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JING LU, OSEI ADJEI, WEIRU CHEN, FIAZ HUSSAIN, CĂLIN ENĂCHESCU,

AND DUMITRU RĂDOIU

Abstract. This paper presents a novel data mining technique, known as
Post Sequential Patterns Mining. The technique can be used to discover
structural patterns that are composed of sequential patterns, branch pat-
terns or iterative patterns. The concurrent branch pattern is one of the main
forms of structural patterns and plays an important role in event-based data
modelling. To discover concurrent branch patterns efficiently, a concurrent
group is defined and this is used roughly to discover candidate branch pat-
terns. Our technique accomplishes this by using an algorithm to determine
concurrent branch patterns given a customer database. The computation of
the support for such patterns is also discussed.
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1. Introduction

Sequential patterns mining proposed by Agrawal and Srikant [1] is an important
data mining task and with broad applications. Based on the analysis of sequential
patterns mining, we proposed a novel framework for sequential patterns called se-
quential pattern graph (SPG) as a model to represent relations among sequential
patterns [2]. SPG can be used to represent sequential patterns encountered in
patterns mining. It is not only a minimal representation of Sequential patterns
mining result, but it also represents the interrelation among patterns. It estab-
lishes further the foundation for mining structural knowledge. Based on SPG and
sequential patterns mining, a new mining technique called post sequential pat-
terns mining (PSPM) [3] is presented to discover new kind of structural patterns.
A structural pattern [4] is a new pattern, which is composed of sequential patterns,
branch patterns or iterative patterns.

In order to perform post sequential patterns mining, the traditional sequential
patterns mining should be firstly completed. Post sequential patterns mining can
be viewed as a three-phase operation that consists of pre-processing, processing
and post-processing phases. In the pre-processing phase, based on the result of
sequential patterns mining, the Sequential Patterns Graph (SPG) is constructed.
SPG is a bridge between traditional sequential patterns mining and the novel post
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sequential patterns mining. The processing phase corresponds to the execution
of the mining algorithm, given the maximal sequences set (MSS) recognized by
SPG and customer sequence database DB as input, structural patterns (including
concurrent branch patterns, exclusive branch patterns and iterative patterns) are
discovered. During post-processing, the mined structural pattern can be repre-
sented graphically. In this paper, we focus on concurrent branch pattern and its
mining algorithms. We address the question: Given a set of sequential patterns
and customer sequence database DB, how can we efficiently find concurrent branch
patterns?

The first step in the discovery of a concurrent process should be to identify the
individual threads and their individual behaviours. Our work demonstrates that
since it is part of the post sequential patterns mining, concurrent branch pattern
mining discovers patterns on the basis of sequential patterns. In a concurrent
process, it is important to also locate the points where the threads interact. Our
method solves this crucial problem by taking out a common prefix and/or a com-
mon postfix from sequential patterns that is candidate branch patterns. Section 3,
discusses the concurrent branch pattern mining algorithm whilst section 4, reviews
some related work. Section 5 presents our conclusions.

2. Problem Statement

To formally define the concurrent branch mining algorithm we introduce some
basic terminology. In the following definition, let SP represent Sequential Patterns;
xα, xβ, αy, βy, xαy, xβy ∈ SP ; α, β ∈ SP ; x, y ∈ SP or x, y ∈ ∅.

Definition 1: CandidateBranch Pattern
Sequential patterns which contain common prefix and/or common postfix can

constitute Candidate Branch Pattern.
• Sequential patterns xα and xβ can make up a candidate branch pattern

which has a sub-sequence x as a common prefix and denoted by x[α, β].
• Sequential patterns αy and βy can make up a candidate branch pattern

which has a sub-sequence y as a common postfix and denoted by [α, β]y.
• Sequential patterns xαy and xβy can make up a candidate branch pat-

tern which has sub-sequence x as a common prefix, sub-sequence y as a
common postfix and denoted by x[α, β]y.

In the above definitions, notation [α, β] represents two branches of a candidate
branch pattern.

Let us consider some examples. Sequential patterns <efcb> and <ebc> can make
up a candidate branch pattern which has e as a prefix and denoted by e[fcb,bc].
This candidate branch pattern has two branches, fcb and bc. Sequential patterns
<fcb>, <dcb> and <acb> can make up a candidate branch pattern which has cb
as a postfix and denoted by [f, d, a]cb. This candidate branch pattern has three
branches f, d and a. It should be noted that in a candidate branch pattern such
as a[b,c]d, the order of b and c is indefinite. Therefore, a[b,c]d can appear in a
transaction database in the form of abcd, acbd or a(b,c)d. The purpose of defining
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a candidate branch pattern is to discover true branch patterns (concurrent branch
patterns or exclusive branch patterns). A candidate branch pattern can also be
extended to multiple sequential patterns.

Definition 2: Concurrence
The concurrence of sub-sequential patterns α and β is defined as the fraction

of customers that contain α and β simultaneously and it is denoted as:
concurrence(α ∧ β) = ‖{T : α ∪ β ⊆ T, T ∈ D}‖/‖D‖

Let minsup be user specified minimal support, if concurrence (α∧β) ≥ minsup
is satisfied then α and β are concurrent. Similarly, multiple candidate branches
a1 . . . ai (αi ∈SP ; 1 ≤ i ≤ n) are concurrent branches if and only if concurrence
(a1 ∧ . . .∧ai)≥minsup.

Definition 3: Concurrent Branch
Two branches α and β of candidate branch pattern x[α, β]y are concurrent

branch if and only if in a transaction database, α and β are concurrent between a
common prefix x and/or common postfix y.

Definition 4: Concurrent Branch Pattern
For candidate branch pattern x[α, β]y, if branches α and β are concurrent

branches, then x[α, β]y is concurrent branch pattern.
The problem of concurrent branch pattern mining is to find the complete

set of concurrent branch patterns in a given sequential pattern mining result and
customer sequence database DB with respect to given support threshold.

Example 1: Let us consider a customer sequence database in PrefixSpan [5]:
(1) <a (a,b,c) (a,c) d (c,f)>
(2) <(a,d) c (b,c) (a,c)>
(3) <(e,f) (a,b) (d,f) c b>
(4) <e g (a,f) c b c>

and two branches f and eb of the candidate branch pattern [f, eb]c. Let min-
sup=50%.

Both customer sequence (3) <(e,f) (a,b) (d,f) c b> and (4) <e g (a,f) c b c>
contain f and eb. Thus, the concurrence (f ∧eb) is 50%. That is, f and eb are con-
current branches and sup ([f,eb]c)=50%. Therefore, the candidate branch pattern
[f, eb]c is a concurrent branch pattern.

It can be concluded from definition 4 that, concurrent branch patterns mining
problem can be decomposed into the following sub-problems of: how to generate all
candidate branch pattern; how to determine the concurrence of candidate branches;
and how to calculate the support of candidate branch pattern.

3. Concurrent Branch Pattern Mining

Let us consider the first problem in concurrent branch patterns mining, i.e., how
to generate all candidate branch patterns. Since the concurrent branch pattern
mining is based on the result of sequential patterns mining, which is the set of
sequential pattern, hence the direct way to discover candidate branch pattern
should be based on sequential pattern set. All candidate branch patterns can be
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generated by taking out a common prefix or/and a common postfix from sequential
pattern set. However, the shortcoming of this method is that some non-concurrent
branches can be generated.

In order to get rid of non-concurrent items, the concurrent group and the max-
imal concurrent group are defined first. Then, rough concurrent branch patterns
are computed based on the maximal concurrent group to obtain candidate branch
patterns.

3.1. Concurrent Group and Rough Concurrent Branch Pattern.
Definition 5: Concurrent Group (CG)
Given customer sequences database DB, set of items (or itemset) that have

transaction support above minsup makes up a concurrent group and it is denoted
by CG for brief.

Definition 6: Maximal Concurrent Group (MCG)
A concurrent group is called a maximal concurrent group if any of its superset

is not a concurrent group. The set of maximal concurrent group set is denoted by
MCGS for abbreviation.

Example 2: Consider the customer sequences in example 1 and let minsup
be 50%. Items (or itemset) sets {a,b,c,d}, {(a,b),c,d,f} and {(a,c),b,d} are all
examples of concurrent group since the condition in definition 5 is satisfied. From
definition 5 we know that concurrent group is a set and the elements in this set
can be an item or an itemset. Consider {(a,b),c,d,f} for example, four elements
are contained in this concurrent group, one is an itemset (a,b) and the other three
are items c,d, and f. Among these three concurrent groups, {(a,b),c,d,f} is a
maximal concurrent group but {a,b,c,d} is not, since its superset {(a,b),c,d,f} is a
concurrent group.

If each customer sequence is considered as a transaction, then discovering con-
current group from customer sequence database is identical to the discovery of
frequent patterns. The maximal concurrent group of the above example is:

MCG = {{(a, b), c, d, f}, {(a, c), (b, c), d}, a, b, c, e, f}}
Following the definition of the maximal concurrent group, we investigate the

relation between the maximal sequence set (MSS) discovered in sequential patterns
mining and the maximal concurrent group proposed.

Definition 7: Rough Concurrent Branch Pattern (RCBP)
Let C be a maximal concurrent group in MCG. Concurrent sequences can be

obtained by the sequential intersection operation of C and each element in MSS
respectively. These concurrent sequences constitute a rough concurrent branch
pattern and denoted by RCBP for brief. Sequential intersection operation can be
treated as a normal intersection, and the sequence relations among elements after
this operation will be consistent with that in the original sequence pattern. The
notation for sequential intersection is:

Sequential pattern or Sequential pattern set ∩ Concurrent Group
Rough Concurrent Branch Pattern is a candidate branch pattern, which has a

null common prefix and a null common postfix.



MINING CONCURRENT BRANCH PATTERNS 53

Algorithm 1: Cal RCBP (Getting a RCBP)
Input: Maximal concurrent group C and maximal sequence set MSS.
Output: Rough Concurrent Branch Patterns RCBP(C).
Method: Find the rough concurrent branch patterns in the following steps:

(1) Let rough concurrent branch pattern for C, RCBP(C), be empty.
(2) For each element ms in MSS

Add ms to RCBP(C);
For each element (item or itemset) i in ms, test if i is an element
of C or i is included in one element of C ;
If neither condition is satisfied, then delete i from ms.

(3) Delete the element in RCBP(C) which contained by another pattern in
the RCBP(C).

(4) The result is RCBP(C).
Example 3: Given MSS={<eacb>, <efcb>, <a(b,c)a>, <(a,b)dc>, <fbc>, <(a,b)f>,

<ebc>, <dcb>, <abc>, <acc>, <(a,c)>} and maximal concurrent group MCG =
{{(a,b), c, d, f}, {(a,c), (b,c), d}, {a, b, c, e, f}}.

Table 1. Rough Concurrent Branch Pattern Example

The rough concurrent branch patterns can be computed using algorithm 1.
The final result is shown in table 1.

3.2. Sub-customer sequence set. The feature of our method is that the cus-
tomer sequence database DB is not used for counting support after the discovering
of candidate branch patterns. Rather, the sub customer sequence set SubDB is
used for this purpose. The number of entries in SubDB may be smaller than the
number of transaction in DB. In addition, each entry may be smaller than the
corresponding transaction because the items (itemset) before the prefix element
or after the postfix element are deleted.

Definition 8: Sub-customer sequence set
Given a candidate branch pattern x[α, β]y and a customer sequence database

DB, the sub customer sequence set of DB is obtained by deleting the minimal
pre-sub sequence contains prefix x or/and the minimal post-sub sequence contains
a postfix y of each customer sequence in DB. This is denoted by SubDB(x,y).

The support of the sub-customer sequence set SubDB(x,y) is:
sup(SubDB(x,y))=| SubDB(x,y)|/|DB|
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Explanation. Minimal pre-sub sequence contains x : Suppose x=cd and the cus-
tomer sequence is acbdefdg. The result for deleting the minimal pre-sub sequence
is efdg.

Minimal post-sub sequence contains y: Suppose y=bg and customer sequence
is acbdefdg. The result for deleting the minimal post-sub sequence is ac.

The purpose of finding the sub-customer sequence set is to calculate the support
of the candidate branch pattern x[α, β]y and to determine the concurrence of
branches [α, β]. For a candidate branch pattern x[α, β]y, (i) if sup(SubDB(x,y))<
minsup, then the candidate branch pattern x[α, β]y cannot be a concurrent branch
pattern; (ii) if sup(SubDB(x,y))≥ minsup, then only the concurrence checking of
branches x and y is needed. That is, it is only necessary to check if x and y occurs
simultaneously in each sub customer sequence of SubDB(x,y).

Algorithm 2: Gen SubDB (Computes Sub-customer sequence set)
Input Common prefix x and/or common postfix y of candidate branch pattern
x[α, β]y; Customer sequence database DB.
Output Sub customer sequence set SubDB.
Method:

SubDB(x,y)=∅;
For each customer sequence cs∈DB Do

{ Scan cs from left to right, find the sub customer sequence which
contains prefix x completely, record the position p of the last matched
element in cs. If not found, set p be the length of cs;
Scan cs from right to left, find the sub customer sequence which con-
tains prefix y completely, record the position q of the first matched
element in cs. If not found, set p be 0;
If p≥q //There is no sub sequence have prefix x and postfix y in
cs
then DB=DB -{cs} //Delete cs from DB
else

Delete sub customer sequence before the pth (contains pth)
element and after the q th (contains q th), obtained cs(xy)
SubDB(x,y)= SubDB(x,y)∪ cs(xy)

End if
}

return SubDB(x,y).

Theorem 1: Given a candidate branch pattern x[α, β]y and sub customer
sequence set SubDB(x,y), if α and β are concurrent in SubDB(x,y) i.e., if the
number of occurrence of α and β simultaneously in SubDB(x,y) is greater than
or equal to a user specified minimal support minsup, then the candidate branch
pattern x[α, β]y is a concurrent branch pattern. (Proof is omitted for brevity)

Thus, the problems of how to determine the concurrence of candidate branch
pattern and how to calculate the support of a candidate branch pattern reduces to
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how to find a sub-customer sequence set SubDB and how to check the concurrence
of a candidate branch pattern in SubDB.

3.3. Concurrent Branch Pattern Mining Method. Steps taken to mine con-
current branch patterns based on candidate branch pattern are given as follows.

(1) Find the maximal sequence set (MSS ) from customer sequences using
traditional sequential patterns mining algorithm;

(2) Find the maximal concurrent group set (MCGS ) from customer se-
quences in DB using traditional frequent patterns mining algorithm;

(3) Generate the rough concurrent branch pattern (RCBP) using Cal RCBP
algorithm;

(4) Calculate the sub-customer sequence set (SubDB) using Gen SubDB al-
gorithm;

(5) Determine the support of the candidate branch in the sub-customer se-
quence set to generate concurrent branch pattern.

Example 4: Given a customer sequence database DB (refer to example 1) and
its rough concurrent branch pattern RCBP (shown in table 1), steps taken to find
all concurrent branch patterns are as follows:

(1) Generate the candidate branch pattern CanBP based on RCBP. With
respect to Table 1:
RCBP(3) = {<eacb>, <efcb>, <aba>, <aca>, <fbc>, <af>, <bf>, <ebc>,
<abc>, <acc>}.

Since <eacb> and <efcb> have a common prefix e and a common
postfix cb, these two sequential patterns can constitute candidate branch
pattern e[a,f ]cb; <aba> and <aca> have a common prefix a and common
postfix a, and make up a candidate branch pattern a[b,c]a; Similarly,
<af > and <bf > make up [a,b]f.

The candidate branch pattern set of RCBP(3) is CanBP3 = {e[a,f]cb;
a[b,c]a; a[b,c]c; ab[a,c]; ac[a,c]; [f,e,a]bc}. In the same way, CanBP1

= {ac[a,b,c]; [a,f,d]cb; (a,b)[dc,f]; a[b,c]c; [a,f]bc; f[cb,bc]}; CanBP2 =
{ac[a,b,c]; ab[a,c]; [a,d]cb; a[b,c]a; a[b,d,c]c; [a,b]dc}

(2) Generate the Sub-Customer Sequence Set SubDB
For the common prefix and/or common postfix in the above candi-

date branch patterns, the sub-customer sequence set of example 1 can
be calculated by using algorithm 2. The result is shown in table 2.

(3) Counting the support to find Concurrent Branch Pattern CBP
Calculate the support of the candidate branch in sub-customer se-

quence set SubDB to generate concurrent branch patterns. Here, we only
consider: CanBP1={ac[a,b,c];[a,f,d]cb;(a,b)[dc,f];a[b,c]c;[a,f]bc;a[b,c]a }.
Table 3 is an example of the processes involved in the calculation of the
support.

Next, the candidate branch which is not concurrent and the number of which
is at least 2 is decomposed. The concurrence of its decomposition is determined
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Table 2. Sub Customer Sequence Set of Example 1

Table 3. Example for counting support for CanBP1

continuously. Since ac[a,b,c] is not concurrent, it is decomposed into [a,b], [a,c],
[b,c]. Also [a,f,d]cb is not concurrent and it is decomposed into [a,f], [a,d], [f,d].
The process is shown in table 4.

Finally, the concurrent branch pattern CBP1 derived from CanBP1 is com-
puted as CBP1={a[b,c]c, (a,b)[dc,f], ac[a,c], ac[b,c], [a,d]cb, [a,f]cb, a[b,c]a}.

4. Related Work

Concurrency is particularly a difficult aspect of some systems’ behaviours. Cook
et al. [6] presented a technique to discover patterns of concurrent behaviour from
traces of system events. The technique uses statistical and probabilistic analyses to
determine when a concurrent behaviour occurs, and what dependent relationships
might exist among events. The technique is useful in a wide variety of software
engineering tasks that includes, re-engineering, user interaction modelling, and
software process improvement.
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Table 4. Example for counting support for the decomposition of CanBP

Other related work can also be found in the area of workflow data analysis,
since many workflows exhibit concurrent behaviour. Herbst [7-9] investigated the
discovery of both sequential and concurrent workflow models from logged execu-
tions. Agrawal et al. [10] investigated production activity dependency graphs
from event-based workflow logs that had already identified the partial ordering of
concurrent activities.

5. Conclusions

In this paper, we developed candidate branches based method to detect concur-
rent behaviour in customer sequence database and to infer a model that describes
the concurrent behaviour. The problem of finding concurrent branch pattern was
first introduced in this paper. This problem is concerned with finding concurrent
branch pattern in a given sequential pattern mining result and a customer data-
base. The main purpose of Post Sequential Patterns Mining is to discover the
hidden structural patterns in event-based data. Concurrent branch pattern is an
important pattern, which occurs in many event-based data. Thus, we concentrated
on concurrent branch pattern mining in this paper.

An important phase for our work is to perform more experiments to support our
theories. In our previous work [2], we implemented the algorithm for construct-
ing SPG and analysed the efficiency of that approach. In our existing research
work, we anticipate that more experiments are needed to demonstrate the affec-
tive nature and efficiency of concurrent branch patterns mining algorithms. This
paper has been theoretical; experimentation is on going to establish the validity
of our algorithms. In addition to the above, we intend to extend the method to
cover concurrent branch patterns to exclusive branch patterns mining or iterative
patterns mining. This, we envisage will be our ultimate goal.
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