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FINE-GRAINED MACROFLOW GRANULARITY IN
CONGESTION CONTROL MANAGEMENT

DARIUS VASILE BUFNEA, ALINA CAMPAN, AND ADRIAN SERGIU DARABANT

Abstract. A recent approach in Internet congestion control suggests col-
laboration between sets of streams that should share network resources and
learn from each other about the state of the network. Currently such a set
of collaborating streams - a macro�ow - is organized on host pair basis. We
propose in this paper a new method for grouping streams into macro�ows
when they behave similarly. A �ow behavior is described by a set of state
variables, such as the round trip time, retransmission time out or conges-
tion window size. This extended macro�ow granularity can be used in an
improved Congestion Manager.

1. Introduction

Congestion control aims to control and adapt the transmission rate of the Inter-
net streams in order to reduce the amount of dropped packets in case of overloaded
communication lines and routers. Practical congestion control approaches work
either at protocol level or at router level. A transport protocol should normally
implement a congestion control algorithm. The TCP protocol, which transports
over 90% of Internet data, treats this aspect. But there are other protocols, which
remain congestion unaware. Routers have their congestion control policies and
algorithms for handling congestion situations that are usually induced by misbe-
haved congestion unaware �ows. The two mentioned approaches do not exclude
each other; rather they are completing each other.

In order to properly o�er reliable data transmission and congestion control, a
TCP connection uses some state variables such as: the round trip time (rtt), the
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retransmission time out (rto) [4], the congestion window (cwnd) and the slow start
threshold (sstresh) [1]. Usually, each TCP connection maintains independently
its own state variables and performs its own calculation for determining these
variables� values.

But even when each stream, independently, incorporates congestion aware algo-
rithms, a set of concurrent streams will still compete with each other for network
resources, rather than share them e�ectively [2]. Recent approaches introduce the
idea of Internet streams collaborating for an improved congestion control mecha-
nism. Rigorous delimited (de�ned) set of streams should share network resources
and learn from each other about the state of the network. Currently, such a set of
collaborating streams, referred as a macro�ow, is organized on host pair basis; i.e.
a macro�ow comprises connections sharing the same (source IP, destination IP)
pair. We propose in this paper a new method for grouping streams into macro�ows
according to their similar behavior. This method provides an accurate, less naive
approach for delimiting macro�ows inside the overall set of connections maintained
by a host. As a consequence, more connections will be detected as being part in
one macro�ow and will share their network knowledge. This approach is meant to
be part of an improved congestion Control Manager.

1.1. Related Work. Floyd suggested in [6] that the rtt and rto values should be
the same for all connections that share the same (source IP, destination IP) pair
in the same moment in time. For this reason, she claimed that the network level
should be maintaining the values of these state variables, and not the transport
level. However, Floyd did not further explore this approach.

[5] joins the idea of sharing state variables between �ows, on host pair basis. In
addition, she gives practical suggestions and solutions for accomplishing this, in
certain concrete situations.

[3] describes the LINUX caching mechanism of state variables values. One set
of information is maintained for each destination IP. The cached values serve for
state variables initialization of new connections targeting the same destination IP.
Thus, the LINUX caching mechanism also functions on host pair basis.

A state of the art approach [2] in congestion control suggests a practical way
for the collaboration between transport protocols and applications. This collabo-
ration should take place into an integrated Congestion Manager (CM) framework.
All protocols and applications involved in such a framework should provide their
network knowledge (rtt, packet losses) to the CM. The CM should aggregate all
these information on host pair basis (macro�ow basis), �learn� from them and
inform the protocols and applications, in a synchronous or asynchronous manner,
about when and how much data they can safely �put on the wire�. Practically,
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the collaboration will take place, mediated by the CM, between connections inside
a macro�ow; no collaboration will happen across macro�ows. So, more adequate
the macro�ows are established, more e�cient the CM�s control will be.

1.2. Contributions. We propose in this paper a new method for grouping streams
into macro�ows when they behave similarly. A �ow behavior is de�ned by a set of
state variables, such as the round trip time, retransmission time out or congestion
window size. The advantage is that we can cluster together streams not only on
host pair basis, but also on LAN pair basis; even more generally, streams sharing
a particular network bottleneck will be identi�ed by our method. This extended
macro�ow granularity can be used in an improved Congestion Manager.

2. Data Model

2.1. Rtt Vectors. We consider the case of an upload server that treats a high
number of simultaneous incoming connections. The aim is to establish (infer)
inside this set of connections some groups of connections with similar behavior. A
Congestion Manager running on that server will treat such a group as a macro�ow.

We denote by S the server machine itself or its network identi�cation IP ad-
dress.

Each incoming connection is identi�ed by the server S by a pair (CIP : Cport),
where CIP is the client's IP address and Cport is the client's port identi�cation.

During the life time of each (CIP : Cport) connection, the server S will peri-
odically measure and retain the values of some state variables, such as the round
trip time, retransmission time out or congestion window size. We based our ex-
periments on measurements of the round trip time (rtt) state variable. Practical
ways for the achievement of measurements are described in [8, 9].

Therefore, from the point of view of the upload server S, the incoming con-
nection f = (CIP : Cport) during the time interval (tb, te) is described by the rtt
vector V = (r1, r2, . . . , rk) where:

- (tb, te) ⊆ (CIP : Cport) connection life time;
- ∆t is the interval between two consecutive measurements;
- k = (te − tb)/∆t;
- ri is the rtt value measured at the tb + ∆t ∗ (i− 1) time moment.

We say that the rtt vector associated to a connection describes the connection's
behavior. The choice of the rtt state variable for describing a connection behav-
ior is justi�ed as follows. For two connections f1 and f2 coming from the same
client or LAN the rtt values measured at the same moment in time are quasi-
identical. Therefore, their associated rtt vectors during the same time interval are
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also quasi-identical. This means that f1 and f2 manifest a similar behavior, which
justi�es their placement in the same macro�ow. As we said, we want to extend the
macro�ow granularity outside the host-pair scope, on the basis of similar behavior;
but we also want to keep such connections (as f1 and f2 are) as much as possible
together in macro�ows. So, according to our modeling such connections must have
similar behavior. The rtt vectors model ensures that fact.

2.2. Similarity Measure. For grouping similarly behaving �ows we will use, as
described in the next paragraph, an arti�cial intelligence clustering algorithm.
Such an algorithm needs a similarity measure and a distance function for compar-
ing and di�erentiating two analyzed �ows. We propose next such measures and
justify our choice.

We associated to a connection an rtt vector describing its behavior. The rtt
vector re�ects the rtt temporal evolution of that �ow. Two connections will be
considered more similar as they are more linearly correlated (e.g. the rtt values
for the two connections increase and decrease at the same moments in time). A
statistical measure for the linear correlation of two vectors is the Pearson coe�-
cient.

Given two connections, f1 = (C1
IP : C1

port) and f2 = (C2
IP : C2

port) measured
during the time interval (tb, te) and their associated rtt vectors V1 = (r11, r12, . . . , r1k)
and V2 = (r21, r22, . . . , r2k), the Pearson correlation coe�cient of f1 and f2 is de-
�ned as:
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where r1 and r2 are the mean values of V1 and V2.
P (V1, V2) takes values in [-1,1] interval, a value of 1 meaning that the compared

vectors are linearly correlated, and a value of -1 meaning that they are inversely
linearly correlated. We chose to transport the Pearson coe�cient values in [0,1]
interval. However, this will not a�ect the semantics of the transformed coe�cient.
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Its maximal value will still indicate o positive correlation between parameters, and
the minimal value a negative correlation. Therefore, the similarity measure we use
for comparing connections will be:

(2) P (V1, V2) =
P (V1, V2) + 1

2

For di�erentiating connections we use a distance function de�ned by:

(3) dP (V1, V2) = 1− P (V1, V2)

dP take values in [0,1]; two identical �ows will be at 0 distance, two negatively
correlated �ows will be separated by a distance of 1.

The distance function de�ned on the basis of the correlation coe�cient as above
does not satisfy the triangle inequality; it is, therefore, what is called a semi-metric.

We have to notice a shortcoming of the correlation coe�cient in describing vec-
tors with a constant evolution (e.g. vectors with all the components equal). If one
of the vectorial arguments of P is constant, the correlation coe�cient is unde�ned.
We choused to consider it -1, as nothing can be said about the correlation between
such arguments and we want them not to disturb the classi�cation of the other
connections with well de�ned behavior.

3. The Macro�owIdenti�cation Algorithm

Let F = f1, f2, . . . , fn be the set of all incoming concurrent connections served
by S. For the (tb, te) time interval, the measured rtt vectors are V = V1, V2, . . . , Vn,
where Vi is the rtt vector associated to fi, fi = (Ci

IP : Ci
port), Vi = (ri1, ri2, . . . , rik).

We use an agglomerative hierarchical clustering algorithm for grouping in macro-
�ows the concurrent connections described by similar rtt vectors. This bottom-up
strategy starts by placing each connection in its own cluster (macro�ow) and then
merges these atomic clusters into larger and larger clusters (macro�ows) until a
termination condition is satis�ed.

At each iteration, the closest two clusters (macro�ows) are identi�ed. The
distance between two clusters Mi and Mj is considered to be, as de�ned in (4),
the maximum distance of any pair of objects in the cartesian product Mi×Mj . If
the distance between these two closest clusters does not exceed a given threshold
thr_max_dist, we merge them and the algorithm continues by a new iteration.
Otherwise, the algorithm stops. So, the termination condition holds when there
are no more clusters closer than a given threshold.
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This decision regarding the termination condition is justi�ed. We want that the
resulting macro�ows do not contain any �wrong� placed connections, so that the
subsequent decisions based on our macro�ow delimitation not to be erroneous. A
macro�ow is �correct� if any pair of its objects are similar enough.

The threshold thr_max_dist was chosen above 0.95, to ensure correct macro�ow
construction. By merging two clusters that are close enough with respect to
the threshold thr_max_dist ensures that, inside the obtained merged cluster
(macro�ow), any two connections are not more distant than thr_max_dist. So, it
is safe to place them into the same macro�ow.
Algorithm MacroflowIdentification is
Input: n, the number of concurrent connection at server S;

F = {f1, f2, . . . , fn} the set of concurrent connection at S;
V = {V1, V2, . . . , Vn}, Vi = (ri1, ri2, . . . , rik), i = 1..n, the rtt vectors
associated to the connections;
thr_max_dist, the maximal distance threshold for two connections
to be admitted in the same macroflow.

Output:m, the number of macroflows inferred in the concurrent connections
set;
M = {M1, . . . , Mm}, the inferred macroflows, where
Mi 6= ∅, i = 1..m, ∪m

i=1Mi = F, Mi ∩Mj = ∅, i, j = 1..m, i 6= j.
Begin

m := n;
M := ∅;
For i:= 1 to m do

Mi := {fi};
M := M ∪ {Mi};

End For;
While (m>1) and (Continue(M,thr_max_dist,Mmerge1, Mmerge2)=true) do

Mnew := Mmerge1 ∪Mmerge2;
M := M − {Mmerge1, Mmerge2} ∪ {Mnew};
m := m-1;

End While;
End.

Function Continue(M the set of current macroflows, thr_max_dist,
out Mmerge1, out Mmerge2):boolean is

Begin
min_dist := ∞;
For each Mi ∈ M
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For each Mj ∈ M, Mj 6= Mi

(4) dist(Mi, Mj) = max{dP (vr, vt)|fr ∈ Mi, ft ∈ Mj};
If dist(Mi, Mj) < min_dist

min_dist := dist(Mi, Mj);
Mmerge1 := Mi; Mmerge2 := Mj ;

End If;
End For;

End For;
If min_dist < thr_max_dist Return True;
Else Return False;
End If;

End Function.

Function Continue determines the closest two clusters from the clusters set
M . It will return true if these clusters are closer than thr_max_dist and false
otherwise.

4. Results and Evaluation

Figure 1. A macro�ow composed of connections originating
from the same client IP
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Figure 2. Macro�ows composed of connections originating from
di�erent client IPs

To test the e�ciency of the proposed algorithm, we used it on an http upload
server, with a high number of incoming connections. We measured the rtt state
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variable for the incoming connections at S during a larger time interval and we
considered for clustering samples of 20 seconds. We take the case of one such
sample, composed of 89 connections, originated from 50 di�erent remote hosts.
Inside this connection set our algorithm detected 38 macro�ows.

The connections originating from the same client were, most of them, clustered
together in one or few clusters. Figure 1 represents a macro�ow in which were
grouped together 4 connections with the same client IP.

But the algorithm also detected, as we intended, macro�ows over connections
coming from di�erent client IPs. Two such macro�ows are illustrated in Figure 2.
It can be clearly seen the similar rtt evolution during time for the connections of
each macro�ow. This fact might happen in di�erent situations: client IPs hosted
in the same remote LAN or client IPs sharing the same bottleneck toward server
S.

The connections with quasi-constant (almost all components of the associated
rtt vectors are equal) were all grouped together in one cluster - however, taking
into account the behavior of the Pearson correlation coe�cient in the presence of
a constant vector argument they are not to be considered as similar and forming
a macro�ow.

5. Conclusions and Future Work

We suggested in this paper a data model and an algorithm for extending the
macro�ow granularity outside of the host-pair approach. Our method will prove
its advantages in a Congestion Manager framework.

As a future work we plan to explore the use of di�erent similarity measures
and other state variables to compare the timely evolution of the connections being
analyzed. We also want to extend the clustering method to an incremental variant
having the ability to deal with new connections entering or leaving the system at
any given moment.
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