
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LI, Number 1, 2006

A PROGRAMMING INTERFACE FOR MEDICAL DIAGNOSIS
PREDICTION

GABRIELA ŞERBAN, ISTVAN-GERGELY CZIBULA, AND ALINA CÂMPAN

Abstract. The aim of this paper is to present a programming interface
that can be used for assisting physicians in medical diagnosis. The interface
provides an original diagnosis technique based on relational association rules
and a supervised learning method. Using the designed interface, we made an
experiment for cancer diagnosis; the precision of the diagnosis on our testing
data was 90%. The main advantage of the proposed interface is that can be
use in diagnosis for every disease, and, much more, can be simply extended,
by adding new symptom types and new relations between symptoms for the
given disease.

Keywords: Relational association rules, Programming, Interface, Super-
vised Learning.

1. Introduction

The purpose of this paper is to propose a technique for assisting medical di-
agnosis using relational association rules and to present a programming interface
for medical diagnosis, using the proposed technique. The interface is meant to
facilitate the development of software for identifying the probability of illness in a
certain disease.

Much more, this interface can be simply extended by adding new symptom types
for the given disease, and by defining new relations between these symptoms.

In our model, we have a set of patients identified by a set of symptoms of a
certain disease. The symptoms types and values are unimportant in our approach,
the user of the interface can simply define concrete symptoms for the current
diagnosis task.

For this issue, the patients, their symptoms types, and the relations between
their symptoms can be designed and implemented separately and then intercon-
nected relatively easily in a standard, uniform fashion.

Received by the editors: March, 1, 2006.
2000 Mathematics Subject Classification. 68P15, 68T05, 68N19.
1998 CR Categories and Descriptors. H.2.8[Computing Methodologies]: Database

Applications – Data Mining; I.2.6[Computing Methodologies]: Artificial Intelligence – Learn-
ing; D.1.5[Software]: Programming Techniques – Object-Oriented Programming;

21

22 GABRIELA ŞERBAN, ISTVAN-GERGELY CZIBULA, AND ALINA CÂMPAN

2. Relational Association Rules

We extend the definition of ordinal association rules ([3]) towards relational
association rules.

Definition 1. Let R = {r1, r2, . . . , rn} be a set of entities (records in the rela-
tional model), where each record is a set of m attributes, (a1, . . . , am). We denote
by Φ(rj , ai) the value of attribute ai for the entity rj. Each attribute ai takes
values from a domain Di, which contains ε (empty value, null). Between two
domains Di and Dj can be defined partial relations, such as: less or equal (≤),
equal (=), greater or equal (≥), etc. We denote by M the set of all relations de-
fined. An expression (ai1 , ai2 , ai3 , . . . , ai`

) ⇒ (ai1 µ1 ai2 µ2 ai3 . . . µ`−1 ai`
), where

{ai1 , ai2 , ai3 , . . . , ai`
} ⊆ A = {a1, . . . , am}, aij

6= aik
, j, k = 1..`, j 6= k and

µi ∈M is a relation over Dij
×Dij+1 , is an relational association rule if:

a) ai1 , ai2 , ai3 , . . . , ai`
occur together (are non-empty) in s% of the n records

; we call s the support of the rule,
and

b) we denote by R′ ⊆ R the set of records where ai1 , ai2 , ai3 , . . . , ai`
occur

together and Φ(rj , ai1) µ1 Φ(rj , ai2) µ2 Φ(rj , ai3) . . . µ`−1 Φ(rj , ai`
) is

true for each record rj din R′; then we call c = |R′|/|R| the confidence
of the rule.

The users usually need to uncover interesting relational association rules that
hold in a data set; they are interested in relational rules which hold between a min-
imum number of records, that is rules with support at least smin, and confidence
at least cmin (smin and cmin are user-provided thresholds).

Definition 2. We call a relational association rule in R interesting if its sup-
port s is greater than or equal to a user-specified minimum support, smin, and its
confidence c is greater than or equal to a user-specified minimum confidence, cmin.

In [3] is given a discovery algorithm for binary ordinal association rules (rules
between two attributes). We developed in [4] an algorithm, called DOAR (Dis-
covery of Ordinal Association Rules), that efficiently finds all ordinal association
rules, of any length, that hold over a data set. We have proved that the proposed
algorithm is correct and complete. This algorithm can be used for finding rela-
tional association rules, as well. For implementing the main functionality of our
interface we have used the DOAR algorithm.

3. Medical Diagnosis using Relational Association Rules

In this section we propose a supervised learning technique, based on finding
relational association rules, called MDRAR (Medical Diagnosis using Relational

A PROGRAMMING INTERFACE FOR MEDICAL DIAGNOSIS PREDICTION 23

Association Rules). MDRAR determines the probability that a patient character-
ized by a set of symptoms suffers from a certain disease. The method works as
follows.

Let us consider that our focus is a certain disease, denoted by D. For an
appropriate diagnosis in the disease D, we consider a set of n relevant symptoms,
S. Each symptom is an attribute ai and has values from a domain Di. In order
to predict the probable diagnosis we perform a training step using two knowledge
bases: a knowledge base containing the patients that suffer from the disease D
(the ill patients), and a knowledge base containing the healthy patients. In both
knowledge bases, each patient is characterized by a vector with components the
values of all the symptoms from S. The knowledge bases of ill and healthy patients
are the training data and are used in the training step of the algorithm (see Figure
1).

Let us assume that a n-dimensional vector describing the symptoms from S
observed at a patient P is given as input to our algorithm. MDRAR determines
the probability that the patient P suffers from the disease D, using the model
learned in the training step. This is the prediction step of the algorithm (see
Figure 1).

The main steps of our diagnosis technique are given in Figure 1:

Figure 1. The MDRAR technique.
(1) TRAINING STEP:

(a) determine from the knowledge base with ill patients the set of as-
sociation rules (R1) having a minimum support and confidence;

(b) determine from the knowledge base with healthy patients the set of
association rules (R2) having a minimum support and confidence;

(2) PREDICTION STEP: for each patient P for which we intend to
predict the diagnosis, calculate the probability that P suffers from the
disease D as the percentage of rules from R1 verified by P and rules
from R2 not verified by P .

4. The programming interface

In this section we propose an API that allows a simple development of applica-
tions for medical diagnosis based on finding relational association rules. The API
provides an uniform development for all these applications.

The main advantage of the interface is that the user can simply define, depend-
ing on the current disease, new types of symptoms and new types of relations
between the symptoms, and the diagnosis prediction process remains unchanged.
The interface is realized in JDK 1.5, and is meant to facilitate software develop-
ment for assisting medical diagnosis.

24 GABRIELA ŞERBAN, ISTVAN-GERGELY CZIBULA, AND ALINA CÂMPAN

There are seven basic entities (classes): Patient (defines a patient), Symptom
(characterizes the patients), SymptomType (represents the type of a symptom),
Relation (defines a partial relation between symptoms), AssociationRule (de-
scribes relational association rules between symptoms), AssociationRuleGenerator
(responsible with generating relational association rules from the set of patients,
based on their symptoms values and relations already defined) and Diagnosis
(responsible with predicting the diagnosis for a given patient, using the MDRAR
algorithm).

For designing the interface, we made an abstraction of the mechanisms for gen-
erating relational association rules, in order the interface to be useful for any kind
of disease, symptoms and relations between symptoms. Much more, the patient
entities are completely separated from the symptoms that characterize them (a
Patient has to know nothing about its Symptoms, it has to know only about
their behavior). Thus, we can easily change and add Symptoms characterizing
the Patients, and Relations between Symptoms, without affecting the general
diagnosis prediction process.

The AssociationRuleGenerator class is the main class of the interface and
manages the process of finding relational association rules in the given set of
Patients with respect to the given Symptoms. This class provides an opera-
tion that finds relational association rules in data, by implementing the DOAR
algorithm (section 2).

The interface also provides:

• the class Patients that models a set of patients (the data set from which
we want to extract relational association rules);

• the class AssociationRules that models a set of relational association
rules;

• the class (Relations) that manages the set of relations between the
symptoms (this class allows to manage dynamically the set of relations
defined between symptoms).

For using the interface in a specific diagnosis prediction task, the user has only
to:

• define specialized classes for the concrete symptom types (for example
a class SymptomInt that extends the abstract class SymptomType if the
symptoms are quantified by integer values);

• define specialized classes for the concrete relations between symptoms
(for example a class IntIntEqual that extends the abstract class Relation
if we want to describe the equality relation between two integer valued
symptoms);

• construct the concrete set of patients.

All other mechanisms needed for generating the rules and predicting the diag-
nosis are provided by the classes from the interface.

A PROGRAMMING INTERFACE FOR MEDICAL DIAGNOSIS PREDICTION 25

In the following we present the skeleton of a diagnosis application. Let us
assume that symptoms have integer values, and the only relation needed between
Symptoms is “=”.

• First, the user implements the class that defines the concrete symptom
type.
public class SymptomInt extends Symptom{...}.

• Second, the user implements the class that defines the concrete relation
between the symptoms already defined.
public class IntIntEqual extends Relation{...}.

In the same manner as above, the user can define as many symptom types and
relations as are needed in the current diagnosis prediction task.

In the application class the user has to define a method that reads the data
(patients) from an external device (file, database) and returns a set of patients
(an instance of the Patients class) and to add (register) the concrete relations
defined above to the set of relations Relations.

public class Application {

public Application(){

// The manager of relations adds a new concrete relation to its set of

// relations

RelationSet.addRelation(new IntIntEqual());

// The application provides a method that constructs the set of ill patients

Patients ill = readData();

// An instance of an object AssociationRuleGenerator is created from the

// Patient set created above

AssociationRuleGenerator arg = new AssociationRuleGenerator(ill);

// The association rule generator generates the set of association rules

// having a minimum support and confidence

double minimumSupport = 0.9;

double minimumConfidence = 0.65;

AssociationRuleSet illRules = arj.genAssociationRules(minimumConfidence);

// The application provides a method that constructs the set of healthy

// patients

Patients healthy = readData();

// An instance of an object AssociationRuleGenerator is created from the

// Patient set created above

arg = new AssociationRuleGenerator(healthy);

// The association rule generator generates the set of association rules

// having a minimum support and confidence

AssociationRuleSet healthyRules=arj.genAssociationRules(minimumConfidence,

minimumSupport);

// An instance of a Diagnosis class is now created

26 GABRIELA ŞERBAN, ISTVAN-GERGELY CZIBULA, AND ALINA CÂMPAN

Diagnosis d = new Diagnosis(healthyRulles, illRules);

// Now the object d can be used to predict the diagnosis a given patient

}

}

Figure 2 shows a simplified UML diagram ([6]) of the interface, illustrating the
hierarchy of classes. The figure illustrates the core of the interface and what is
outside the core are the concrete classes that the user has to define, by extending
the classes provided by the interface, in order to develop a diagnosis prediction
application for a given disease. It is important to mention that all the core classes
provided by the interface remain unchanged in all applications.

Figure 2. The diagram of the programming interface

5. The Design of the Interface

The classes used for realizing the interface are the following:
• SymptomType is ABSTRACT.

Models an abstract symptom type, identified by the symptom type
name. The class has operations for returning and modifying the symp-
tom type name, a method for verifying the equality of two symptom
types and an abstract method that creates a symptom value from a
string. The concrete symptom types defined by the user of the interface,
will extend the abstract SymptomType, managing their concrete type
and overwriting the abstract methods from the abstract SymptomType;

A PROGRAMMING INTERFACE FOR MEDICAL DIAGNOSIS PREDICTION 27

• Symptom.
Models a symptom characterizing the patients, and is characterized

by a name, a symptom type (an instance of the SymptomType class) and
a value (that is an object).

• Patient.
Models a patient from the data set, which consists in a list of symp-

toms. The class has operations for managing the symptoms: adding,
removing and returning symptoms from a given position, searching a
symptom with a given name and symptom type.

• Patients.
Models a set of patients, which consists in a list of Patient objects.

The class has operations for managing the set of patients: adding, re-
moving, searching patients and a method that returns an iterator on the
set.

• Relation is ABSTRACT.
Models an abstract relation between two symptom types Type1 and

Type2. The class has abstract operations for: returning Type1 and
Type2, returning the name of the relation, verifying if two Symptoms
are in the given relation and for returning the converse of the relation.

• AssociationRule.
Models a relational association rule, which consists in a set of ab-

stract symptoms, a set of abstract relations, and characterized by its
support and confidence. The main methods of this class are for: man-
aging the symptoms and the relations from the association rule, setting
and returning the support and the confidence of the rule.

• AssociationRuleSet.
Models the structure of a set of relational association rules, which

consists in a list of AssociationRule objects. The class has operations
for managing the set of relational association rules: adding, removing,
searching rules and a method that returns an iterator on the set.

• Relations.
In our design this class models a repository (set) of relations, that al-

lows the user to dynamically add relations between newly defined Symp-
tom types. The user can dynamically add new defined relations in this
list, using a method addRelation. This class has methods for obtaining
the relations for a given Symptom, for verifying if there exists a given
Relation between two Symptoms.

• AssociationRuleGenerator.
Is the class that implements the process of finding relational asso-

ciation rules in a set of patients. The main method of the class is gen-
erateAssociationRules, that generates from the data set the relational

28 GABRIELA ŞERBAN, ISTVAN-GERGELY CZIBULA, AND ALINA CÂMPAN

association rules having a minimum given support and confidence, and
returns an instance of the AssociationRuleSet class.

• Diagnosis.
Is the main class of the interface, that predicts a diagnosis for a

given patient, based on the technique described in section 3. It repre-
sents the heart of the interface, the uniform usage that all patients, with
their particular symptoms and relations, are meant to conform to. An
instance of the Diagnosis class is associated with two instances of the
AssociationRuleSet class.

As it can be seen on Figure 2, there is a dependency relationship between
the AssociationRuleGenerator and Relations, that allows the association rule
generator to dynamically manage the relations added by the user, without affecting
the main process of detecting rules.

6. Experimental Evaluation

The file for this experiment was obtained from the website at ”http://www.corma-
ctech.com/neunet”.

In order to test the above defined interface, we considered a HealthCare exper-
iment for predicting the cancer disease.

The entities in this experiment are patients: each patient is identified by 9
Symptoms [1]. Each Symptom represents the value of a symptom in the cancer
disease, and has integer values between 1 and 10. Each instance has one of 2 pos-
sible classes: benign or malignant. In this experiment are 457 patients (entities).

The attribute information used in the ”cancer” experiment is shown in Table
1.

Table 1. Attribute information in the ”cancer” experiment

Attribute Domain
1. Clump Thickness 1 - 10
2. Uniformity of Cell Size 1 - 10
3. Uniformity of Cell Shape 1 - 10
4. Marginal Adhesion 1 - 10
5. Single Epithelial Cell Size 1 - 10
6. Bare Nuclei 1 - 10
7. Bland Chromatin 1 - 10
8. Normal Nucleoli 1 - 10
9. Mitoses 1 - 10

For this experiment, we have defined:
• SymptomInt, defining the integer Symptom representing a patient’s symp-

tom in the cancer disease;

A PROGRAMMING INTERFACE FOR MEDICAL DIAGNOSIS PREDICTION 29

• IntIntEqual, IntIntLess and IntIntGreater, defining the possible
relations between two integer symptoms (=, ≤, ≥);

• a mechanism that reads the data (for each patient, it reads the values of
the symptoms) and creates a Patients object.

We executed the medical diagnosis algorithm with minimum support threshold
of 0.9 and minimum confidence threshold of 0.65. The training data consists in
147 ill patients and 260 healthy patients. The prediction step was made for 60
patients (30 ill patients and 30 healthy patients). We have obtained a precision of
90%.

As a conclusion of our experiments, we have to mention, from a programmer
point of view, the advantages of using the interface proposed in this paper:

• is very simple to use;
• the effort for developing a diagnosis application based on relational as-

sociation rule detection is reduced - we need to define only a few classes,
the rest is provided by the interface;

• the user of the interface has to know nothing about the method of finding
relational association rules or about the prediction method, because they
are provided by the interface;

• we can add new symptom types and relations between symptoms, while
the interface remains unchanged.

7. Conclusions and Further Work

As a conclusion, we have developed a small framework that will help program-
mers to build, dynamically, their own applications for diagnosis prediction in dif-
ferent kind of diseases, without dealing with the internal mechanism (that remains
unchanged and is provided by the interface) and having the possibility to define
their own types of symptoms and relations between symptoms. So, the program-
mer’s effort for developing an application is small.

Further work can be done in the following directions:
• to test the accuracy of our technique on practical diagnosis. We think

that increasing the number of data in the training step the accuracy of
the prediction will grow;

• to study, for certain diseases, how can other symptoms and other rela-
tions between symptoms be added in order to assure better results in
diagnosis.

References

[1] Wolberg, W., Mangasarian, O.L.: “Multisurface method of pattern separation for medical
diagnosis applied to breast cytology”, Proceedings of the National Academy of Sciences,
U.S.A., Volume 87, December 1990, pp 9193–9196.

[2] http://www.cormactech.com/neunet, “Discover the Patterns in Your Data”, CorMac
Technologies Inc, Canada.

30 GABRIELA ŞERBAN, ISTVAN-GERGELY CZIBULA, AND ALINA CÂMPAN

[3] Marcus, A., Maletic, J. I., Lin, K.-I., “Ordinal Association Rules for Error Identification
in Data Sets”, CIKM 2001, 2001, pp. 589–591.

[4] Campan, A., Serban, G., Truta, T. M., Marcus, A., “An Algorithm for the Discovery of
Arbitrary Length Ordinal Association Rules”, submitted to DMIN’06.

[5] Han, J., Kamber, M., “Data Mining: Concepts and Techniques”, The Morgan Kaufmann
Series in Data Management Systems, 2001.

[6] http://www.omg.org/technology/documents/formal/uml.htm.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca,
Romania

E-mail address: gabis@cs.ubbcluj.ro

“InfoWorld”, Cluj-Napoca
E-mail address: czibula.istvan@infoworld.ro

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca,
Romania

E-mail address: alina@cs.ubbcluj.ro

