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STOCHASTIC OPTIMIZATION OF QUERYING DISTRIBUTED
DATABASES I. THEORY OF FOUR RELATIONS JOIN

D. DUMITRESCU, C. GROŞAN, AND V. VARGA

Abstract. Stochastic query optimization problem for multiple join is ad-
dressed. In Part I two sites model of Drenick and Smith (1993) is extended
to four relations stored at four different sites. Our model leads to a special
kind of nonlinear optimization problem (P ). It is proved (Theorem 5.1) that
this problem has at least one solution. In Part II an ad hoc constructive
model for solving problem (P ) is proposed. In Part III a new evolution-
ary technique is used for solving problem (P ). Results obtained by the two
considered optimization approaches are compared.
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1. Introduction

The ability of distributed systems for concurrent processing motivates the dis-
tribution of a database in a network. The query optimization problem for a single
query in a distributed database system was treated in great detail in the liter-
ature. Many algorithms were elaborated for minimizing the costs necessary to
perform a single, isolated query in a distributed database system. Some methods
can be found in Özsu and Valduriez (1999), Date (2000). Most approaches look
for a deterministic strategy assigning the component joins of a relational query to
the processors of a network that can execute the join efficiently and determine an
efficient strategy for the data transferring.

A distributed system can receives different types of queries and processes them
at the same time. Query processing strategies may be distributed over the pro-
cessors of a network as probability distributions. In this case the determination of
the optimal query processing strategy is a stochastic optimization problem. There
is a different approach to query optimization if the system is viewed as one which
receives different types of queries at different times and processes more than one
query at the same time.
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The multiple-query problem is not deterministic; the multiple-query-input stream
constitutes a stochastic process. The strategy for executing the multiple-query is
distributed over the sites of the network as a probability distribution. The “deci-
sion variables” of the stochastic query optimization problem are the probabilities
that component operators of the query are executed at particular sites of the
network.

Drenick and Smith (1993) extend the state-transition model proposed by Lafor-
tune and Wong (1986) and the original multiprocessing model (see Drenick and
Drenick, 1987, Drenick, 1986). The main objective of the state-transition model
is to give globally optimal query-processing strategies. Drenick and Smith (1993)
treat the single-join model, the general model for the join of two relations and
a multiple-join with three relations, which are stored at two different sites. The
stochastic model for the join of three relations, which are stored at three different
sites is presented in Varga (1998) and Varga (1999).

Stochastic query optimization problem leads to a nonlinear programming prob-
lem, which is a specific one. General models of sequential and parallel operation for
the specified type queries are treated in Varga (1999). Stochastic query optimiza-
tion model using semijoins is presented in Markus, Morosan and Varga (2001).

The aim of this paper is to extend the stochastic model to the join of four
relations. In Section 2 the case when the relations are stored at four sites is con-
sidered. The stochastic query optimization problem in case of four relations leads
to a constrained nonlinear optimization problem. Considering the complexity of
obtained nonlinear problem two complementary methods for solving this problem
are proposed. Theorem 5.1 proves, that the nonlinear optimization problem has
at least one solution. In Part II of the paper a constructive method for solving
the nonlinear programming problem is given.

Due to the successfully application in the recent past of the evolutionary algo-
rithms for solving very difficult optimization problems evolutionary methods seem
to be quite appealing for solving our optimization problem. We will consider evo-
lutionary techniques based on a dynamic representation (Dumitrescu, Grosan and
Oltean, 2001, Grosan and Dumitrescu, 2002). This technique called Adaptive Rep-
resentation Evolutionary Algorithm (AREA) is described in Part III. The results
obtained by applying these different approaches are presented in Part III. Two
sets of values for constants are used in these experiments. Solutions are nearly
the same. The CPU time required for solving the optimization problem by using
evolutionary algorithm is less than the CPU time required by the constructive
method.

2. Four relations join

Consider four relations stored in different sites of the distributed database. The
join of these four relations will be defined in the context of stochastic model of
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Drenick and Smith (1993). Consider relations A, B, C, D stored at the sites 1,2,3
and 4 respectively.

Denote by Q4 the single-query type consisting of the join of four relations:

Q4 = A ./ B ./ C ./ D.

Initial state of relations referenced by the query Q4 in the four-site network is the
column vector defined as:

s0 =




A
B
C
D




where the i-th component of the vector s0 is the set of relations stored at site i,
i ∈ {1, 2, 3, 4} at time t= 0.

Initial state s0 is given with time-invariant probability

p0 = p(s0)

i.e. p0 is the probability that relation A is available at site 1, relation B at site 2,
relation C at site 3, and relation D at site 4. The four relations are not locked for
updating or are unavailable for query processing for any other reason. We assume
that the input to the system consists of a single stream of type Q4.

For the purpose of stochastic query optimization we enumerate all logically valid
joins in the order in which they may be executed. Let us suppose that Q4 has
three valid execution sequences:

Q4S1 = (((A ./ B) ./ C) ./ D),

Q4S2 = ((A ./ B) ./ (C ./ D)),

Q4S3 = (A ./ (B ./ (C ./ D))).

Sequence Q4S1 can be applied if

A ∩B 6= ∅.
So the join

B′ = A ./ B

is executed before the join
C ′ = B′ ./ C.

The last executed join will be

D′ = C ′ ./ D.

The sequence Q4S2 is adequate for parallel execution.
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3. Stochastic query optimization model

The system that undergoes transition in order to execute the join of four rela-
tions is described in this section as in Drenick and Smith (1993). The strategy for
executing the multiple join is distributed over the sites of the network. Conditional
probabilities are associated with the edges of the state-transition graph. Execut-
ing a multiple join is equivalent to solve a optimization problem. This problem
is referred as stochastic query optimization model. Theorem 3.1 states, that the
stochastic query optimization model for the multiple join query defines a nonlinear
optimization problem.

We exemplify with the execution of the join Q4S1.
The state-transition graph for sequence Q4S1 is given in Figure 1. For one

state of the state-transition graph the ith line contains the relations stored at site
i. We will associate a transition probability to each transition arc of the state-
transition model. Let pij denote the conditional, time-invariant probability that
the system undergoes transition from state si to state sj . Given the initial state
s0, we can execute the first step of Q4S1transferring relation B from site 2 to site
1, or transferring relation A from site 1 to site 2.

Figure 1. State-transition graph for the join Q4S1 of four relations
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States of the transition graph are labeled as sij , where j is the step in computing
the multiple join andi denote the number of the selected strategy within the step.

Using the first strategy the system undergoes transition from state s0 to the
state s11 with probability p0,11. The system may choose the second strategy with
probability p0,21 when the system undergoes transition to state s21.

In order to compute
C ′ = B′ ./ C,

if the system is in state s11 relation B′ may be transferred from site 1 to site 3 or
relation C from site 3 to site 1 and similar for the other states of the state-transition
graph.

With respect to the stochastic query optimization model we can state the fol-
lowing Theorem.
Theorem 3.1 The stochastic query optimization model for the multiple join query
of type Q4 defines a nonlinear optimization problem.
Proof : We will associate the join-processing times with the nodes of the state-
transition graph and communication times to the arcs of the graph. Let Ti(X)
denote the total processing time required for computing in state i.

So we have:
T11(B′) = c21 (B) + t1 (A ./ B),
T12(C ′) = c31 (C) + t1 (B′ ./ C),
T32(C ′) = c32 (C) + t2 (B′ ./ C),
T13(D′) = c41 (D) + t1 (C ′ ./ D),
T33(D′) = c43 (D) + t3 (C ′ ./ D),
T53(D′) = c42 (D) + t2 (C ′ ./ D),
T73(D′) = c43 (D) + t3 (C ′ ./ D),
T21(B′) = c12 (A) + t2 (A ./ B), (3.1)
T22(C ′) = c13 (B′) + t3 (B′ ./ C),
T42(C ′) = c23 (B′) + t3 (B′ ./ C),
T23(D′) = c14 (C ′) + t4 (C ′ ./ D),
T43(D′) = c34 (C ′) + t4 (C ′ ./ D),
T63(D′) = c24 (C ′) + t2 (C ′ ./ D),
T83(D′) = c34 (C ′) + t4 (C ′ ./ D).
Denote by cij(R) the time required to transfer the relation R from site i to

site j. ti (E) denotes the necessary time to calculate the expression E in the site
i. The expected delay due to computing the join is the product of the delay and
the corresponding transition probability. The mean processing time τi at site i
can be obtained by summing for each state for which there is something to work
in the site i, the product of the necessary time for processing multiplied by the
probability that the system is in the corresponding state.

Let us suppose that input queries of type Q4 arrive at the system at average
intervals of length δ and successive inputs are statistically independent. It is
reasonable to require that none of the processors in the network be allowed to
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take longer on the average than the period δ to execute its task. If it did, the
cumulative delay at each site could increase indefinitely due to queuing, requiring
infinite buffer storage at each site. The system may be regarded as overloaded if
the mean processing time τi is permitted to exceed δ at any site.

Such overload can be avoided if the following inequalities hold:

τi ≤ ∆ < δ,

where ∆ represents a common upper bound on τi for each processor i in the
network.

In order to maximize the system query-processing capacity

λ =
1
δ

the system’s mean interarrival time ∆ may be minimized, where

(δ −∆) > 0,

is chosen sufficiently large to provide adequate buffer storage requirements.
The mean processing times τi, i = 1, 2, 3, 4 are expressed as:

τ1 = T11(B′)p0,11 + T12(C ′)p0,11p11,12 + T13(D′)p0,11p11,12p12,13,

τ2 = T21(B′)p0,21 + T32(C ′)p0,21p21,32 + T53(D′)p0,21p21,32p32,53 (3.2)
τ3 = T22(C ′)p0,11p11,22 + T42(C ′)p0,21p21,42 + T33(D′)p0,11p11,22p22,33

+ T73(D′)p0,21p21,42p42,73,

τ4 = T23(D′)p0,11p11,12p12,23 + T43(D′)p0,11p11,22p22,43

+ T63(D′)p0,21p21,32p32,63 + T83(D′)p0,21p21,42p42,83.

Therefore the stochastic query optimization problem for the query Q4S1 is given
by:

(P1)





minimize ∆1

subject to:
τi ≤ ∆1, i = 1, 2, 3, 4

p0,11 + p0,21 = 1,
p11,12 + p11,22 = 1,
p21,32 + p21,42 = 1,
p12,13 + p12,23 = 1,
p22,33 + p22,43 = 1,
p32,53 + p32,63 = 1,
p42,73 + p42,83 = 1,

p0,11, p0,21, p11,12, p11,22, p21,32, p21,42, p12,13 ∈ [0, 1] ,

p12,23, p22,33, p22,43, p32,53, p32,63, p42,73, p42,83 ∈ [0, 1] .
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This concludes the proof.
The obtained problem (P1) is a constrained nonlinear optimization problem. In

the next section we propose a constructive approach for solving the optimization
problem (P1).

4. Stochastic query optimization problem

Let us consider the following notations:
h1(z1, z2, . . . , z14) = c1z1 + c2z1z3 + c3z1z3z7,
h2(z1, z2, . . . , z14) = c4z2 + c5z2z5 + c6z2z5z11, (4.1)
h3(z1, z2, . . . , z14) = c7z1z4 + c8z2z6 + c9z1z4z9 + c10z2z6z13,
h4(z1, z2, . . . , z14) = c11z1z3z8 + c12z1z4z10 + c13z2z5z12 + c14z2z6z14,

where z1 = p0,11,
z2 = p0,21,
z3 = p11,12,
z4 = p11,22,
z5 = p21,32,
z6 = p21,42,
z7 = p12,13,
z8 = p12,23,
z9 = p22,33,
z10 = p22,43,
z11 = p32,53,
z12 = p32,63,
z13 = p42,73,
z14 = p42,83.
Expressing z2k−1, k = 1, 2, . . . , 7, from equality restrictions of problem (P1) we

have:

z2k−1 = 1− z2k.

By replacing z2k−1, k = 1, 2, . . . , 7, in the inequalities of (P1)

τi ≤ ∆i,

the problem (P1) can be rewritten as the next optimization problem (P2):

(P2)





minimize ∆1

subject to:
f1(x1, x2, . . . , x7) ≤ ∆1,
f2(x1, x2, . . . , x7) ≤ ∆1,
f3(x1, x2, . . . , x7) ≤ ∆1,
f4(x1, x2, . . . , x7) ≤ ∆1,

x1, x2, . . . , x7 ∈ [0, 1] .
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The number of relations and sites in one distributed database can be different.
Resulting nonlinear optimization problem has different number of variables and
constraints. Therefore we have to generalize problem (P2) for an arbitrary number
of relations and sites.

Let us consider p continous functions

f1, ..., fp : [0, 1]n → R+,

where p is the number of sites in the distributed database and fi, (i = 1, . . . , p)
represents the mean processing time at site i.

Our optimization problem (P2) may be generalized to the following optimization
problem (Pp).

(Pp)





minimize ∆1

subject to:
f1(x1, x2, . . . , xn) ≤ ∆1,
...
fp(x1, x2, . . . , xn) ≤ ∆1,

x1, x2, . . . , xn ∈ [0, 1] .

5. General optimization framework

In this section problem (Pp) is considered as an instance of a more general
framework. The new framework is necessary for establishing conditions under
which problem (Pp) has a solution.

Let (X, d) be a compact metric space and

f1, ..., fp : X → R+

be continuous strictly positive functions.
Consider the next generic optimization problem:

(P )





minimize y, y ∈ R

subject to:
x ∈ X, (X is a compact metric space),

y > 0,

f1(x) ≤ y,
...
fp(x) ≤ y.

With respect to problem (P ) we can state the following Theorem. For proving it
some concepts and results are needed (see for instance Rudin, 1976).
Theorem 5.1: Problem (P ) has at least one solution.
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Proof. Let X is be compact metric space and f : X → R be the function defined
as

f(x) = max{f1(x), ..., fp(x)}.
Since function f is continuous and X is a compact metric space, according to
the Weierstrass theorem, there exists a point x0 ∈ X such that x0 is the global
minimum of the function f, i.e.

f(x0) = min
x∈X

f(x).

We have to prove that

f(x0) = min y.

Let us suppose that it exists y0 ∈ R∗+ such that

f(x0) > y0,

and y0 satisfies the inequalities from the problem (P ) for x∗0 ∈ X, i.e.:

f1(x∗0) ≤ y0

...

fp(x∗0) ≤ y0.

From these inequalities we obtain

f(x∗0) = max{f1(x∗0), ..., fp(x∗0)}
≤ y0

< f(x0).

But this contradicts the assumption that x0 ∈ X is the global minimum of the
function f . Therefore the assumption concerning the existence of a value y0 such
that

f(x0) > y0

is false. This completes the proof. ¤

6. Conclusions

Stochastic optimization model of querying distributed databases, presented by
Drenick and Smith (1993), is extended to the join of four relations. These four
relations are stored in four different sites. Theorem 3.1 states, that the stochastic
query optimization problem in case of four relations leads to a constrained nonlin-
ear programming problem. The problem of querying the distributed database is
generalized for p sites. General constrained nonlinear problem (P) is formulated.
Theorem 5.1 proofs that problem (P) has at least one solution.
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