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STOCHASTIC OPTIMIZATION OF QUERYING DISTRIBUTED
DATABASES II. SOLVING STOCHASTIC OPTIMIZATION

D. DUMITRESCU, C. GROŞAN, AND V. VARGA

Abstract. General stochastic query optimization (GSQO) problem for mul-
tiple join — join of p relations which are stored at p different sites — is
presented. GSQO problem leads to a special kind of nonlinear programming
problem (P ). Problem (P ) is solved by using a constructive method. A se-
quence converging to the solution of the optimization problem is built. Two
algorithms for solving optimization problem (P ) are proposed.
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1. Introduction

The aim of this paper is to solve the general stochastic optimization problem
for the join of p relations, stored at p different sites of a distributed database. In
Part I the general stochastic optimization problem, was reduced to the following
constrained nonlinear programming problem (P ):

Let(X, d) be a compact metric space and

f1, ..., fp : X → R+

continuous, strictly positive functions.
The optimization problem (P ) is thus:

(P )





minimize y, y ∈ R

subject to:
y > 0,

f1(x) ≤ y,
...
fp(x) ≤ y.
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In this Part a constructive method to solve this problem is proposed. A theorem
which demonstrates that the nonlinear optimization problem (P ) has at least one
solution is proved in Section 2.

The Constructive Algorithm (CA) given in Section 3 implements the method
of Section 2. The Refining Algorithm (RA) can optimize the solution given by the
Constructive Algorithm. RA starts with a minimum point xmin and searches for
a better solution in the [xmin − ε, xmin] interval and then in [xmin, xmin + ε], where
ε is a problem parameter.

2. A constructive method for solving general stochastic query
problem

Now we are ready to give a constructive method for solving problem (P ). This
method generates a sequence converging to a solution of the problem (P ). Theorem
2.1 ensures that the constructed sequence really converges towards a solution of
the optimization problem (P ).

Let f : X → R be the function defined by

f(x) = max{f1(x), ..., fp(x)}.
and y0 the global minimum value of the function f, i.e.

y0 = min
x∈X

f(x).

Let A1 ⊂ A2 ⊂ A3 ⊂ ... ⊂ An ⊂ ... be a sequence of finite subsets of X such
that

∞∪
n=1

An is dense (see for instance Rudin, 1976) in X, i.e. ∪An = X equivalent

to the fact, that for ∀x ∈ X, ∃xn ∈ ∪
n∈N

An such that xn → x.

We consider

A1 = {u1, u2, ..., uq1}, ui ∈ X, i = 1, . . . q1,

A2 = {v1, v2, ..., vq2}, vj ∈ X, j = 1, . . . q2,

...
An = {w1, w2, ..., wqn}, wk ∈ X, k = 1, . . . qn,

where qi ∈ N∗, i = 1, . . . , n and qn →∞.
Let us consider the sequence (yn)n≥1 defined as folows:

y1 = min{max{f1(u1), f2(u1), ..., fp(u1)}, ..., max{f1(uq1), f2(uq1), ..., fp(uq1)},
y2 = min{max{f1(v1), f2(v1), ..., fp(v1)}, ..., max{f1(vq2), f2(vq2), ..., fp(vq2)},
...

yn = min{max{f1(w1), f2(w1), ..., fp(w1)}, ..., max{f1(wqn), f2(wqn), ..., fp(wqn)}.
It is easy to see that sequence (yn)n≥1 is monotone decreasing and bounded.
Therefore the sequence is convergent.
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With respect to the convergent sequence (yn)n≥1 we can state the following
Theorem.
Theorem 2.1 The sequence (yn)n≥1 converges to a solution of the problem (P ).
Proof. We have

yn ≥ f(x0)
because x0 is the global minimum of the function f . Therefore, if yn → y∗ we
have

y∗ ≥ f(x0).
We distinguish two cases. First case corresponds to

y∗ = f(x0).
In this case is nothing to demonstrate. The second case corresponds to the

situation
y∗ > f(x0).

We prove that this case it is impossible.
Because the set

∞∪
n=1

An is dense in X and the function f is continuous it results

that there exists a sequence (xn) ⊂ ∞∪
n=1

An such that

xn → x0 and f(xn) → f(x0).

Without loss of generality we may suppose that

x1 ∈ A1, ..., xn ∈ An, ....

But we have:

yn = min{max{f1(w1), . . . , fp(w1)}, . . . , max{f1(wqn), . . . , fp(wqn)}}
and

f(xn) = max{f1(xn), . . . , fp(xn)}
Therefore we have:

f(xn) ≥ yn,

for every n ∈ N∗.
If n →∞ we have f(xn) → f(x0) and yn → y∗, so we obtain

f(x0) ≥ y∗,

which is a contradiction with the assumption y∗ > f(x0). Therefore we obtained
y∗ = f(x0). This completes the proof. ¤
Remark. From the construction above we can see that for every n ∈ N∗, there
exists an index in ∈ {1, ..., qn}such that

yn = max{f1(win), ..., fp(win)}.
In this way we obtain a sequence (win)n≥1. It is obvious that each accumulation

point of the sequence (win)n≥1 is a solution of the problem (P ).
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3. Solving problem (Pp) using the proposed constructive method

In the case of solving problem (Pp) using Theorem 2.1 we have

X = [0, 1]n .

In order to obtain an approximate solution of problem (Pp) in the Constructive
Algorithm we take a uniform grid G of the hypercube [0,1]k.

We may choose the sets (Ai)i∈N∗ in the folowing way:

A1 =
{(

i0
n

,
i1
n

, . . . ,
in
n

)
|i0, i1, . . . , in ∈ {0, 1, . . . , n} , i0 < i1 < · · · < in

}
,

A2 =
{(

j0
2n

,
j1
2n

, . . . ,
j2n

2n

)
|j0, j1, . . . , j2n ∈ {0, 1, . . . , 2n} , j0 < j1 < · · · < j2n

}
,

...

Ak =
{(

l0
2k−1n

,
l1

2k−1n
, . . . ,

l2k−1n

2k−1n

)
|l0, l1, . . . , l2k−1n ∈ {

0, 1, . . . , 2k−1n
}

,

l0 < l1 < . . . < l2k−1n} .

Our grid is that induced by A1, A2, . . . , Ak. The sets (Ai)i∈N∗ constructed in
the above way verify the conditions of Theorem 5.1 of Part I of this paper. For
our purposes we may consider n = 10.

For each point of the grid G we compute the values fs, s = 1, . . . , p. Choosing
the maximumfs, s = 1, . . . , p, we ensure that each inequality in the problem (Pp)
holds. Problem solution will be the minimum of all selected maximums.

The previous considerations enable us to formulate an algorithm for solving
problem (Pp). This technique will be called Constructive Algorithm (CA) and
may be outlined as below.

Constructive Algorithm
Input:

n // the number of divisions;
Functions f1,f2...,fp // express the problem constraints.

begin
Initializations:

h = 1
n // the length of one division;

valxj = 0, j = 1, ..., k // initial values for xj ;
for s = 1 to p do // initial values for functions fs

valfs = fs(valx 1, valx 2,. . . ,valxk)
end for
valmax = max{valfs, s = 1, ..., p}
valmin = valmax
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for j = 1 to k do // in xminj we store the xj values for which we
xminj = valx j // have the minimum of fs

end for
Constructing the grid:

for i1 = 1 to n do
valx 1 = i1 ∗ h
for i2 = 1 to n do

valx 2 = i2 ∗ h
...
for ik = 1 to n do

valxk = ik∗h
for s = 1 to p do // calculate the values for functions fs for

valf s = fs(valx 1, valx 2,. . . ,valxk) // the current values of xj

end for
valmax = max{valfs, s = 1, ..., p}
if (valmax < valmin) then

valmin = valmax
for j = 1 to k do // store in xminj the new xj values

xminj = valx j // for which we have the
end for // minimum of fs

end if
end for // ik

...
end for // i2

end for // i1
end

Remark. valmin denote the minimum value of ∆1 from problem (Pp) and xminj ,
j = 1, ..., k denote the values for xj , j = 1, ..., k for which the minimum is reached.

The Constructive Algorithm should be repeated for a new value of n, so that
the divisions have to include the old divisions, in this way we obtain a new subset
Ai of the set X.

Solution obtained by the Constructive Algorithm can be refined using the Re-
fining Algorithm (RA).

Let us denote by (xmin 1, xmin 2, ..., xmin k) the minimum point obtained by the
Constructive Algorithm. Let us define the vectors xmin − ε, xmin + ε:

xmin − ε = (xmin 1 − ε, xmin 2 − ε, ..., xmin k − ε),
xmin + ε = (xmin 1 + ε, xmin 2 + ε, ..., xmin k + ε) .

Initially Refining Algorithm searches for a better minim in the interval: [xmin − ε, xmin].
Then it searches in [xmin, xmin + ε], where ε is a problem parameter. In case of
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found a better minim (to the left, or to the right) the algorithm will continue to
search refining the grid by division by 2. Let IterNr be the maximum allowed
number of iterations.

Refining Algorithm can be outlined as follows.

Refining Algorithm

Input:
n // the number of divisions;
eps // the accepted error;
IterNr // the number of iterations;
xminj , j = 1, ..., k // a minimum point obtained with algorithm CA;

Initializations:
h = 1

n // the length of one division;
for s = 1 to p do // values for functions fs;

valf s = fs(xmin1, xmin2,. . . ,xminxk)
end for
valmin = max{valfs, s = 1, ..., p}
for j = 1 to k do // in xminr j we store the xj values for which we

xminr j = xminj // have the minimum of fs

end for
Refining the minimum:

while h >= eps do
for iter = 1 to IterNr do

for j = 1 to k do
while found a better minimum to the left do

if xminj – h > 0 then
xminj = xminj – h
valmax = max{fs(xmin1,..., xmink), s = 1, ..., p}
if (valmax < valmin) then

valmin = valmax // a new minimum was found;
for j = 1 to k do // store in xminr j the new xj

xminr j = xminj // values for which we have the
end for // minimum of fs;
reloop while

end if
end if

end while // found to the left
while found a better minimum to the right do

if xminj + h > 0 then
xminj = xminj + h
valmax = max{fs(xmin1,..., xmink), s = 1, ..., p}
if (valmax < valmin) then
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valmin = valmax // a new minimum was found;
for j = 1 to k do // store in xminr j the new xj

xminr j = xminj // values for which we have the
end for // minimum of fs;
reloop while

end if
end if

end while // found to the right
end for // j

end for // iter
h = h/2 // refine the division;

end while // h >= eps

Algorithms CA and RA can be used to solve the general stochastic optimization
problem (P ). The problem of four relations join is formulated as the problem (P1)
of Part I, which is a particularization of general problem (P ).

Numerical experiments for solving problem (P1) using the Constructive Algo-
rithm and Refining Algorithm are presented in Part III.
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