
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LI, Number 1, 2006

AUTOMATA-BASED COMPONENT COMPOSITION ANALYSIS

ANDREEA FANEA, SIMONA MOTOGNA AND LAURA DIOŞAN

Abstract. Formal specification of software components enables automatic

composition and checking of component-based systems. The component sys-
tem is modeled as a finite automaton. We propose an algorithm that builds

all syntactically correct finite automata-based models of a component-based

system. The result systems are checked against the properties: lost data and
number of provider/inport.

1. Introduction

Component-based software engineering (CBSE) is the emerging discipline of the
development of software components and the development of systems incorporating
such components. In order to construct a correct system, these components should
be assembled in an unified model and we would like to be able to obtain properties
of the model that could contribute to its correctness.

A formal model for component-based software is of critical importance because
it provides a basis for the understanding of the underlying concepts of compo-
nent models, component certification techniques, component testing. The general
definition of a software component is given in [5].

There are two issues which need to be addressed [1], [6] where a software system
is to be constructed from a collection of components:

• Component integration - the mechanical process of wiring components
together. There has to be a way to connect the components together.

• (Behaviour) Component composition - we have to get the components
to do what we want. We need to ensure that the assembled system does
what is required. Component integration is taken one step further to
ensure that assemblies can be used as components in larger assemblies.

To achieve integration, syntactical composition is studied. It offers the necessary
tool to meet for the requirements for wiring components together. Component
integration is a more complex process which will need to assign also semantic

Received by the editors: 9.01.2006.
2000 Mathematics Subject Classification. 68N30, 68Q45.
1998 CR Categories and Descriptors. code I.6.4 [Simulation and modeling]: – Model

Validation and Analysis; code I.6.5 [Model Development]: – Modeling methodologies.

13

14 ANDREEA FANEA, SIMONA MOTOGNA AND LAURA DIOŞAN

information regarding behaviour to the syntactic entities. This will be the next
step in our study and it is not treated here.

We have developed in [2] an algorithm that computes all the possibilities of
constructing a system from a given set of components, checking only the syntactical
part when wiring together the components. This computation is the first step
from the construction of a component-based system. The next step consist of the
behaviour composition of components.

In [4] a model of a component-based software system is proposed, which uses a
finite automata-based method, enabling compositional reachability analysis. The
following checks were performed:

• the system is consistent: starting from a given input, all components can
be added to the model and the execution eventually terminates;

• there are no potential deadlocks in the model.

This paper proposes a new algorithm to construct all the component-based soft-
ware systems as finite automata-based models. The resulting models are syntacti-
cally correct. By syntactically correct model we mean no semantic involvement in
the models, but just the way to connect the components together, the mechanical
process of “wiring” components together (component integration).

A syntactically correct model has the following properties:

• all inputs are provided for a component to be executed; a component
is added into the model if and only if all its necessary input data are
provided;

• there are no cyclic dependencies;
• no duplicate components.

The algorithm checks model consistency during its construction from a given
set of components. The result systems are checked against the properties: if the
execution of the component system is terminated and even if the system behaves
properly, there is some lost data, and a component is not allowed to receive the
value for an inport from more than one component - one provider/inport. A
comparison analysis of three solutions (with different properties) are presented
and some examples are given.

2. Previous results

In [4] the component system is modeled as a finite automaton, where compo-
nents are represented as states and information flows as transitions.

Definition 1. A source component, i.e. a component without inports, is a com-
ponent that generates data provided as outports in order to be processed by other
components.

AUTOMATA-BASED COMPONENT COMPOSITION ANALYSIS 15

Definition 2. A destination component, i.e. a component without outports, is a
component that receives data from the system as its inports and usually displays
it, but it does not produce any output.

Definition 3. A system of components is defined as a finite automaton A =
(Q,Σ, δ, q0, F), where:

• Q is the set of states, each q ∈ Q representing a component;
• Σ is the input alphabet; in the proposed model, Σ is the union of the

outports (of the components) already included in the models, in fact, the
data set;

• δ : Q × Σ → P (Q) is the transition function; δ members have the form
((C1, d) → C2), where C1,C2 ∈ Q and d ∈ outports(C1)

⋂
inports(C2);

• q0 ∈ Q is the initial state - the source component in the component
system;

• F ⊂ Q is the set of final states - the destination components from the
component system.

In [4] the MakeModel algorithm has as input a component system specification
and builds the model, a nondeterministic finite automaton. The algorithm gen-
erates such a model from a given component system specification, checking the
following properties:

• all inputs are provided for the tasks of the C component to be executed,
i.e. inports(C) ∈ Σ;

• there are no “cyclic” component dependencies: C1 expects data d1 as
inport and provides d2 as outport, and component C2 needs d2 as inport
and provides d1 as outport.

In [4] the procedure Search(compList, cond, component, flag) searches into the
list of components compList for the first component satisfying a given condition
cond. The output parameter flag is set to true if the search is successful. In this
case, the component is also provided. If no component matching cond is found
then flag is set to false. Because of the “first” criterion, only one nondeterministic
finite automaton is constructed.

In [3] the following definition was introduced:

Definition 4. a. A component C is reachable iff there exists a path from the source
component to C. We say that C ′ is reachable from C through d if δ(C, d) = C ′;
b. A data d is live iff for a reachable component C there exists a component C‘
reachable from C through d: d ∈ outports(C) ∩ inports(C ′).

We have modified the algorithm [4] in order to generate all the nondeterministic
finite automata. Also, the final constructed system have only live data. This prop-
erty is checked after building the consistent system (starting from a given input,
all components are added to the model and the execution eventually terminates).
The construction of the model is described in the following section.

16 ANDREEA FANEA, SIMONA MOTOGNA AND LAURA DIOŞAN

3. Model building

We must first establish our entities involved in the component system definition:

• domain D - a set that does not contain the null element;
• set of attributes A - an infinite fixed and arbitrary set; the atributes

signify variables or fields;
• type of an attribute x ∈ A : Type(x) ∈ D represents the set of possible

values for the attribute x.

Consider the component system CS = {C1, C2, ..., Cn}, in which every compo-
nent Ck is specified as: Ck = (compIDk, inportsk, outportsk, functsk), where:

• compIDk is the component identifier, unique;
• inportsk ⊆ A the set of input ports;
• outportsk ⊆ A the set of output ports;
• functsk the set of tasks the Ck component performs.

3.1. Algorithm specification. The specification of the MakeAllModels algo-
rithm is as follows:
Begin

Input : the component system CS;
Output : all the nondeterministic finite automata A = (Q, Σ, δ, q0, F).

End.

3.2. Algorithm description. We use a recursive backtracking algorithm to gen-
erate all the component-systems from the existing specified components.

The first component that is used from the component system is a source com-
ponent. A component is added to solution (the intern conditions, specified in
valid(i)) if the component was not already used before and all the inputs of the
component are provided for the tasks to be executed. A component-based system
is found (the conditions for the complete solution, specified in solution(i)) when
the last component added to solution is a destination component.

The lost data property is checked only after a solution is generated, because
when integrating a component into the systems we do not check if all the out-
puts are consumed (only some outputs are used for the transition to the current
component). It is obvious that for a component in the solution all the inputs
are consumed, because we used the condition that all the inputs are available.
The property checks if all the outputs of all the components involved into the
computation are consumed.

The necessity to provide all inputs of the component to be executed generates
another condition to be checked after a solution is generated: the inputs of a com-
ponent could be provided by more than one component and the choice is made
in the algorithm. The following situation is not desired: the current component

AUTOMATA-BASED COMPONENT COMPOSITION ANALYSIS 17

Algorithm 1 BuildingAllModels Algorithm

1: for each component in the system do
2: add the component to the solution on position i;
3: mark the new set of available inputs;
4: if valid(i) then
5: for each mC ∈ CS do
6: for each d ∈ inports(Componenti) do
7: if d ∈ outports(mC) then
8: δ := δ

⋃
{(mC, d) → Componenti};

9: end if
10: end for
11: end for
12: if not solution(i) then
13: BuildingAllModels(i+1,...)
14: else
15: WriteSolution(i,...);
16: end if
17: end if
18: end for

receives the value for one of its inports from two different components. The al-
gorithm will check at the end if a solution contains such situations. More precise
explanations are presented in the next section.

4. Examples and result analysis

4.1. Example 1. Consider the following general set of components:
C1 = (C1, ∅, {d1, d2}, {read});
C2 = (C2, {d1, d3}, {d5, d6}, {task1, task2, task3});
C3 = (C3, {d2}, {d3, d7}, {task4});
C4 = (C4, {d5, d7}, {d8}, {task5});
C5 = (C5, {d6, d8}, ∅, {write});
C6 = (C6, {d1, d3}, {d4, d5, d6}, {task1, task2, task3});
C7 = (C7, {d1, d5}, {d3}, {task1, task2, task3});
C8 = (C8, {d2, d3}, {d4}, {task4});
C9 = (C9, {d4}, {d5, d6}, {task5});
C10 = (C10, {d6}, ∅, {write});

The results of building the models from existing components are presented
in Table 1: the number of all the consistent solutions, the number of solutions
without lost data and the number of solutions with only one provider/input for
all involved components and the number of final solutions. The percentage shows

18 ANDREEA FANEA, SIMONA MOTOGNA AND LAURA DIOŞAN

that only a small part of the solutions should be taken into consideration based
on the efficiency criterion.

Table 1. The number of solutions for the components set from
example 1

Algorithm
MakeAllModels

All Solu-
tions

Solutions
without
Lost Data

Solutions one
provider/input

Final Solu-
tions

Number 1323 40 64 1
Percent 100% 3.02% 4.83% 0.07%

The presented solution from Figure 1.a has lost data. The C6 component has
two outports that are not “consumed”.

The solution is A = (Q,Σ, δ, q0, F), where:
• Q={C1,C3,C2,C4,C6,C5}
• Σ ={d1,d2,d3,d7,d5,d6,d8,d4}
• δ={(C1,d2) → C3,(C1,d1)→ C2,(C3,d3)→ C2, (C2,d5) → C4,(C3,d7)→

C4,(C1,d1)→ C6,(C3,d3)→ C6, (C2,d6)→ C5, (C4,d8)→ C5,(C6,d6)→
C5}

• q0={C1}
• F={C5}

Figure 1. The nondeterministic finite automaton for the consis-
tent solution a) with lost data d4 and d5 b) the correct model.

As Figure 1.a shows, component C6 outport contains data d4 and d5 which
are lost (no other component from the system is using it). So we will split this
component into two new components C61 and C62, clone its inports, data d2 and
data d3, and then isolate the area containing component C62 and data d2, d3.
The resulting model, as presented in Figure 1.b, is correct.

The presented solution is not included in the solution set with one provider/inport
because the are two transitions to the same component C5 with the label d6 as in
Figure 2. The input d6 of the C5 component must have only one provider on an

AUTOMATA-BASED COMPONENT COMPOSITION ANALYSIS 19

execution. The “reverse” propagation of data (the output data of a component
is propagated to two or more components) is allowed. Component C3 distributes
the data d3 to C2 and C6 component as in Figure 2.a. In Figure 2.b the final
solution is presented: the solution is consistent, no lost data and each inport for
each component has just one provider.

4.2. Example 2. Consider the following general set of components:
C1 = (C1, ∅, {d1, d2, d3}, {read});
C2 = (C2, {d3}, {d1}, {task1, task2, task3});
C3 = (C3, {d3, d4}, {d5}, {task4});
C4 = (C4, {d2}, {d4}, {task5});
C5 = (C5, {d5}, ∅, {write});
C6 = (C6, {d1}, {d3}, {task1, task2, task3});

Figure 2. The finite automaton a) with more than one
provider/inport; b) the corresponding final consistent solution.

The results of building the models from existing components are presented in
Table 2.

Table 2. The number of solutions for the component set of Ex-
ample 2

Algorithm
MakeAllModels

All Solu-
tions

Solutions
without
Lost Data

Solutions one
provider/input

Final Solu-
tions

Number 19 5 5 0
Percent 100% 26.31% 26.31% 0%

Figure 3 presents two solutions, one from the solution set without lost data
figure 3a) and the other from the one provider/input solution set figure 3b). The
consistent system CS = {C1, C4, C6, C3, C5} from the 1a) side contains an output
that is not “consumed”: the data d3 is lost. On the right hand side there is a
consistent system that has a component with more than one provider for an input:
component C3 receives the data d3 from component C1 and from C6.

20 ANDREEA FANEA, SIMONA MOTOGNA AND LAURA DIOŞAN

Figure 3. A finite automaton for the consistent solution a) with-
out lost data; b) with more than one provider/inport.

5. Conclusions and future work

In this paper we proposed a new algorithm for computing all the component-
based systems as automata-based models from a set of specified components. We
analyse the final models from distinctive perspective, checking the existence of the
properties lost data and one provider/port.

Using the same component model we intend to extend the algorithm and to
address the following topics in the future: checking if the model supports a given
sequence of tasks and building a component-based system that contains a given
sequence of tasks. Also checking the behaviour of components (to ensure that the
assembled system does what is required) after syntactic composition is intended
to be studied.

References

[1] Ivica Crnkovic and Magnus Larsson, Building Reliable Component-Based Software Sys-

tems, Artech House publisher, 2002
[2] A. Fanea, S. Motogna, A Formal Model for Component Composition, Proceedings of the

Symposium “Zilele Academice Clujene”, 2004, pp. 160-167

[3] S. Motogna, B. Parv, D. Petrascu, Finding Errors in a Component Model Using Automata
Techniques, 5th Joint Conference on Mathematics and Computer Science, Debrecen, Hun-

gary, 2004, pp. 69
[4] B. Parv, S. Motogna, D. Petrascu, Component System Checking Using Compositional

Analysis, Proceedings of the International Conference on Computers and Communications,

2004, Baile Felix Spa-Oradea, Romania, 2004, pp. 325-329
[5] Szyperski C. et al., Component Software, Beyond Object-Oriented Programming, 2nd ed.,

ACM Press, Addison-Wesley, NJ, 2002.

[6] Robert John Walters, A Graphically based language for constructing, executing and
analysing models of software systems, University of Southampton, Faculty of Engineer-

ing and Applied Science Electronics and Computer Science, PhD Thesis, 2002

Department of Computer Science, Faculty of Mathematics and Computer Science,

Babeş-Bolyai University, Cluj-Napoca, Romania
E-mail address: {afanea, motogna, lauras}@cs.ubbcluj.ro

