
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 1, 2003

A NEW REINFORCEMENT LEARNING ALGORITHM

GABRIELA ŞERBAN

Abstract. The field of Reinforcement Learning, a sub-field of machine learn-
ing, represents an important direction for research in Artificial Intelligence,
the way for improving an agent’s behavior, given a certain feed-back about
its performance. In this paper we propose an original algorithm (URU -
Utility-Reward-Utility), which is a temporal difference reinforcement learning
algorithm. Moreover, we design an Agent for solving a path-finding problem
(searching a maze), using the URU algorithm.
Keywords: Reinforcement Learning, Intelligent Agents.

1. Reinforcement Learning

Reinforcement Learning (RL) is the way of improving the behavior of an agent,
given a certain feedback about his performance.

Reinforcement Learning [3] is an approach to machine intelligence that combines
two disciplines to successfully solve problems that neither discipline can address
individually. Dynamic Programming is a field of mathematics that has tradition-
ally been used to solve problems of optimization and control. However, traditional
dynamic programming is limited in the size and complexity of the problems it can
address.

Supervised learning is a general method for training a parameterized function
approximator, such as a neural network, to represent functions. However, super-
vised learning requires sample input-output pairs from the function to be learned.
In other words, supervised learning requires a set of questions with the right an-
swers.

Unfortunately, there are many situations where we do not know the correct
answers that supervised learning requires. For these reasons there has been much
interest recently in a different approach known as reinforcement learning (RL).
Reinforcement learning is not a type of neural network, nor is it an alternative to
neural networks. Rather, it is an orthogonal approach that addresses a different,
more difficult question. Reinforcement learning combines the fields of dynamic

Received by the editors: December 10, 2002.
2000 Mathematics Subject Classification. 68T05.
1998 CR Categories and Descriptors. I.2.6[Computing Methodologies]: Artificial In-

telligence – Learning.

3

4 GABRIELA ŞERBAN

programming and supervised learning to yield powerful machine-learning systems.
Reinforcement learning appeals to many researchers because of its generality. In
RL, the computer is simply given a goal to achieve. The computer then learns
how to achieve that goal by trial-and-error interactions with its environment.

A reinforcement learning problem has three fundamental parts [3]:

• the environment – represented by “states”. Every RL system learns a
mapping from situations to actions by trial-and-error interactions with
a dynamic environment. This environment must at least be partially
observable by the reinforcement learning system;

• the reinforcement function – the “goal” of the RL system is defined using
the concept of a reinforcement function, which is the exact function of
future reinforcements the agent seeks to maximize. In other words, there
is a mapping from state/action pairs to reinforcements; after performing
an action in a given state the RL agent will receive some reinforcement
(reward) in the form of a scalar value. The RL agent learns to perform
actions that will maximize the sum of the reinforcements received when
starting from some initial state and proceeding to a terminal state. It is
the job of the RL system designer to define a reinforcement function that
properly defines the goals of the RL agent. Although complex reinforce-
ment functions can be defined, there are at least three noteworthy classes
often used to construct reinforcement functions that properly define the
desired goals;

• the value (utility) function – explains how the agent learns to choose
“good” actions, or even how we might measure the utility of an action.
Two terms were defined: a policy determines which action should be
performed in each state; a policy is a mapping from states to actions.
The value of a state is defined as the sum of the reinforcements received
when starting in that state and following some fixed policy to a terminal
state. The value (utility) function would therefore be the mapping from
states to actions that maximizes the sum of the reinforcements when
starting in an arbitrary state and performing actions until a terminal
state is reached.

In a reinforcement learning problem, the agent receives a feedback, known as
reward or reinforcement; the reward is received at the end, in a terminal state, or
in any other state, where the agent has exactly information about what he did
well or wrong.

2. A Reinforcement Learning Problem

Let us consider the following problem:
The Problem Definition

A NEW REINFORCEMENT LEARNING ALGORITHM 5

We consider an environment represented as a space of states (each state is
characterized by its position in the environment - two coordinates specifying the
X-coordinate, respectively the Y-coordinate of the current position).

The goal of a robotic agent is to learn to move in the environment from an initial
to a final state, on a shortest path (as number of transitions between states).

Notational conventions used in the followings are:
• M = {s1, s2, ..., sn} - the environment represented as a space of states;
• si ∈ M , sf ∈ M - the initial, respectively the final state of the environ-

ment (the problem could be generalized for the case of the environments
with a set of final states);

• h : M → P (M) - the transition function between the states, having the
following signification: h(i) = {j1, j2, ..., jk}, if, at a given moment, from
the state i the agent could move in one of the states j1, j2, ..., jk; we
will call a state j that is accessible from state i (j ∈ h(i)) the neighbor
(successor) state of i;

• the transition probabilities between a state i and each neighbor state j
of i are the same, P (i, j) = 1

card(h(i)) (we note with card(M) the number
of elements of the set M);

The Goal
The problem will consist in training the agent to find the shortest path to reach

the final state sf starting from the initial state si.
For solving this problem, we propose in the followings a reinforcement learn-

ing algorithm, based on learning the states’ utilities (values), in which the agent
receives rewards from interactions with the environment.

3. The URU Algorithm (Utility-Reward-Utility)

The algorithm described in this section is an algorithm for learning the states’
values, a variant of learning based on Temporal Differences [1].

The algorithm’s idea is the following:
• the agent starts with some initial estimates of the state’s utilities;
• during some training episodes, the agent will experiment some paths

from si to sf (possible optimal), updating, properly, the states’ utilities
estimations;

• during the training process the states’ utilities estimations converge to
the exact values of the states’ utilities, thus, at the end of the training
process, the estimations will be in the vicinity of the exact values.

We make the following notations:
• U(i) - the estimated utility of the state i;
• R(i) - the reward received by the agent in the state i.

The URU Algorithm

6 GABRIELA ŞERBAN

The algorithm is shown in Figure 1.

(1) Initialize the state utilities with some initial values;
(2) Initialize the current state with the initial state sc := si;
(3) Choose a state s neighbor of sc (s ∈ h(sc)), using some known action

selection mechanisms (ε-Greedy or SoftMax [2]), following the steps:
(a) determine the set of successors of the current state (m = h(sc));
(b) if the current state has no successors (m is empty), return to the

previous state (s := sc); otherwise go to step (c);
(c) select from m a subset m1 containing the states that were not visited

yet in the current training sequence;
(d) choose a state s from m1 using a selection mechanism.

(4) determine the reward r received by the agent in the state sc;
(5) if the current state is not final, then update the utility of the current

state as follows:

(1) U(sc) := U(sc) + α · (r + γ · U(s)− U(sc))

where α ∈ (0, 1) is a fixed parameter (the learning rate), and γ ∈ (0, 1)
is a fixed parameter (the reward factor).

(6) sc := s;
(7) repeat the step 3 until sc is the final state;
(8) repeat the steps 2-7 for a given number of training episodes.

Figure 1. The Reward-Utility-Reward (URU) Algorithm.

We have to make the following specifications:
• the training process during an episode has the complexity in the worst

case O(n2), where n is the number of the environment’s states;
• in a training sequence, the agent updates the utility of the current state

using only the selected successor state, not all the successors (the tem-
poral difference characteristic).

4. Case Study

It is known that the estimated utility of a state [1] in a reinforcement learning
process is the estimated reward-to-go of the state (the sum of rewards received
from the given state to a final state). So, after a reinforcement learning process,
the agent learns to execute those transitions that maximize the sum of rewards
received on a path from the initial to a final state.

If we consider the reward function as: r(s) = −1 if s 6= sf , and r(s) = 0,
otherwise, it is obvious that the goal of the learning process is to minimize the

A NEW REINFORCEMENT LEARNING ALGORITHM 7

number of transitions from the initial to the final state (the agent learns to move
on the shortest path).

For illustrating the convergence of the algorithm, we will consider that the
problem is one of learning the shortest path (the reward function is as we described
above), and the environment has the following characteristics:

• the environment has a rectangular form;
• at a given moment, from a given state, the agent could move in four

directions: North, South, East, West.
In the followings, we will enounce an original theorem that gives the conditions

for convergence of the URU algorithm.

Theorem 1. Let us consider the learning problem described above and which sat-
isfies the conditions:

• the initial values of the states’ utilities (the step (1) of the URU algorithm
described in Figure 1) are calculated as: U(s) = −d(s, sf) − 2, for all
s ∈ M , where d(s1, s2) represent the Manhattan distance between the
two states;

• γ ≤ 1
3

In this case, the URU algorithm is convergent (the states’ utilities are convergent
after the training sequence).

The Theorem 1 proving is based on the following lemmas:

Lemma 2. At the n-th training episode of the agent the following inequalities
hold: Un(i) ≤ −2, for all i ∈ M .

Lemma 3. At the n-th training episode of the agent the following inequalities
hold: |Un(i) − Un(j)| ≤ 1, for each transition from i(i 6= sf) to j made by the
agent in the current training sequence.

Lemma 4. The inequalities Un+1(i) ≥ Un(i) hold for all i ∈ M and for all n ∈ N ,
in other words the states’ utilities increase from a training episode to another.

Theorem 2 gives the equilibrium equation of the states’ utilities after applying
the URU algorithm.

Theorem 5. In our learning problem, the equilibrium equation of the states’ util-
ities is given by the following equation:

(2) U∗
URU (i) = R(i) +

γ

card(h(i))
·

∑

j successor of i

U∗
URU (j)

for all i ∈ M , where U∗
URU (i) represents the exact utility of the state i, obtained

after applying the URU algorithm. We note by card(M) the number of elements
of the set M .

8 GABRIELA ŞERBAN

5. An Agent for Maze Searching

5.1. General Presentation. The application is written in JDK 1.4 and imple-
ments the behavior of an Intelligent Agent (a robotic agent), whose purpose is
coming out from a maze on the shortest path, using the algorithm described in
the previous section (URU).

We assume that:

• the maze has a rectangular form; in some positions there are obstacles;
the agent starts in a given state and tries to reach a final (goal) state,
avoiding the obstacles;

• from a certain position on the maze the agent could move in four direc-
tions: north, south, east, west (there are four possible actions);

5.2. The Agent’s Design. The basis classes used for implementing the agent’s
behavior are the followings:

• CState: defines the structure of a State from the environment. This
class has methods for:

– setting components (the current position on the maze, the value of
a state, the utility of a state);

– accessing components;
– calculating the utility of a state;
– verifying if the state is accessible (does this contain or not an ob-

stacle).
• CList: defines the structure of a list of objects. The main methods of

the class are for:
– adding elements;
– accessing elements;
– updating elements.

• CEnvironment: defines the structure of the agent’s environment (it
depends on the concrete problem - in our example the environment is a
rectangular maze).

• CNeighborhood: the class that defines the accessibility relation be-
tween two states of the environment;

• CRLAgent: the main class of the application, which implements the
agent’s behavior and the learning algorithm.

The private member data of this class are:
– m: the agent’s environment (is a CEnvironment);
– v: the accessibility relation between the states (is a CNeighborhood);

The public methods of the agent are the followings:
– readEnvironment: reads the information about the environment

from an input stream;

A NEW REINFORCEMENT LEARNING ALGORITHM 9

– writeEnvironment: writes the information about the environ-
ment in an output stream;

– learning: is the main method of the agent, which implements the
URU algorithm; based on this algorithm, the agent updates the
utilities of the environment’s states.

– next: the agent determines the next state where to move (this is
made after the learning process took place).

Besides the public methods, the agent has some private methods used
in the method learning.

5.3. Experimental Results. For our experiment, we consider the environment
shown in Figure 2. The state marked with 1 represents the initial state of the
agent, the state marked with 2 represents the final state and the states filled with
black are containing obstacles (which the agent should avoid).

Figure 2. The agent’s environment

For the environment described in Figure 2, we use the URU algorithm, with
the following initial settings:

• γ = 0.9;
• α = 0.01;
• number of episodes = 10;
• as a selection mechanism, we choose the ε-Greedy selection, with ε=0.1.

The results obtained after the URU learning are presented in Table 1. The
states from the environment are numbered from 1 to 36, starting with the corner

10 GABRIELA ŞERBAN

Table 1. The states’ utilities after the training episodes with the
URU algorithm

State Episode Episode Episode Episode Episode Episode Episode Episode Episode Episode
1 2 3 4 5 6 7 8 9 10

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 -6.0000 -6.0000 -6.0000 -6.0000 -6.0000 -6.0000 -5.9710 -5.9422 -5.9422 -5.9422
3 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -4.9780 -4.9561 -4.9561 -4.9561
4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 -3.0000 -2.9760 -2.9760 -2.9760 -2.9522 -2.9522 -2.9522 -2.9522 -2.9522 -2.9522
6 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000
7 -8.0000 -8.0000 -8.0000 -8.0000 -8.0000 -8.0000 -7.4610 -7.1124 -7.1124 -7.1124
8 -7.0000 -7.0000 -7.0000 -7.0000 -7.0000 -7.0000 -6.9640 -6.9267 -6.9267 -6.9267
9 -6.0000 -6.0000 -6.0000 -6.0000 -6.0000 -6.0000 -5.9650 -5.9303 -5.9303 -5.9303
10 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -4.9779 -4.9779 -4.9779
11 -4.0000 -3.9790 -3.9790 -3.9790 -3.9581 -3.9581 -3.9581 -3.9436 -3.9436 -3.9436
12 -3.0000 -3.0000 -3.0000 -3.0000 -2.9919 -2.9919 -2.9919 -2.9839 -2.9839 -2.9601
13 -9.0000 -9.0000 -9.0000 -9.0000 -9.0000 -9.0000 -8.3031 -7.8600 -7.8600 -7.8600
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
15 -7.0000 -7.0000 -7.0000 -7.0000 -7.0000 -7.0000 -6.9580 -6.9580 -6.9580 -6.9580
16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
17 -5.0000 -4.9720 -4.9720 -4.9720 -4.9720 -4.9720 -4.9720 -4.9720 -4.9720 -4.9720
18 -4.0000 -3.9850 -3.9850 -3.9850 -3.9641 -3.9641 -3.9641 -3.9435 -3.9435 -3.9230
19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
20 -8.3664 -8.3166 -7.7394 -7.7394 -7.6956 -7.6956 -7.6521 -7.6521 -7.0875 -7.0498
21 -7.9510 -7.9024 -7.8541 -7.8541 -7.8063 -7.8063 -7.7592 -7.7592 -7.7122 -7.6655
22 -6.9640 -6.9282 -6.8926 -6.8926 -6.8573 -6.8573 -6.8573 -6.8573 -6.8218 -6.7866
23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
24 -5.0000 -4.9720 -4.9720 -4.9720 -4.9442 -4.9442 -4.9442 -4.9167 -4.9167 -4.8893
25 -10.9300 -10.8584 -10.7872 -9.7732 -9.7732 -9.7105 -9.7105 -9.6483 -9.5865 -9.5233
26 -9.2171 -9.1601 -8.4560 -8.4138 -8.3629 -8.3214 -8.2712 -8.2303 -7.5718 -7.5273
27 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
28 -7.9510 -7.9024 -7.8541 -7.8541 -7.8063 -7.7588 -7.7588 -7.7117 -7.6691 -7.6268
29 -6.9640 -6.9282 -6.8927 -6.8927 -6.8573 -6.8166 -6.8166 -6.7761 -6.7761 -6.7359
30 -6.0000 -5.9650 -5.9650 -5.9650 -5.9303 -5.9017 -5.9017 -5.8675 -5.8675 -5.8058
31 -11.9230 -11.8466 -11.7707 -10.5639 -10.5006 -10.4349 -10.3725 -10.3079 -10.2438 -10.1801
32 -10.9298 -10.9298 -10.8578 -10.7846 -10.7120 -10.6445 -10.5731 -10.5047 -10.4342 -10.4342
33 -9.9430 -9.9430 -9.8864 -9.8864 -9.8864 -9.1123 -9.1123 -9.0559 -9.0068 -9.0068
34 -8.9500 -8.9500 -8.9003 -8.9003 -8.9003 -8.2313 -8.2313 -8.1823 -8.1376 -8.0896
35 -7.9570 -7.9084 -7.8662 -7.8662 -7.8184 -7.7768 -7.7768 -7.7768 -7.7768 -7.7293
36 -7.0000 -6.9580 -6.9580 -6.9580 -6.9163 -6.8806 -6.8806 -6.8806 -6.8806 -6.8393

left-up, in order of the lines. On the columns are presented the estimated values
of the states’ utilities, during the training episodes.

From Table 1 it is obvious that the states’ utilities grow during the training
episodes. After the training, the agent will report the learned path (from the
initial to the final state), that is the path (6-1), (5-1), (5-2), (4-2), (4-3), (4-
4), (5-4), (5-5), (5-6), (4-6), (3-6), (2-6), (1-6). As a policy for moving in
the environment after the learning, we consider that, from a given state, the agent
will move to a neighboring state that was not visited yet, and having a maximum
utility (of course, to determine the policy, we could use some probabilistic action
selection mechanisms).

In order to illustrate the experimental results, we will give, in the followings,
graphical representations that confirm the theoretical results from the previous
sections. Figure 3 presents the change of the initial state’s utilities during the
training episodes (it is obvious that the utilities grow during the training).

A NEW REINFORCEMENT LEARNING ALGORITHM 11

Figure 3. The initial state’s utilities during the training process

Figure 4 presents the graphical representation of the states’ utilities on the first
training episode, and Figure 5 presents the graphical representation of the states’
utilities on the last training episode. Analyzing comparatively the two figures,
we observe that, for each state of the environment, the utilities grow during the
training.

In Figure 6 we present comparatively the states’ utilities on the first, the 10th
and the 5th training episode.

5.4. Experimental comparison between the URU algorithm and the TD
[1] (Temporal Difference) algorithm. In section 4 we illustrate that, in the
case of the learning problem in the environment shown in Figure 2, by applying
the TD algorithm the states’ utilities are not convergent. This fact is presented in
Table 2, where the utilities of the first five states during the training are described,
results obtained by applying the TD algorithm for our problem.

From Table 2 it is obvious that the states’ utilities have not a monotonic be-
havior, in other words, for some states the utilities increase, for other states the
utilities decrease along the training, which does not guarantee the convergence of
the algorithm.

12 GABRIELA ŞERBAN

Figure 4. The states’ utilities on the first training episode

Table 2. The states’ utilities after the training episodes with the
URU algorithm

State Episode Episode Episode Episode Episode Episode Episode Episode Episode Episode
1 2 3 4 5 6 7 8 9 10

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 -6.0000 -6.0000 -6.0000 -6.0002 -6.0002 -6.0002 -6.0002 -6.0002 -6.0202 -6.0202
3 -5.0000 -5.0000 -5.0000 -5.0200 -5.0200 -5.0400 -5.0400 -5.0400 -5.0600 -5.0600
4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 -2.9900 -2.9801 -2.9703 -2.9703 -2.9703 -2.9606 -2.9606 -2.9606 -2.9510 -2.9510
...

6. Conclusions and Further Work

As we have mentioned in the previous sections, the URU algorithm is a variant
of a RL algorithm based on temporal differences (if γ = 1 URU becomes the
classical temporal difference learning algorithm - TD).

In comparison with the classical TD algorithm, the following remarks may be
considered. These follow naturally from the theoretical results described in Section
4):

• the states’ utilities grow faster in the URU algorithm than in TD algo-
rithm, in other words UURU (i) > UTD(i), for all i ∈ M , which means

A NEW REINFORCEMENT LEARNING ALGORITHM 13

Figure 5. The states’ utilities on the last training episode

that the URU algorithm converge faster to the solution than the TD
algorithm;

• in the case of our learning problem, as we proved in Theorem 1, for
γ = 1 (the TD algorithm), we cannot prove the convergence of the
states’ utilities.

Further work is planned to be done in the following directions:
• to analyze what happens if the transitions between states are nondeter-

ministic (the environment is a Hidden Markov Model [4]);
• to analyze what happens if the reward factor (γ) is not a fixed parameter,

but a function whose values depend on the current state of the agent.
• to develop the algorithm for solving path-finding problems with multiple

agents.

References

[1] Russell, S.J., Norvig, P.: Artificial Intelligence. A Modern Approach. Prentice-Hall, Engle-
wood Cliffs, NJ, 1995

[2] Sutton, R., Barto, A., G.: Reinforcement Learning. The MIT Press, Cambridge, England,
1998

[3] Harmon, M., Harmon, S.: Reinforcement Learning – A Tutorial, Wright State University,
http://www-anw.cs.umass.edu/∼mharmon/rltutorial/frames.html, 2000

14 GABRIELA ŞERBAN

Figure 6. The states’ utilities on the first, the 10th and the 5th
training episode

[4] Serban, G.: Training Hidden Markov Models – A Method for Training Intelligent Agents,
Proceedings of the Second International Workshop of Central and Eastern Europe on Multi-
Agent Systems, Krakow, Poland, 2001, pp. 267-276

Babeş-Bolyai University, Cluj-Napoca, Romania
E-mail address: gabis@cs.ubbcluj.ro

