNEA, CLAUDIU COBÂRZAN

uniform importance although multimedia encoding schemes regard them as having
different levels of priorities. This way of things is very bad for multimedia stream-
ing applications. Because most of the encoding standards use layered/predictive
encoding to achieve a good compression rate (i.e. some video frames are encoded
as the difference between the current frame and the previous and/or the next one),
dropping an independent frame in a router makes the other frames dependent on
this one useless on the end-user’s system even if they survive the ride through the
Internet.

This paper presents a queue management algorithm for routers that tries to
alleviate the aforementioned problems. It maintains a state for each multimedia
flow and uses a priority-driven dropping scheme when the buffer overflows. Also,
it is fair to each flow when packet drops are imperative and smart enough to drop
packets belonging to less important frames, if congestion occurs. The rest of the
paper is structured as follows: section 2 presents the main problems faced by mul-
timedia streams inside the network and the causes of these problems; section 3
presents the AMSP protocol (Adaptation-aware Multimedia Streaming Protocol)
whom our solution is based on and our own Priority-Drop Queue Management
Algorithm for Multimedia Streams (PDQMAMS); in section 4 we perform exper-
iments for proving PDQMAMS’s qualities; section 5 presents some improvements
of the algorithm we have in mind; then, in section 6 we refer to related work and
the paper ends with conclusions and future work in section 7.

2. Problems of multimedia streams inside the network

Multimedia streaming application have huge requirements related to the net-
work. One of the most important and hard to satisfy requirements is the high
bandwidth that multimedia streaming applications need. For example, the MPEG-
1 compression standard [1] demands a bandwidth of up to 1.5 Mbit/s, while
the MPEG-2 standard [1] supports data rates of up to 4 Mbit/s. Besides huge
bandwidth amounts, there are other requirements related to the timeliness of
the transmission of multimedia streams. For an optimal quality of the multi-
media data, real-time multimedia streaming often demands that communication
be isochronous. This implies very short delays and also small values for jitter, but
also good continuous throughput. If the delay between packets is too high, the
video will periodically freeze at the receiver, waiting for the following frames to
arrive. Jitter is equally important: a jitter too great means high fluctuations of
the delay and this can lead to buffer underrun or overrun at the receiver, causing
degradations of the video. These requirements are hard to satisfy in a best-effort
network like the Internet.

The major problem of a best-effort network with respect to multimedia ap-
plications is that no QoS guarantees can be given. In a network with variable
delays and different levels of congestion, communicating partners need to adapt

MULTIMEDIA STREAMING ADAPTATION 39

to rapidly changing connection parameters (e.g. reducing the quality of the mul-
timedia stream, adapting the video or audio material). Multimedia streaming
applications often choose UDP as the transport layer protocol, instead of TCP,
trading low delay and high throughput over reliable delivery. More specifically,
multimedia streaming applications choose UDP over TCP to avoid TCP’s start-
up delay, to avoid the overhead of maintaining a state for each connection (like
TCP does) and to favour timeliness characteristics (e.g., delay, jitter, etc.) at the
cost of reliability (e.g., retransmission timeouts, in-order delivery, etc.). The speed
advantage of UDP over TCP comes with a drawback: it is unresponsive to conges-
tion. This is a major pitfall of multimedia streaming applications, as multimedia
streams, which are basically UDP flows, are not fair to TCP-friendly flows (i.e. a
flow whose sending rate does not surpass the sending rate of a TCP connection in
the same circumstances [2]) and also they are not fair to each other. Depending
on each connection’s parameters, one UDP flow can eat up a lot more downstream
bandwidth than the other flows that pass through the same router, especially if
these are TCP-friendly flows. In steady-state, when a TCP flow notices conges-
tion (a packet drop or ECN packet [3]) it backs-off, reducing its sending rate by
half. In contrast, a UDP flow does not sense congestion because it is stateless
and not connection-oriented like TCP. If packets are dropped, UDP flows continue
to send packets at the same rate and, in the worse case, they can even increase
their sending rate. This way, they can lead to starvation of other TCP-friendly
flows [4] or even to congestion collapse [5]. A remedy for the congestion and un-
fairness problems of UDP flows can be considered from two perspectives. First,
congestion avoidance and fairness with respect to other flows can be achieved if
multimedia streams implement some form of end-to-end congestion control similar
to the AIMD mechanism of TCP - this could be implemented either to the trans-
port level (DCCP [6]) or to the application level -, so that the multimedia flow
decreases its rate in response to congestion notification from the network. Second,
the problems of congestion control and fairness between flows can be tackled inside
the routers using active queue management like RED (Random Early Detection)
[4, 8] or fair scheduling mechanisms like SFQ (Stochastic Fairness Queuing) [9] and
WFQ (Weighted Fair Queuing) [10]. Active queue management algorithms try to
avoid congestion and achieve fairness by managing the length of the queue and
dropping packets from the queue when necessary or appropriate. On the other
hand, scheduling algorithms decide which packet to send next and they mainly
provide fair allocations rather than congestion avoidance.

The drop policy of most routers currently deployed on the Internet is the
Random-Drop Policy. We refer with the term of ”Random-Drop Policy” to all
dropping policies that don’t take into consideration the differences between pack-
ets when taking a dropping decision and the drop is made only when the queue
overflows (e.g. Head-Drop, Tail-Drop, Random-Drop). The Random-Drop Policy

40 ADRIAN STERCA, FLORIAN BOIAN, DARIUS BUFNEA, CLAUDIU COBÂRZAN

is disastrous for multimedia streaming applications. The majority of multime-
dia encoding standards (e.g., MPEG, H.264/AVC, etc.) use a layered/predictive
encoding scheme in order to achieve a good compression ratio, i.e., some of the
frames depend on other base frames in the encoding process. In this encoding
process, a basic layer is first encoded normally and any other enhancement lay-
ers are encoded as the difference between the base layer and the desired quality
layer. For example, the MPEG-family of standards [11] uses four types of frames in
the encoding process: I-frames (Intra-coded frames), P-frames (Predictive-coded
frames), B-frames (Bi-directionally predictive-coded frames) and D-frames (DC-
coded frames).

The Random-Drop Policy gives multimedia packets an uniform importance al-
though multimedia encoding schemes regard them as having different levels of
priorities. Dropping a packet belonging to a base layer (e.g. I-frame) makes sub-
sequent packets/frames that depend on this one useless at the receiver, because
it can not decode the enhancement layer (B- or P-frames) without the base layer
(depending I-frame). A possible solution for this problem assumes assigning some
sort of priorities (the priorities should be assigned either by the router or by the
streaming protocol) to packets and drop them accordingly. In other words, we
would rather drop an insignificant packet - one whose missing is tolerable by the
receiver - than throw away indispensable data.

3. Priority-Drop Queue Management Algorithm for Multimedia
Streams (PDQMAMS)

We argue that providing a real support for multimedia streams inside the net-
work, at router level, requires some form of help from multimedia streaming pro-
tocols (priority schemes, feedback, etc.). The router algorithm, whether queue
management algorithm or packet scheduling algorithm, can not do this job on its
own. Following this direction, we present a router-queue management algorithm
that uses knowledge from the multimedia streaming protocol (knowledge inserted
in protocol’s header inside packets) for preferentially dropping packets and, thus,
for providing support for multimedia streams. We chose to use the AMSP proto-
col [12] instead of RTP [7], which is widely used for multimedia communication,
because it conveys scaling information together with multimedia data as opposed
to RTP which offers limited support for scaling. This is exactly what we need if
we want to alleviate the impact of congestion on multimedia streams inside the
network. More specifically, by assigning priorities to multimedia packets, AMSP
conveys ”intelligence” to network routers which would help them in taking better
dropping decisions. AMSP also offers better QoS feedback support than RTP.

3.1. The AMSP protocol. The Adaptation-aware Multimedia Streaming Pro-
tocol is a streaming protocol similar to RTP. It conveys time sensitive information
like multimedia data together with scaling information, so that multimedia streams

MULTIMEDIA STREAMING ADAPTATION 41

can be adapted inside the network to the rapid changing parameters of the net-
work. The scaling information can be used by common core routers to perform
packet-level adaptation of multimedia streams (i.e. drop less important packets) or
it can be used by scaling proxies that can perform complex media transformations
inside the network (e.g. color reduction, temporal reduction, transcoding, etc.).
The central concept of AMSP is the channel concept. Each channel is identified by
an 8-bit field in the AMSP header called the ChannelID field. This field encapsu-
lates the channel number, the priority of the channel and the dropping capability
(whether packets belonging to this channel can be dropped). There a several types
of channels AMSP supports: control channel, media channels, metadata channels,
scaling control channels, retransmission channels, feedback channels and auxiliary
channels. A multimedia stream is mapped onto one or more media channels, and
thus, its packets get the priority of the respective channel(s). The idea of using
channels to convey data with different levels of importance comes from the fact
that multimedia streams are based on related layers with different levels of im-
portance. AMSP offers elaborate feedback support including acknowledgements,
non-acknowledgements, number of received/discarded/duplicated packets, round-
trip time, jitter, bandwidth, buffer size, etc.

By assigning different levels of importance to multimedia packets, an AMSP-
aware router could break this uniform treatment of packets when a dropping de-
cision must be taken, which could only be beneficial to multimedia streams. By
dropping less important packets (e.g. packets belonging to a B-frame or a P-frame,
instead of an I-frame), an AMSP-aware router can achieve greater performance for
multimedia traffic in case of congestion.

3.2. The PDQMAMS algorithm. The Priority-Drop Queue Management Al-
gorithm for Multimedia Streams is essentially a queue management algorithm for a
stateful AMSP-aware router that achieves fairness between AMSP-flows. Our goal
in this paper was to develop a router algorithm that supports multimedia traffic
inside the network. We could achieve a good result in this direction by implement-
ing a simple queue management AMSP-aware algorithm that preferentially drops
packets according to AMSP channel priorities when congestion occurs. We don’t
want to use for this purpose a queue scheduling algorithm since this would induce
higher delays for packets inside routers; we want to use plain FIFO discipline.
However, a simple AMSP-aware algorithm for queue management would have a
major drawback: it would lack fairness among flows. An AMSP session (flow)
will be identified by a pair of (server IP, client IP) together with a pair of (source
port, destination port). Because the number of channels and the priority levels a
multimedia stream should use is left to the application’s choice, multiple AMSP
sessions use different numbers of priority levels. Hence, if we have multiple AMSP
sessions competing for bandwidth and these sessions have different numbers of
priority levels (depending on each one’s number of elementary streams) it is very

42 ADRIAN STERCA, FLORIAN BOIAN, DARIUS BUFNEA, CLAUDIU COBÂRZAN

likely that the router always selects the packet with the lowest priority from the
same set of streams (belonging to a constant AMSP session). But this won’t be
fair to AMSP flows since the algorithm will show bias for a constant AMSP flow
when a dropping decision has to be made (this flow is the AMSP flow that owns
the channel with the lowest priority from all the channels of all AMSP flows). It
is clear that a simple stateless AMSP-aware router will not be able to achieve fair-
ness when drops have to be done. Consequently, our queue management algorithm
must be stateful, i.e. it must maintain a state for each flow.

We consider two kinds of flows: (1) the AMSP flows and (2) one flow that
contains all other non-AMSP packets (called the other flow), and although we
have a single physical queue of packets, each flow will have its own virtual queue.
As we said before, the granularity of AMSP flows will be a pair of (IP,port) binoms
(one for source and one for destination). In order to keep the state maintained
at the router small, we use a hash bucket with a limited number of slots for flows
differentiation. When a packet arrives at the router it is first classified: if it is an
AMSP packet, the packet is assigned to a slot from the hash bucket by applying
the hash function on a value composed by an aggregate of source IP, destination
IP, source port, destination port and transport protocol value. If the packet does
not belong to an AMSP flow, it is assigned to the other flow. Once a packet
gets assigned to an AMSP slot/flow, it is further added to the specific channel
this packet belongs to in the respective AMSP flow. The number of channel is
determined from the ChannelID field of the AMSP header of the packet. Each flow
has a number of linked lists for every channel it has. A graphical representation
of PDQMAMS’s architecture is shown in Fig. 1.

Hash bucket
(flow classifier)

slot 1 (AMSP)

slot 2 (AMSP)

slot n (AMSP)

 incoming packets

CC channel

CC channel

CC channel

Aux. channel

Aux. channel

Aux. channel

Media channels

Media channels

Media channels

slot other flow

Figure 1. The PDQMAMS router architecture

An AMSP packet is placed on two linked lists: the global list with all packets
from the queue and the list of the channel it belongs to, inside the AMSP flow.
A non-AMSP packet is also placed on two linked lists: the global list and the list

MULTIMEDIA STREAMING ADAPTATION 43

of packets belonging to other flows. To be noted that due to the number of slots
available for the hash function, it is possible that an AMSP packet gets placed on
the same slot with other AMSP packets not belonging to the same AMSP flow.
To minimize the number of collisions inside a slot, the hash function is perturbed
every 10 seconds. We now detail each operation PDQMAMS performs.

I. Packet enqueuing. If the queue is not full, the packet is enqueued normally.
The classifier first determines if this is an AMSP packet or not. If not, the packet
is added to the other flow. If this is an AMSP packet, based on the hash value for
this packet, it is attached to an AMSP slot/flow and inside the flow is assigned to
the corresponding AMSP channel. The packet is also added to the main queue. If
the queue is already full when the packet arrives, one or more packets are chosen
for dropping (using a sort of weighted fair dropping algorithm, see subsection III,
Packet dropping) and the new packet is added to the queue the same way as shown
above. This way, newer packets are favoured, as for old enqueued packets, there is
a good chance they will be useless at the receiver (because their presentation time
has expired).

II. Packet dequeuing. Packets are dequeued for sending using a simple FIFO
strategy. This strategy is very light, easy to implement and minimizes the maxi-
mum delay of a packet in the router’s queue.

III. Packet dropping When the queue is full, a dropping decision has to
be made in order to accommodate a new packet. The dropping decision has to
subscribe to two guidelines: it must be as fair as possible to all flows and it must
protect multimedia streams. For achieving fairness, the dropping choice must be
influenced by the number of packets each flow has in the queue. For the second
goal, the router must always select for dropping the lowest priority packet. In
order to decide which flow to drop from, all the flows (their packets) are linearly
mapped on a list with the length QLen, so that all the packets of each flow are
placed consecutively on this list and QLen is the number of queued packets in the
router (see Fig. 2). A random integer number between 1 and QLen is generated.
Let this number be k. The flow chosen for dropping is the flow that the k-th packet
from the list belongs to. After the flow for dropping is chosen, we must decide
which packet(s) from that flow will be dropped. If the flow is an AMSP one, we
always choose for dropping the packet(s) with the lowest priority(es). If multiple
packets apply, we drop the oldest one. In the case of a non-AMSP flow, we apply
a tail-drop discipline. This way, a flow that has a greater number of packets in
the queue, has a higher probability to be selected for dropping. This is somewhat
dangerous for the other flow because all non-AMSP packets are assigned to this
flow, thus, the length of the other flow can significantly surpass the length of
AMPS flows, making it very vulnerable to selection when drops have to be done.
This is why, we do not map all the packets from the other flow on the linear list,
but we map only a limited number of packets from this flow (the number of all
non-AMSP packets divided by a certain weight).

44 ADRIAN STERCA, FLORIAN BOIAN, DARIUS BUFNEA, CLAUDIU COBÂRZAN

Flow no. 5 has a higher probability to be picked
for dropping than Flow no. 2 because it has
more packets in the
queue.

Flow no. 1

Flow no. 2

Flow no. 3

Flow no. 4

Flow no. 5

Flow no. 6

Flow no. 5 has a higher probability to be picked
for dropping than Flow no. 2 because it has
more packets in the
queue.

Flow no. 1

Flow no. 2

Flow no. 3

Flow no. 4

Flow no. 5

Flow no. 6

Figure 2. Packet dropping in PDQMAMS

Note that the degree of fairness depends on the number of slots in the hash
bucket. If the number of slots is great, then the number of collisions will be small
and there is a bigger chance that all the packets from a slot belong to the same flow,
hence, dropping fairness is increased. Conversely, if the number of slots is small,
there are more collisions in the slots and packets from different flows are mixed
with a higher probability. This problem is somewhat alleviated by perturbing the
hash function each 10 seconds.

4. Experimental results

To evaluate our algorithm, we have implemented PDQMAMS as a queue dis-
cipline under the Linux kernel version 2.4.24. We used for our tests the logical
network topology depicted in Fig. 3. The connection between the router R1 and
router R2 was limited using the Linux traffic control framework [13] and the code
corresponding to the AMSP client and AMSP server was taken from the AMSPLi-
brary [12]. PDQMAMS was deployed on the router R1. All the links except the
R1 - R2 link have capacities higher than the bandwidths requested by our AMSP
sessions, so that the only congested link is R1 - R2.

S1

S2

C1

C2

R1 R2

 bottleneck link

Figure 3. The net topology used in experiments

In the first experiment, we wanted to see how PDQMAMS supports multimedia
streams by dropping lower priority packets when the queue overflows. We started
one AMSP server on S1 and one AMSP client on C1 and let them run for 300
seconds. The server was sending a synthetic 512kbit/s stream with 30 fps to the
client C1. The size of the frames were chosen so that I-, P- and B-frames with
priority 2 fit into an AMSP packet. All other frames are larger than the MTU
and are fragmented by the application. The synthetic multimedia stream was
encoded using a pattern of one I-frame followed by 5 P-B-B-B-B sequences, which
is common for MPEG streams. The outgoing link from the PDQMAMS router to

MULTIMEDIA STREAMING ADAPTATION 45

the router R2 was limited to 64kbit/s. As you can see from Fig. 4 the percent
of frames received is proportional to the frame priority. Hence, the frame type
that has the highest percent of arrived frames is the I-frame which has the highest
priority (zero). It is followed by P-frames which have priority 1 and then B-frames
with priorities running from 2 to 6. Hence, by dropping less important packets
(B-frames with priorities of 6, 5, 4 and 3), PDQMAMS increases the perceived
quality of multimedia streams.

0 20 40 60 80 100

percent of frames received

I-Frame, prio 0

P-Frame, prio 1

B-Frame, prio 2

B-Frame, prio 3

B-Frame, prio 4

B-Frame, prio 5

B-Frame, prio 6

Figure 4. bandwidth=64kbit/s, one flow, duration=5 min.

0
20
40
60
80

100
120
140

I-F
ra
m
es

P-
Fr

am
es

B-
Fr

am
es

I-F
ra
m
es

P-
Fr

am
es

B-
Fr

am
es

flows

fr
a

m
e

s
 r

e
c

e
iv

e
d

(a) bandwidth=64kbit/s, time=2 min.

0

50

100

150

200

250

300

350

400

I-Frames P-Frames B-Frames I-Frames P-FramesB-Frames

flows

fr
a
m

e
s
 r

e
c
e
iv

e
d

(b) bandwidth=128kbit/s, time=2 min.

Figure 5. Experiments with two flows (blue & green)

In the second and the third experiment we wanted to prove that PDQMAMS
is fair to flows when drops are imperative. These experiments differ only in the
bandwidth limitation applied to the link R1 - R2. In the experiment no. 2 this link
had a capacity of 64kbit/s and in the experiment no. 3 the capacity is 128 kbit/s.
Both experiments were run for 120 seconds. For both experiments two AMSP
flows pass through the PDQMAMS router R1 and both flows have a bandwidth

46 ADRIAN STERCA, FLORIAN BOIAN, DARIUS BUFNEA, CLAUDIU COBÂRZAN

demand greater than the one provided by the network (64kbit/s for experiment 2
and 128kbit/s for experiment 3). We started two AMSP-server process on machine
S1 and S2 and two clients, one on machine C1 and the other one on machine C2.
The first AMSP server sends a synthetic multimedia stream to client running on
C1 and the second AMSP server sends the same synthetic multimedia stream to
client running on C2. The synthetic multimedia stream was the same as the one
used for the first experiment. As you can see from Fig. 5(a) and Fig. 5(b) the
PDQMAMS-router does a satisfactory job in achieving fairness between the two
AMSP flows, while complying to the lowest priority drop scheme for supporting the
quality of multimedia streams. The reason we have more P-frames received than
I-frames for some AMSP flows is because in the multimedia streams, the number
of I-frames is much smaller than the number of P-frames (this is compliant with
the MPEG standards for achieving a better compression ratio) since the encoding
pattern of the stream was one I-frame and then 5 P-B-B-B-B sequences.

5. Improvements of the algorithm

The PDQMAMS algorithm presented above, as we have seen, does a good
job in supporting/protecting multimedia streams (by employing a priority-based
dropping scheme) and also achieving a good degree of fairness between flows. The
quality of multimedia streams is surely increased at the receiver side. However, this
algorithm does not directly address the problem of congestion or, more exactly,
congestion avoidance. In order to pro-actively avoid congestion inside the router
while still providing fairness between flows and support for multimedia streams,
the PDQMAMS algorithm needs to incorporate probabilistic dropping schemes
before the queue is full like the ones employed by RED [8]. This leads us to a
modified version of PDQMAMS that is still AMSP-aware and stateful, but drops
are made early, before the queue overflows and the dropping scheme is slightly
different.

We could, try on a first approach to apply a RED [8] or an Adaptive RED [14]
test on the global queue. This would improve congestion avoidance and prevent
buffer overflows. However, RED was mainly designed for avoiding congestion inside
routers by controlling the sending rate of TCP conformant flows. So it assumes
the link is utilized mostly by TCP flows (Adaptive RED relaxes to some degree
this restrictions). Our improved PDQMAMS can not impose such conditions, as
one of its goals is to protect multimedia streams. But a RED/Adaptive RED test
can still be applied to the other flow where the majority of packets will belong
to TCP-friendly flows. On the other hand, an AMSP flow can be subject to a
RED-like test based on the average length of the flow’s virtual queue and a special
threshold specific for multimedia streams. This threshold should specify an upper
limit for an AMSP flow’s queue length, above which the packets won’t be of any
good at the receiver side because the delay experienced by the packet is too high
(and the presentation time at the receiver had already expired before this packet

MULTIMEDIA STREAMING ADAPTATION 47

would have left the queue). This threshold value can be considered as a kind of
staleness threshold. If the average length of the virtual queue of an AMSP flow
is greater than this staleness threshold, the lowest priority packet from this flow
should be dropped.

The improved PDQMAMS algorithm outlined above will have a great chance
in providing fairness for all flows, support for multimedia streams and pro-active
congestion avoidance.

6. Related work

Our queue management algorithm drops lower priority packets when the router’s
queue becomes full. There is another approach to this prioritized treatment of
packets inside a router’s queue. Incoming lower priority packets can be dropped,
before the queue is full, to make room for incoming higher priority packets. In
this approach, an incoming lower priority packet is dropped if the number of lower
priority packets from the queue is above a threshold value. This approach of man-
aging prioritized packets inside a router’s queue has the advantage of avoiding the
complexity of searching the queue for a low priority packet to drop, which is done
in our approach. This approach is the basis for the algorithm presented in [15].
The disadvantage of such algorithms is that they are less accurate (because they
use thresholds for taking drop decisions) and they often lead to underutilisations
of the queue. In [15], a version of such threshold-based algorithm which tries to
alleviate this accuracy problem by using dynamic thresholds is presented. This
algorithm uses not one threshold, but several different threshold values for each
type of low priority frames from a multimedia stream. These thresholds are chosen
in a dynamic way based on how the queue’s fill level will be in the future (i.e., after
several more frames are received, the lookahead buffer). In this algorithm, when
a packet belonging to a low priority frame arrives at the router and the threshold
for this kind of frame is surpassed (meaning that accepting this packet makes the
lookahead buffer drop a future incoming high priority frame packet) this packet is
dropped. This algorithm relies on the source sending in advance information about
future incoming frames, to intermediate routers and on the fact that intermediate
routers know in advance the arriving frame pattern from one second GOP.

Although our PDQMAMS does not use threshold values and drops a packet
only when it’s absolutely necessary (i.e., when the queue is full), thus being more
accurate, complexity is added only when a packet is enqueued (like is depicted in
figure 1) and, in our opinion, this complexity is comparable with the complexity
of the algorithm presented in [15] when threshold values must be computed every
time a packet arrives at the router. Also, the algorithm presented in [15] assumes
it manages only a single multimedia flow and that available bandwidth changes
on coarse-granularity time intervals, while our PDQMAMS handles several multi-
media flows and achieves fairness between them.

48 ADRIAN STERCA, FLORIAN BOIAN, DARIUS BUFNEA, CLAUDIU COBÂRZAN

7. Conclusions and future work

We have presented a queue management algorithm, namely Priority-Drop Queue
Management Algorithm for Multimedia Streams (PDQMAMS) for helping multi-
media streams inside the network. We showed that this queue management algo-
rithm indeed provides support for multimedia streams while achieving a good de-
gree of fairness among flows. We also sketched an improved version of PDQMAMS
that tries to maintain the above qualities and also provide pro-active congestion
avoidance mechanisms (mainly based on RED). As future plans we intend to im-
plement and test this improved version of PDQMAMS under various conditions
and prove its advantages.

References

[1] R. Steinmetz, K. Nahrstedt, Multimedia: Computing, Communications and Applications,
Prentice Hall PTR, 1995.

[2] S.Floyd, K. Fall, Promoting the Use of End-To-End congestion control in the Internet,
IEEE/ACM Transactions on Networking, August 1999.

[3] K. Ramakrishnan, S. Floyd, A Proposal to add Explicit Congestion Notification (ECN) to
IP, RFC 2481, January 1999.

[4] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson, G.
Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, L. Zhang,
Recommendations on Queue Management and Congestion Avoidance in the Internet, RFC
2309, April 1998.

[5] Nagle, J., Congestion Control in IP/TCP, RFC 896, January 1984.
[6] E. Kohler, M. Handley, S. Floyd, Datagram Congestion Control Protocol (DCCP), Internet

Draft, February 2004, http://www.icir.org/kohler/dcp/draft-ietf-dccp-spec-06.txt.
[7] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, RTP: A Transport Protocol for

Real-Time Applications, RFC 3550, July 2003.
[8] S. Floyd, V. Jacobson, Random Early Detection Gateways for Congestion Avoidance,

IEEE/ACM Transactions on Networking, Vol. 1, No. 4, pp. 397-413, August 1993.
[9] P. E. McKenney, Stochastic Fairness Queuing, Internetworking: Research and Experience,

Vol. 2, pp. 113-131, 1991.
[10] A. Demers, S. Keshaw, S. Shenker, Analysis and Simulation of a Fair Queuing Algorithm,

Journal of Internetworking: Research and Experience, 1, 1990, pp. 3-26.
[11] MPEG Standards, http://www.chiariglione.org/mpeg/index.htm.
[12] M. Ohlenroth, Network-based Adaptation of Multimedia Content, PhD thesis, Klagenfurt

University, Austria, September 2003.
[13] B. Hubert, T. Graf, G. Maxwell, R. van Mook, M. van Oosterhout, P. B. Schroeder, J.

Spaans and P. Larroy, Linux Advanced Routing and Traffic Control, August 2003, available
at http://lartc.org/howto.

[14] S. Floyd, R. Gummadi, S. Shenker, Adaptive RED: An Algorithm for Increasing the Ro-
bustness of RED’s Active Queue Management, august, 2001.

[15] A. Awad, M.W. McKinnon and R. Sivakumar, MPFD: A Lookahead Based Buffer Man-
agement Scheme for MPEG-2 Video traffic, Proceedings of the 8th IEEE International
Symposium on Computers and Communication, 2003, (ISCC 2003).

Faculty of Mathematics and Computer Science, Babes-Bolyai University, Cluj-Napoca
E-mail address: {forest, florin, bufny, claudiu}@cs.ubbcluj.ro

