
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVII, Number 2, 2002

ON THE CONVERGENCE OF ASYNCHRONOUS BLOCK
NEWTON METHODS FOR NONLINEAR SYSTEMS OF

EQUATIONS

IOAN LAZĂR

Abstract. Convergence of asynchronous block Newton methods for solving
nonlinear systems of equations of the form F (x) = 0 are studied. Suffi-
cient conditions to guarantee their local convergence are given. Our analysis
emphasizes the connection between the conditions on F involved in local con-
vergence theorems for sequential and synchronous block Newton’s method,
and our settings for asynchronous block Newton methods. Our results are
similar to the results of Szyld and Xu, obtained in an asynchronous nonlinear
multisplitting context.

Keywords: numerical analysis, iterative methods, nonlinear system of
equations, Newton methods

1. Introduction

Consider the parallel solution of nonlinear systems of equations of the form

(1) F (x) = 0,

where F = (f1, . . . , fn) : Ω ⊆ Rn → Rn is a nonlinear operator. Newton’s method
is based on the approximation F (x) ≈ F (xk) + F ′(xk)(x − xk), and is given by
the iteration

(2) xk+1 = xk − F ′(xk)−1F (xk),

for k = 0, 1, . . ., where x0 is an initial guess.
Each linear system (2) can be solved in parallel using some kind of block it-

erative methods [10]. Block iterative methods are studied using the concept of
multisplittings [10] and the application of block iterative methods for solving the
systems (2) at each Newton step k was considered in [14].

The application of the concept of multisplittings directly to the nonlinear system
(1) were considered in [6] and [2] These methods are called parallel synchronous
nonlinear multisplitting methods. The methods are called synchronous in the sense

2000 Mathematics Subject Classification. 65H10, 65Y05.
1998 CR Categories and Descriptors. G.1.0 [Numerical analysis] General: parallel al-

gorithms; G.1.5 [Numerical analysis] Roots of Nonlinear Equations: Iterative methods, Con-
vergence, Systems of equations.

75

76 IOAN LAZĂR

that all processors have to wait at some synchronization point before proceeding
to the next iteration.

The asynchronous nonlinear multisplitting methods were considered in [1] and
[12], i.e. methods where no synchronization barrier is present (see [5, 3, 7] for some
general discussions on asynchronous methods). Bahi et all [1] studied asynchronous
nonlinear multisplitting methods in a general context for nonlinear fixed point
problems, while Szyld and Xu [12] studied these methods for problems of the form
(1), and extended the study to the case of overlapping blocks, i.e., certain variables
are updated by more than one processors.

Our framework presented here is similar to the framework used by Xu [15] for
the study of asynchronous block quasi-Newton methods. Our analysis emphasizes
the connection between the conditions on F involved in local convergence theo-
rems for sequential and synchronous block Newton’s method, and those used for
asynchronous block Newton methods.

This paper is organized as follows: in section 2 we give a brief review of block
Newton methods, a computational model for asynchronous block (Newton) meth-
ods and a corresponding mathematical model. The main result is presented in
section 3, after a brief review of the tools used or study both synchronous and
asynchronous cases. Finally some connections with different asynchronous block
Newton type methods are discussed.

2. Asynchronous Block Newton Methods

Suppose F and x are conformally partitioned as follows F = (F1, . . . , FL),
x = (x1, . . . , xL), where xi = (xi1 , . . . , xini

) ∈ Rni and Fi : Rn → Rni , i =
1, . . . , L. Suppose the partition Si = {i1, . . . , ini}, i = 1, . . . , L is chosen such that
∪L

i=1Si = {1, . . . , n} and Si ∩ Sj = ∅ for i 6= j, i, j = 1, . . . , L.
The system (1) can be rewritten

(3) Fl(x1, . . . , xl, . . . , xL) = 0, l = 1, . . . , L.

and we consider the following nonlinear block method. Given initial values x =
(x1, . . . , xL), repeat the following procedure until convergence

For l = 1, . . . , L

(4)
{

Solve for y in Fl(x1, . . . , xl−1, y, xl+1, . . . , xL) = 0,
Set xl = y.

In (4) the order in which the block are updated could be arbitrary. The classical
nonlinear block-Jacobi method and block-Gauss-Seidel method [4, 11] are special
cases of such methods. For the purpose of parallel processing the nonlinear block-
Jacobi method is nearly ideal, since up to L processors can each perform one of
the iterations in (4). Such iterations are synchronous in the sense that to begin the
computation of the next iterate, each processor has to wait until all processors have
completed their current iteration. By removing the synchronization and letting
the pocessors continue their calculations according to the information currently
available, we obtain asynchronous parallel methods.

ON ASYNCHRONOUS BLOCK NEWTON METHODS 77

Let the Jacobian of F be partitioned conformally with x, and define

F ′(x) =

∂F1(x)
∂x1

. . . ∂F1(x)
∂xL

.
∂FL(x)

∂x1
. . . ∂FL(x)

∂xL

 , ∂Fi(x)

∂xj
=

∂fi1 (x)

∂xj1
. . .

∂fi1 (x)

∂xjnj

.
∂fini

(x)

∂xj1
. . .

∂fini
(x)

∂xjnj

 ,

The block diagonal matrix of F ′(x) is denoted by

D(x) = diag(
∂F1(x)

∂x1
, . . . ,

∂FL(x)
∂xL

).

Using the above notations, one Newton step applied to the system (4) and
starting from the initial value x is

(5) yl = xl −
(

∂Fl(x)
∂xl

)−1

Fl(x).

Note that when solving (5) we are only interested in the components xl corre-
sponding to Sl. This means we work with a system of dimension nl, although the
initial system (1) is of dimension n. The evaluation of Fl(x) in (5) is dependent
on the entire vector x, that is the processor solving the equation (5) needs the
components evaluated by other processors.

2.1. Computational Model. Denote the (approximate) solution of Fl(x1, . . .,
xl−1, y, xl+1,. . .,xL) = 0 by yl = Gl(x), l = 1, . . . , L. Applying one step of Newton
method gives the operator defined by (5).

Assume we are working with a (shared memory) parallel computer with L pro-
cessors and associate a block of components with each processor. Then a parallel
variant of (3) can be implemented as in Algorithm 1. If the processors would
wait for each other to complete each run through the loop we would get a parallel
synchronous implementation of the procedure (3).

Here the processors continue the loop by collecting the needed vectors computed
by the other processors according to the information available at the moment. A
computational model for the asynchronous block method can be written as the
pseudocod of Algorithm 1 shows.

Since the processors do not wait for each other, the processors get out of phase
due to different run times for each loop. At a given time point, different processors
will have achieved different number of iterations. In this context, the iteration
number k in (2) looses its meaning.

Using a direct linear solver for step 4 in Algorithm 1, for exemple an LU factor-
ization of F ′, we obtain the asynchronous block Newton method

4’a: Factor F ′l (x) = LU
4’b: Solve LUs = −Fl(x)
4’c: yl := xl + s

Any other appropriate factorization such as QR or Cholesky could be used as well.

78 IOAN LAZĂR

Algorithm 1 Pseudocode for the lth processor (l = 1, . . . , L). x represents the
initial guess xj , j = 1, . . . , L. x and convergence are global variables written in
common memory.

1: read(converge)
2: while not converge do
3: read(x)
4: yl = Gl(x)
5: xl := yl; overwrite(xl)
6: read(converge);
7: end while

2.2. Mathematical Model. In order to analyse the asynchronous computational
model presented in Algorithm 1 we consider a counter k which is updated every
time a new vector is computed by some processor and let x0

l = x0, l = 1, . . . , L.
Let Ik ⊆ {1, . . . , L} denotes all updated block components, then the asynchro-

nous block Newton iteration is defined by

(6) xk+1
i =

{
x

si(k)
i −

(
∂Fi(u)

∂xi

)−1

Fi(u) for i ∈ Ik,

xk
i for i /∈ Ik,

for i ∈ {1, . . . , L}, k = 0, 1, . . ., where u = (xs1(k)
1 , . . . , x

sL(k)
L).

The iteration counts si(k), i = 1, . . . , L indicate the iteration, prior to k, when
the ith block component was computed.

Let S = {(s1(k), . . ., sL(k)) ∈ NL}k∈N where N = 0, 1, . . . denotes the set of
natural numbers. The standard assumptions for I = {Ik}k∈N and S are:

(7) ∀i ∈ {1, . . . , L}, ∀k ∈ N, si(k) ≤ k,

(8) ∀i ∈ {1, . . . , L}, lim
k→∞

si(k) = ∞,

(9) ∀i ∈ {1, . . . , L}, the set {k ∈ N|i ∈ Ik} is infinite.

The next definitions are similar to those considered by El Tarazi in [13] and will
be used in our proofs.

We define the sequence {s(k)}k∈N ⊂ N by

(10) s(k) = min
i

si(k).

We obtain immediately from (7) and (8)

(11) s(k) ≤ k and lim
k→∞

s(k) = ∞.

ON ASYNCHRONOUS BLOCK NEWTON METHODS 79

Suppose that (7)–(9) are satisfied, then we can define an increasing sequence
{kl}l∈N having the properties

(12)
⋃

0≤s(k)≤k<k0

Ik = {1, . . . , L},

(13)
⋃

kl≤s(k)≤k<kl+1

Ik = {1, . . . , L}.

The proofs given by Baudet [3] and El Tarazi [13] for general asynchronous
iterations use the sequence {kl} defined above. This sequence says that the asyn-
chronous iteration (6) updates all block components at least once at the steps
k0, k1,

If kl+1 − kl = L for all l, we get a synchronous block Gauss-Seidel iteration,
and if the sequence of differences {kl+1 − kl} is bounded then we get a partially
asynchronous algorithm.

3. Local Convergence

3.1. Synchronous Newton Methods. The standard assumptions on F in syn-
chronous (or sequential) case are:

(C1): Equation (1) has a solution x∗.
(C2): F ′ : Ω → Rn×n is Lipschitz continuous on Ω, with Lipschitz con-

stant γ, i.e., ‖F ′(x)− F ′(y)‖ ≤ γ‖x− y‖, for all x, y ∈ Ω.
(C3): F ′(x∗) is nonsingular.

These assumptions can be weakened without sacrificing convergence results pre-
sented here. However the classical result on quadratic convergence of Newton’s
method requires them.

The main result concerning the local convergence of Newton’s method is pre-
sented in the next theorem.

Theorem 3.1. [11] Let the standard assumptions (C1)–(C3) hold. Then there are
K > 0 and δ > 0 such that if ‖x0−x∗‖ < δ then the Newton iterates {xk} defined
by (2) converge q-quadratically to the solution x∗ of (1).

The convergence results on Newton’s method follow from the basic results given
in Lemma 3.2 and 3.3 (a variant of Banach lemma).

Lemma 3.2. [11] Assume F satisfies (C2). Then for all x, y ∈ Ω,

(14) ‖F (y)− F (x)− F ′(x)(y − x)‖ ≤ γ

2
‖x− y‖2.

In the context of Theorem 3.1, the inequality (14) is used to obtain the estimates

(15) ‖xk+1 − x∗‖ ≤ K‖xk − x∗‖2, k = 0, 1,

80 IOAN LAZĂR

Lemma 3.3. [11] Let A,C ∈ Rn×n, A nonsingular and ‖A−1‖ ≤ α1, ‖C −A‖ ≤
α2 with α1α2 < 1. Then C is a nonsingular matrix, and

‖C−1‖ ≤ α1

1− α1α2
.

The hypothesis of theorem 3.1 does not give sufficient conditions for solving
subsystems Fl(x) = 0, l = 1, . . . , L of the system F (x) = 0, since the subsystem
Fl(x) = 0 is solved only in respect to the components of block l.

The asynchronous iteration (6) is more close related to other Newton type
methods which consider some splitting of the Jacobian,

(16) F ′(x) = B(x)− C(x).

and iterative processes

(17) xk+1 = xk −B(xk)−1F (xk), k = 0, 1,

The Newton-SOR and Newton-Jacobi belong to this family of iterative processes.
Ortega and Rheinboldt establish the following result concerning the iteration (17).

Theorem 3.4. [11] Let the standard assumptions (C1)–(C3) hold, and suppose
B : Ω → L(Rn) is continuous in x∗, B(x∗) is nonsingular and ρ(B(x∗)−1(F ′(x∗)−
B(x∗))) < 1. Then {xk} defined by (17) and (16) converges q-linearly to x∗ with
q-order ρ(B(x∗)−1(F ′(x∗)−B(x∗))).

3.2. Weighted maximum norms. The assumptions (C1) and (C2) are also nat-
urally for asynchronous block Newton method. The condition (C3) will be replaced
by the following sufficient conditions which guarantee the existence of solutions of
the subsystems and local convergence of the asynchronous method:

(C3’): All the matrices ∂Fi(x
∗)

∂xi
, i = 1, . . . , L are nonsingular, and

ρ(|D(x∗)−1(F ′(x∗)−D(x∗))|) < 1.

Remarks. (a) (see also [15]) Conditions (C1) and (C2) are standard for New-
ton methods, and (C3’) is natural for the convergence of asynchronous methods.
Consider the linear case, where F (x) = Ax − b and F ′(x) = A. If there exists
A−1 then (C3’) is necessary and sufficient for the convergence of the asynchronous
block methods for the linear system F (x) = 0.

(b) Condition (C3’) is also similar to the main requirement for the convergence
given in the theorem 3.4, ρ(B(x∗)−1(F ′(x∗)−B(x∗))) < 1.

(c) (see also [15]) Condition (C3’) holds when the Jacobian matrix F ′(x∗) is an
H-matrix, since F ′(x∗) = D(x∗) − (D(x∗) − F ′(x∗)) is an H-splitting of F ′(x∗).
Moreover, (C3’) is equivalent to F ′(x∗) being an H-matrix if each block has only
one component.

By the theory of nonnegative matrix, condition (C3’) is quivalent to

(C3”): All matrices ∂Fi(x
∗)

∂xi
, i = 1, . . . , L are nosingular, and there exists

ρ0 < 1 and a vector w > 0 such that

‖D(x∗)−1(F ′(x∗)−D(x∗))‖w < ρ0.

ON ASYNCHRONOUS BLOCK NEWTON METHODS 81

The weighted maximum norms used in (C3”) are defined as follows. Let w ∈ Rn,
w > 0 and A ∈ Rn×n be partitioned conformally with x, then we define

(18) ‖x‖w = max{‖xi‖wi
, 1 ≤ i ≤ L} = max{ |xij

|
wij

, 1 ≤ j ≤ ni, 1 ≤ i ≤ L}.

and the induced matrix norm ‖A‖w = max{‖Ax‖w

‖x‖w
: x ∈ Rn \ {0}}.

We return to the subsystems (5). Starting from x and applying one step of the
Newton method for the ith block, we are interested to estimate

(19)
‖yi − x∗i ‖wi

= ‖xi − x∗i −
(

∂Fi(x)
∂xi

)−1

Fi(x)‖wi

= ‖
(

∂Fi(x)
∂xi

)−1 [
Fi(x∗)− Fi(x)− ∂Fi(x)

∂xi
(x∗i − xi)

]
‖wi

As we can see from the right hand side of (19), the Lemma 3.2 cannot be applyed
directly as for the sequential Newton method.

In order to obtain a similar lemma we can extend the weighted matrix norms
for rectangular matrices as follows,

‖(Ai1, . . . , AiL)‖wi = max{‖(Ai1,...,AiL)x‖wi

‖x‖w
: x ∈ Rn \ {0}},

‖Aij‖wi = max{‖Aijxj‖wi

‖xj‖wj
: xj ∈ Rnj \ {0}}.

We immediately have,

‖Aii(Ai1, . . . , AiL)‖wi ≤ ‖Aii‖wi · ‖(Ai1, . . . , AiL)‖wi ,

‖|A|‖w = ‖A‖w, ‖|(Ai1, . . . , AiL)|‖wi = ‖(Ai1, . . . , AiL)‖wi ,

‖A‖w = max{‖(Ai1, . . . , AiL)‖wi , 1 ≤ i ≤ L},
‖Aij‖wi ≤ ‖(Ai1, . . . , AiL)‖wi , 1 ≤ i ≤ L.

These extensions were considered by Xu [15]. The following lemma will play a
similar role for asynchronous block Newton methods as the lemma 3.2 for sequen-
tial Newton methods.

Because of the norm equivalence in finite dimensional spaces we can consider
that the norm used in (C2) is the weighted norm ‖ · ‖w, where w is the vector
defined in (C3”).

Lemma 3.5. [15] Under the conditions (C1), (C2) and (C3’) we have

(20) ‖∂Fi(x)
∂xi

− ∂Fi(x∗)
∂xi

‖wi ≤ γ‖x− x∗‖w, ∀x ∈ S(x∗, ε),

and there exists ε > 0 such that S(x∗, ε) ⊂ Ω and

(21) ‖
(

∂Fi(x∗)
∂xi

)−1 (
∂Fi(x)
∂x1

, . . . ,
∂Fi(x)
∂xi−1

, 0,
∂Fi(x)
∂xi+1

, . . . ,
∂Fi(x)
∂xL

)
‖wi ≤ ρ0,

82 IOAN LAZĂR

(22)
‖xi − x∗i −

(
∂Fi(x

∗)
∂xi

)−1

Fi(x)‖wi

≤ ρ0‖x− x∗‖w + γ
2 ‖

(
∂Fi(x

∗)
∂xi

)−1

‖wi
· ‖x− x∗‖2w,

for all i = 1, . . . , L, x ∈ S(x∗, ε).

3.3. Asynchronous Newton Method. The next theorem represents the main
result of the paper.

Theorem 3.6. Let the assumptions (C1), (C2) and (C3’), and also the conditions
(7)–(9) hold. Then there exists δ > 0 such that if x0 ∈ S(x∗, δ) then the sequence
generated by asynchronous block Newton method converges to x∗.

Moreover, for l = 0, 1, . . ., we have

(23) ‖xk − x∗‖w ≤ rl‖x0 − x∗‖w, ∀k ≥ kl,

where K > 0, r := ρ0 + Kδ < 1, and the sequence {kl}is defined by (12)–(13).

Proof. We proceed in two steps: first we show that the sequence generated by
asynchronous block Newton method is well defined and then it converges.

We consider β > 0 such that

‖F ′(x∗)‖w ≤ β, ‖(∂Fi(x∗)
∂xi

)−1‖wi ≤ β, i = 1, . . . , L.

First part. We choose δ > 0 such that the matrices ∂Fi(x)
∂xi

, i = 1, . . . , L are
nonsingular for all x ∈ S(x∗, δ). From (20),

‖∂Fi(x)
∂xi

− ∂Fi(x∗)
∂xi

‖wi ≤ γ‖x− x∗‖w, ∀x ∈ Ω,

and by (C3’) there exists ∂Fi(x
∗)

∂xi

−1
. Let δ > 0 be such that the hypothesis of

Banach lemma 3.3 hold, so there exists ∂Fi(x)
∂xi

−1
, for all x ∈ S(x∗, δ). Now we

choose δ small enough such that the assumptions of Lemma 3.5 also hold.
We show that if x0 ∈ S(x∗, δ) then the sequence {xk} remains in S(x∗, δ).

Suppose that for all j, 0 ≤ j ≤ k, ‖xj − x∗‖w ≤ ‖x0 − x∗‖w.
Let u = (xs1(k)

1 , . . . , x
sL(k)
L). For i ∈ Ik,

(24)

‖xk+1
i − x∗i ‖wi = ‖xsi(k)

i − x∗i − ∂Fi(u)
∂xi

−1
Fi(u)‖wi

= ‖xsi(k)
i − x∗i − ∂Fi(x

∗)
∂xi

−1
Fi(u)‖wi+

‖∂Fi(x
∗)

∂xi

−1 − ∂Fi(u)
∂xi

−1‖wi · ‖Fi(u)‖wi

Since

(25)
‖Fi(u)‖wi = ‖Fi(u)− Fi(x∗)‖wi ≤ ‖F (u)− F (x∗)‖w

≤ ‖F (u)− F (x∗)− F ′(x∗)(u− x∗)‖w + ‖F ′(x∗)(u− x∗)‖w

≤ γ
2 ‖u− x∗‖2w + β‖u− x∗‖w,

ON ASYNCHRONOUS BLOCK NEWTON METHODS 83

(26) ‖∂Fi(x
∗)

∂xi

−1 − ∂Fi(u)
∂xi

−1‖wi
= ‖∂Fi(x

∗)
∂xi

−1
(∂Fi(x

∗)
∂xi

− ∂Fi(u)
∂xi

)∂Fi(u)
∂xi

−1‖wi

≤ β2γ‖u− x∗‖w

we get
(27)
‖xk+1

i − x∗i ‖wi
≤ [

ρ0 +
(
βγ(1

2 + β2) + β2γ2‖u− x∗‖w

) ‖u− x∗‖w

] ‖u− x∗‖w

= (ρ0 + K‖u− x∗‖w) ‖u− x∗‖w,

where K = βγ(1
2 +β2)+β2γ2δ. Again, if necessary, we choose δ small enough such

that r := ρ0 + Kδ < 1, then (27) gives ‖xk+1
i − x∗i ‖wi

≤ ‖x0 − x∗‖w, for i ∈ Ik.

On the other hand, if i /∈ Ik then the ith component is not modified, xk+1
i = xk

i ,
and from the induction hypothesis it follows ‖xk+1

i −x∗i ‖wi
≤ ‖x0−x∗‖w, for i /∈ Ik.

The last two inequalities together with the norm definitions implies

‖xk+1 − x∗‖w ≤ ‖x0 − x∗‖w,

that means the sequence {xk} generated by the asynchronous method is well de-
fined and remains in S(x∗, δ) if x0 ∈ S(x∗, δ).
Second part. Let {kl} be the sequence defined by (12) and (13). We show by
mathematical induction that for all l ∈ N

(28) ‖xk − x∗‖w ≤ rl‖x0 − x∗‖w, ∀k ≥ kl.

hence {xk} is convergent, since r = ρ0 + Kδ < 1.
Let l = 0. From the definition of {kl} it follows

∀k ≥ k0, ∀i ∈ {1, . . . , L}, there exists j : 0 ≤ s(j) ≤ j < k

such that xk
i = xj+1

i and i ∈ Ij .

Using (27) we get ‖xk
i − x∗i ‖wi = ‖xj+1

i − x∗i ‖wi ≤ r‖x0− x∗‖w, for i ∈ {1, . . . , L},
and by the definition of weighted norms, ‖xk − x∗‖w ≤ r1‖x0 − x∗‖w ≤,∀k ≥ k0.

Now, suppose for fixed l ∈ N we have

‖xk − x∗‖w ≤ rl‖x0 − x∗‖w, ∀k ≥ kl.

Using again the definition of {kl} we get

∀k ≥ kl+1, ∀i ∈ {1, . . . , L}, there exists j : kl ≤ s(j) ≤ j < k

such that xk
i = xj+1

i and i ∈ Ij .

Let u = (xs1(j)
1 , . . . , x

sL(j)
L). Using again (27), ‖xk

i − x∗i ‖wi = ‖xj+1
i − x∗i ‖wi ≤

r‖u − x∗‖w = r‖xsp(j)
p − x∗‖wp , where p is an index for which the last equality

holds (according to the definition of the norm ‖ · ‖w). Since sp(j) ≥ kl, it follows
that ‖xsp(j)

p − x∗‖wp ≤ rl‖x0 − x∗‖w and the proof is complete.
Remark Under the assumptions of Theorem 3.6, the asynchronous block New-

ton method converges with a rate of convergence (see [3]).

R = lim inf
k→∞

[(− log ‖xk − x∗‖)/k] ≥ ρ0.

84 IOAN LAZĂR

If F and F ′ are computed innacurately then the asynchronous iteration (6)
becomes, for i ∈ Ik,

(29) xk+1
i = x

si(k)
i −

(
∂Fi(u)

∂xi
+ ∆(u)

)−1

(Fi(u) + ε(u)),

where u = (xs1(k)
1 , . . . , x

sL(k)
L). A similar local convergence theorem can be shown

for an asynchronous block Newton perturbed method defined by (29) (see [9]). As
in the sequential case [8], one can use Newton perturbed method to derive local
convergence results for other Newton methods (e.g. chord method).

References

[1] Jacques Bahi, Jean-Claude Miellou, and Karim Rhofir. Asynchronous multisplitting meth-
ods for nonlinear fixed point problems. Numerical Algorithms, 15:315–345, 1997.

[2] Zhong-Zhi Bai, Violeta Migallon, Jose Penades, and Daniel B. Szyld. Block and Asynchro-
nous Two-Stage Methods for Midly Nonlinear Systems. Num. Math., 82:1–21, 1999.

[3] Gérard M. Baudet. Asynchronous iterative methods for multiprocessors. J. Association for
Computing Machinery, 25:226–244, 1978.

[4] Dimitri P. Bertsekas. Distributed Asynchronous Computation of Fixed Points. Prentice Hall,
Englewood Cliffs, New Jersey, 1989.

[5] D. Chazan and W. Miranker. Chaotic relaxation. Linear Algebra and its Applications, 2:199–
222, 1969.

[6] Andreas Frommer. Parallel Nonlinear Multisplitting Methods. Numerische Mathematik,
56:269–282, 1989.

[7] Andreas Frommer and Daniel B. Szyld. On Asynchronous Iterations. J. Computational and
Applied Mathematics, 123:201–216, 2000.

[8] C.T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SIAM Publications,
1995.

[9] Ioan Lazǎr. On Asynchronous Two-Stage Newton Iterative Methods. Rev. Anal. Numér.
Théor. Approx. submitted.

[10] D.P. O’Leary and R.E. White. Multi-Splitting of Matrices and Parallel Solution of Linear
Systems. SIAM J. Alg. Disc. Meth., 6:630–640, 1985.

[11] J.M. Ortega and W.G. Rheinboldt. Iterative Solutions of Nonlinear Equations in Several
variables. Academic Press, New York, 1970.

[12] Daniel B. Szyld and Jian-Jun Xu. Convergence of Some Asynchronous Nonlinear Multisplit-
ting Methods. Numerical Algorithms, 25:347–361, 2000.

[13] Mouhamed Nabih El Tarazi. Some Convergence Results for Asynchronous Algorithms. Num.
Math., 39:325–340, 1982.

[14] R.E. White. Parallel Algorithms for Nonlinear Problems. SIAM J. Alg. Disc. Meth., 7:137–
149, 1986.

[15] Jian-Jun Xu. Convergence of Partially Asynchronous Block Quasi-Newton Methods for Non-
linear Systems of Equations. J. Computational and Applied Mathematics, 103:307–321, 1999.

Babeş-Bolyai University, Faculty of Mathematics and Informatics, Cluj-Napoca,
str. M. Kogǎlniceanu 1

E-mail address: ilazar@cs.ubbcluj.ro

