
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVII, Number 1, 2002

UML MODEL CHECKING

DAN CHIOREAN, ADRIAN CARCU, MIHAI PASCA, CRISTIAN BOTIZA, HORIA
CHIOREAN, AND SORIN MOLDOVAN

Abstract. Correctness against the UML definition has to be a prerequisite
for every UML model. In terms of programming languages this requirement
is stated: “the precondition for every application is to be syntactically and
semantically correct against the language specification”. The objective of
this paper is to go over the state of the art in this domain highlighting some
drawbacks in the UML 1.4 AO and WFR1. The XMI adoption as a standard
format for UML models transfer opened the way to verifying the level at which
different UML tools comply with the UML semantics. Taking into account
that existing OCL tools do not implement all the functionalities required
for efficient UML model checking, we have designed and implemented an
OCL evaluator2. The possibility to check every UML Model stored in XMI
format, a repository fully compliant with UML 1.4, including all the AO,
the possibility to evaluate the WFR, MR3 and BCR4, are among the main
features of our tool.

Key words: UML 1.4, OCL, UML model checking, CASE Tools, AO,
WFR, OCL evaluator

1. The UML model correctness

UML model correctness is certainly a very important aspect unfortunately ig-
nored by many specialists in the modeling domain. How else could we possibly
explain a series of errors found in different UML models, which the user is not
warned about after the check?

By model correctness, we understand the correctness of the model against the
modeling language. For UML this means satisfying the WFR. Further, after the
WFR have been passed, the BCR have to be syntactically and semantically correct.
Asking that different kinds of applications comply with a set of Methodological
Rules, may extend the concept of “correctness”. An aspect related with model
checking is the moment at which the check is performed. In this paper, we are
referring to key moments in the application’s life cycle; for example the moment

2000 Mathematics Subject Classification. 68N30.
1998 CR Categories and Descriptors. D.2.3 [Software] : Software Engineering – Coding

Tools and Techniques; D.2.7 [Software] : Software Engineering – Distribution, Maintenance
and Enhancements .

71

72 DAN CHIOREAN ET.AL.

when the design model is automatically turned into code, the moment right be-
fore the end of modeling, the moment before exporting the model to another tool
etc. The importance of model validation in the above-mentioned key moments
is unanimously recognized. For example, in his paper “Consistency Checking”
[Moore2000], Michael Moors states: “. . . during model editing, the model will fre-
quently be syntactically incorrect, and the tool needs to be able to allow for syntac-
tical incorrectness in this mode.” The Amigos also call this “Inconsistent models
for work in progress,” because “the Final model must satisfy various validity con-
straints to be meaningful.”

To understand better the value of UML models correctness, we suggest you
reflect over the syntactic and semantic correctness of an application against the
implementation language. In this later case, the existence of errors does not allow
you to build the application. The process will be interrupted at compile or link
time. Using the existent CASE Tools, the errors identified in the analysis or design
models, do not interrupt the development process immediately. Consequently,
errors are transferred to the next model produced in the software lifecycle. This
implies a bigger amount of time and money spent on application development.

2. State of the art

To test UML model correctness, at least all the WFR must be evaluated. Nat-
urally the “precondition” for the above statement is: The WFR have to be correct
and complete (in other words, they have to cover at least all the important seman-
tic features of the UML model elements).

The usage of formalisms such as script languages or formal languages (different
from OCL) has some drawbacks. In order to be rigorous, we have to demonstrate
for each WFR, the equivalence between its specification in OCL and its speci-
fication in the used formalism. (Supposing that WFR are correctly specified in
OCL). Another problem, even more embarrassing, can appear when the checks
are done using a UML CASE tool. This is because even in the best case (when
the CASE Tool repository fully implements the UML metamodel), the tools don’t
allow the user to create some model elements or to declare certain relationships
among the existent model elements. The most used CASE Tools – Rational Rose,
Together, Poseidon, etc. haven’t yet implemented: the Inheritance Relationship
among packages, the Permission Relationship between packages (including stan-
dard stereotypes for this relationship), the Collaboration ModelElement, and other
concepts defined in UML 1.4. Moreover, the Repository Interface for the above-
mentioned tools is pretty different from the interface formed by joining the get and
set operations defined for the UML metamodel classes and the AO. (Our position
is that a minimal UML repository interface should include at least the AO and
the set and get operations)

Among the existent CASE Tools offering OCL support (http://www.klasse.nl
/ocl) neither Argo (Poseidon) nor Use or ModelRUN don’t provide user access

UML MODEL CHECKING 73

to the tool repository by means of AO. Consequently they do not support UML
model checking in a straightforward manner.

In some UML papers, and particularly in [Richters 2000] there are mentioned
different drawbacks of the UML AO and WFR. Most of them are syntactic and
semantic errors. Unfortunately, there are also some conceptual errors. In the
following, we will try to focus on this category of errors.

We noticed that the UML 1.4 “static semantics”, expressed using OCL expres-
sions, contains a lot of errors. Consequently, we will try to find the rationale of
this situation and propose some solutions.

3. The LCI OCL Evaluator

Because the main objective of this paper is OCL, AO and WFR, we will not
insist on our tool architecture. Below we roughly present how to use our checker.

As we can see in Figure 1, the main components of this tool are: the reposi-
tory, the XML reader, the OCL/UML Type System, the syntactic analyzer, the
semantic analyzer, the evaluator and the GUI.

First, the user has to load the model, the UML 1.4 metamodel (both expressed
in XMI format) and the WFR or other constraints or operations specifications,
expressed in a text with the “.ocl” extension. The succession of these three oper-
ations does not matter.

Before beginning the checking process, the user has to verify the OCL expres-
sions syntactically and semantically. In case of semantic errors, the tool offers
the possibility to do a partial evaluation. In this process, the type of expressions
located before the error can be calculated.

The next step consists in identifying the model element(s) to be checked next
against an OCL constraint. Finally, the last step consists in constraint evaluation.
As we mentioned before (in case of semantic errors), the user has the possibility
to evaluate the whole expression or parts of them.

For the moment we are, the user has just the possibility to modify the OCL
expressions. To correct (change) the UML models, he has to use the UML CASE
Tools and to save the modified models in XMI format, in order to do a new check.
To evaluate dynamically the OCL constraints we intent to translate the OCL
specifications in a programming language (Java, C++ etc.) and to generate auto-
matically the code for the UML models. Concerning the methods code, this will
be write by hand or generate automatically using the State Transition Diagrams
or Object Diagrams.

Taking into account the aspects mentioned in the previous section, one of our
main objectives was to support the user in checking UML models. In order to
do this, the OCL constraints and specifications can be evaluated both at the
metamodel and model level.

74 DAN CHIOREAN ET.AL.

4. Errors in AO specifications

First of all we will analyze the operation pair contents, allContents, defined in
the Namespace context.

As is very well mentioned in [Richters 2000] both operations have the same
specification in English and in OCL. A first observation we made is that the spec-
ification below, can not be evaluated because the stop condition is not explicitly
mentioned.

contents: Set(ModelElement)
contents = self.ownedElement->union(self.namespace.contents)
In order to evaluate the contents AO defined in the Namespace context, we

propose:
contents = if self.namespace->isEmpty then self.ownedElement else
self.ownedElement->union(self.namespace.contents) endif
We found this specification clearer even in case of implementing manually in

the UML 1.4 API repository. The second remark concerns the expressiveness of
the operation’s name, directly connected to the contents “specification” in English
language. “The operation contents results in a Set containing all ModelElements
contained by the Namespace”.

For us, the above operation, return the Set of ModelElements visible (potential
servers) in a Namespace if we do not take into account the dependency relationship
among the Namespace and other server Namespaces.

Analyzing the UML AO, we notice that the above operation is redefined in the
Classifier context and in the Package context, where the inherited elements are
tacked into consideration. The specifications are identical in both cases. Taking
into account that both Classifier and Package are descendents of GeneralizableEle-
ment, our opinion is that it would be better to define allContents operation only
in GeneralizableElement. In this case, the conflict existent in Subsystem, do to
a multiple inheritance of allContents operation both from Classifier and Package
disappear.

The operation is equally redefined in Collaboration, in order to rejected the
elements specialized in descendants. In this case, the potential conflict due to a
multiple inheritance of allContents operation in the GeneralizableElement is solved
due to the above mentioned redefinition.

Another example is provided by the specification of allFeatures AO. In this case,
there is discordance between the “specification” (description) made in English lan-
guage and those made in OCL. In [UML 1.4] is stated: “The operation allFeatures
results in a Set containing all Features of the Classifier itself and all its inherited
Features.”, the OCL specification being:

allFeatures =
self.feature->union(self.parent.oclAsType(Classifier).allFeatures)

UML MODEL CHECKING 75

We can simply notice that in the OCL specification the ancestors’ private fea-
tures had not been eliminated. The correct specification can be (the reject opera-
tion can also tacked into consideration):

allFeatures = self.feature->union(self.parent.oclAsType(Classifier)
.allFeatures->select(f | f.visibility=#public or f.visibility=#protected))
The allFeatures is a very important specification because she is used in allOper-

ations, allMethods and allAttributes AO and in different WFR.
allContents = self.contents->union(self.parent.allContents->select(e |
e.elementOwnership.visibility = # public or e.elementOwnership.visibility =
protected))

5. Errors in WFR

In the following we will analyze the WFR using the above mentioned AO,
beginning with the WFR[4] defined in the Association context.

The connected Classifiers of the AssociationEnds should be included in the Names-
pace of the Association, or be Classifiers with public visibility in other Namespaces
to which the Namespace of the Association has “access” Permissions.

self.allConnections->forAll(r | self.namespace.allContents->includes
(r.participant)) or
self.allConnections->forAll(r | self.namespace.allContents->excludes
(r.participant) implies
self.namespace.clientDependency->exists(d | d.oclIsTypeOf(Permission) and
d.stereotype.name = ’access’ and
d.supplier.oclAsType(Namespace).ownedElement->select(e |
e.elementOwnership.visibility = #public)->includes(r.participant) or
d.supplier.oclAsType(GeneralizableElement).
allParents.oclAsType(Namespace).ownedElement->select(e |
e.elementOwnership.visibility = #public)->includes(r.participant) or
d.supplier.oclAsType(Package).allImportedElements->select(e |
e.elementImport.visibility = #public)->includes(r.participant)))
Apart from the specification form, we notice that the classifiers inherited were

taken into consideration twice. These because the association’s Namespace has to
be a Package and, as we mentioned in the previous section, in the Package, the
allContents operation had been redefined in order to include the inherited elements.

allContents = self.contents->union(self.parent.allContents->select(e |
e.elementOwnership.visibility = #public or e.elementOwnership.visibility =
#protected))
More, the Permission relationships having the stereotype ‘friend’ and ‘import’

have not been taken into consideration. In this case, our proposal is to define in
the Package context an allVisibleElements AO in order to return all the elements
able to be used as servers in that Package. This AO will be useful to check all the

76 DAN CHIOREAN ET.AL.

relationships defined in that Package and to calculate the potential servers for the
features of Classifiers defined in this Package.

context Package::allVisibleElements():Set(ModelElement)
post:
let clDepSuplElem(d: Dependency): Set(ModelElement)= d.supplier->asSequence
->first.oclAsType(Package).ownedElement
let clDepStName(d: Dependency):String = d.stereotype->asSequence->first
.name in
allVisibleElements() = self.allContents->union(self.clientDependency->
select(oclIsKindOf(Permission))->iterate(cD ; acc:Set(ModelElement)=Set{} |

if (clDepStName(cD)=’import’ or (clDepStName(cD)=’access’))
then acc->union(clDepSuplElem(cD)->select(e | e.oclIsTypeOf(Classifier)

and e.elementOwnership.visibility=#public))
else if (clDepStName(cD)=’friend’)

then acc->union(clDepSuplElem(cD)->select(oclIsTypeOf(Classifier)))
else acc->union(Set{})

endif
endif))

In this case, the Association WFR[4] will be:
context Association
inv WFR 4:
(self.namespace.allVisibleElements.oclAsType(Classifier)->asSet)
->includesAll(self.connection->iterate(ae ; acc:Set(Classifier)=Set{} |
acc->including(ae.participant)))
In order to support our proposal, we will analyze now, the BehavioralFeature

WFR[2].
“[2] The type of the Parameters should be included in the Namespace of the

Classifier.”
self.parameter->forAll(p | self.owner.namespace.allContents->includes
(p.type))
It is very clear that in this case, the classifiers visible by means of relationships

declared among the classifier’s package and other packages were not be tacked into
consideration. The above proposed allVisibleElements AO is proving to be useful
in this context also.

Another aspect worth to be analyzed is the Class WFR[2].
“A Class can only contain Classes, Associations, Generalizations, UseCases, Con-

straints, Dependencies, Collaborations, DataTypes, and Interfaces as a Namespace.”
context Class
inv WFR 2:
self.allContents->forAll->(c | c.oclIsKindOf(Class) or c.oclIsKindOf(Association)

or c.oclIsKindOf(Generalization) or

UML MODEL CHECKING 77

c.oclIsKindOf(UseCase) or c.oclIsKindOf(Constraint) or
c.oclIsKindOf(Dependency) or c.oclIsKindOf(Collaboration) or
c.oclIsKindOf(DataType) or c.oclIsKindOf(Interface))
Concerning this WFR there are at lest two observations to do. Firstly, suppos-

ing that this WFR really has a role, the invariant is incomplete because at least
the Realisation relationships between an interface and a Classifier, the Derivation
relationships and the AssociationClasses were forgotten.

Due to the above mentioned lacks (errors) if we will evaluate this WFR[2], for
classes included in simple UML models, like the model presented in Figure 2, the
evaluation result will be fail as you can see in Figure 3.

We suppose that the followings WFRs are straightly connected with the above
mentioned WFR. “[1] A Component may only contain other Components in its
namespace.”

context Component
inv WFR 1:
self.allContents->forAll(c | c.oclIsKindOf(Component))
“[2] A DataType cannot contain any other ModelElements.”
context DataType
inv WFR 1:
self.allContents->isEmpty
Taking into account that both Component and DataType are Classifier’s descen-

dants the evaluation of these WFR will fail even for the simplest UML models.
Analyzing the last three WFR, the following question arises: “What is the role,
of these invariants?” In order to eliminate this kind of unpleasant situations, we
suggest that in similar cases to describe (using the English language) the meaning
of each WFR.

The lasts WFR we will analyze in this paper, are the WFR[4] and WFR[5]
defined in the Classifier context.

“[4] The name of an Attribute may not be the same as the name of an opposite
AssociationEnd or a ModelElement contained in the Classifier.”

context Classifier
inv WFR 4:
self.feature->select(a | a.oclIsKindOf (Attribute))->forAll(a |
not self.allOppositeAssociationEnds->union(self.allContents)->collect(q | q.name)
->includes(a.name))
“[5] The name of an opposite AssociationEnd may not be the same as the name

of an Attribute or a ModelElement contained in the Classifier.”
context Classifier
inv WFR 5:
self.oppositeAssociationEnds->forAll(o | not self.allAttributes->
union(self.allContents)->collect(q | q.name)->includes(o.name))

78 DAN CHIOREAN ET.AL.

Even a brief inspection shows us an abusive use of allContents AO. Our state-
ment is based on the fact the WFR do not have to forbid legal situations accepted
in object-oriented programming languages like those showed in Figures 4 & 5.
More, the last two WFRs, offer us the possibility to highlight the importance of
an explicit rule for naming features in UML. This rules have to state explicit that
in descendants, the features names are formed prefixing the name feature with
“NamespaceName::” for example, if we define in the class A an attribute named
“a1”, in the class B, this attribute will be called “A::a1”. We supposed that the
class A was defined in the same package with the class B. If the class A was defined
in another package P2, in the class B, the attribute a1 inherited from the class A
will be called “P1::A::a1”. If in the class B, there are not other attributes named
a1, than the attribute defined in the class A can receive the alias a1. Taking into
account that a possible name conflict among the attributes defined in a class and
the associationEnds attached to the associations connecting this class, can appear
only in the execution model (obtained by translating in code the UML design
model), the two above mentioned WFR, can be joined in the following WFR:

context Classifier
inv WFR 4:
self.feature->select(a | a.oclIsKindOf (Attribute))->forAll(a |
not self.oppositeAssociationEnds.name->includes(a.name))

Figure 1. The UML model

In order to illustrate the above-mentioned statements, we will evaluate the Clas-
sifier WFR [4] and [5]: “The name of an Attribute may not be the same as the name

UML MODEL CHECKING 79

Figure 2. WFR 4 Evaluation in the context of class A

of an opposite AssociationEnd (or a ModelElement contained in the Classifier)1” us-
ing two different formalisms: Rose Script language and OCL.

This because the above-mentioned WFR can be expressed using the Rational
Rose Script Language (see next section). If we try to specify (using the Rose Script
Language) the Stereotype, Interface, Component, Collaboration WFR, this will not
be possible due to the fact that the REI2 dose not offer access to their required
information.

In the case of “access violation”, the situation is somewhat similar. As men-
tioned in [Moore2000]: “An access violation occurs when a class in one package
references a class in another package in the absence of an import relationship
between the two packages. An access violation will also occur when a package
references a class from another package, whose export control is set to Protected,
Private, or Implementation. In such cases, the presence of an import relation-
ship between the two packages has no bearing. All references to implementation
classes from different packages are sited as violations. Rose provides a very nice
GUI for these kinds of inconsistencies – Report: Show Access Violations shows a

1The brackets are used to highlight that the inclusion of ModelElements different from
attributes is incorrect, as we shall prove in Section 5

2Acronym for Rational Rose Extensibility Interface

80 DAN CHIOREAN ET.AL.

list of violations created by generalizations, ”realize” relationships, dependencies,
and ”instantiates” relationships. But it does not show violations created by
association classes or types.”

In order to explain the above-mentioned Rose function (menu) limits, let us
consider two different packages P1 and P2, placed at the same level in the model.
Let’s define class A in package P1, and class B in package P2. Set the visibility
of A in package P1 as being private and assume that B uses A. Irrespective of the
existence of a dependency relationship between P2 and P1, the function “Report
Access Violation” doesn’t mention this error. Moreover, all the WFR that use the
Permission relationship cannot be expressed in Rose Script Language because Rose
does not implement this UML relation.

Consequently, the Rose Script Language supports evaluation only of some WFR.
Unfortunately even in cases when the WFR specification can be implemented in
the script language, it is inefficient as compared to its OCL specification.

6. WFR evaluation using Rose Script Language

The OCL Tools mentioned at http://www.klasse.nl/ocl, offer a little part
of the functionalities needed to check UML Models. Consequently, in UML CASE
tools, checks are usually done using different script languages. The model infor-
mation accessible by means of script languages is arbitrarilydetermined by each
tool provider.

The typical example is offered by Rational Rose, the UML most widely used
and known CASE Tool. Consequently, in order to compare the script language
support against OCL language support in checking UML models, we wrote the
following script, used to check the UML Classifier WFR [4&5] in Rose.
’---

’Classifier_WFR_[4&5]

’Verifies the above Well-Formedness Rule

’Description:

’[4] The Name of an Attribute may Not be the same As the Name of an opposite

’AssociationEnd.

’OCL Expression:

’ allAttributes.name->excludesAll(allOppositeAssociationEnds.name)

’---

Sub AllNonPrivateAttributes(theClass As Class,

ByRef resultAttrs As AttributeCollection)

’add the non private attributes of the current class

Dim attrs As New AttributeCollection

Set attrs = theClass.Attributes

For i = 1 To attrs.Count

If (attrs.GetAt(i).ExportControl <> rsPrivateAccess) And

(Not resultAttrs.Exists(attrs.GetAt(i)))

Then resultAttrs.add attrs.GetAt(i)

UML MODEL CHECKING 81

End If

Next i

’now the attributes of the superclasses

Dim sc As ClassCollection

Set sc = theClass.GetSuperclasses

If sc.Count > 0 Then

For i = 1 To sc.Count

Call AllNonPrivateAttributes(sc.GetAt(i), resultAttrs)

Next i

End If

End Sub

Sub AllOppositeAssociationEnds(theClass As Class,

ByRef resultAssocEnds As RoleCollection)

’add the opposite association ends of the current class

Dim assocEnds As New AssociationCollection

Set assocEnds = theClass.GetAssociations

For i = 1 To assocEnds.Count

If Not

resultAssocEnds.Exists(assocEnds.GetAt(i).GetOtherRole(theClass))

Then resultAssocEnds.add assocEnds.GetAt(i).GetOtherRole(theClass)

End If

Next i

’now the opposite association ends of the superclasses

Dim sc As ClassCollection

Set sc = theClass.GetSuperclasses

If sc.Count > 0 Then

For i = 1 To sc.Count

Call AllOppositeAssociationEnds(sc.GetAt(i), resultAssocEnds)

Next i

End If

End Sub

Sub AllAttributes(theClass As Class, ByRef resultAttrs As AttributeCollection)

Dim theAttrs As AttributeCollection

’get all non private attributes of this class and it’s superclasses

Call AllNonPrivateAttributes(theClass, resultAttrs)

Set theAttrs = theClass.Attributes

’add the private attributes of the current class

For i = 1 To theAttrs.Count

If (theAttrs.GetAt(i).ExportControl = rsPrivateAccess) Then

resultAttrs.add theAttrs.GetAt(i)

Next i

End Sub

82 DAN CHIOREAN ET.AL.

Function checkWFR(theClass As Class) As Boolean

Print "Class: " & theClass.Name

’Get allAttributes

Dim allAttrs As New AttributeCollection

Call AllAttributes(theClass, allAttrs)

Print "Attributes: "

’print allAttributes - additional operation result;

For i = 1 To allAttrs.Count

Print ,allAttrs.GetAt(i).name

Next i

’Get allOppositeAssociationEnds

Dim allOpEnds As New RoleCollection

Call AllOppositeAssociationEnds(theClass, allOpEnds)

’print allOppositeAssociationEnds - additional operation result;

Print "Association Ends: "

For i = 1 To allOpEnds.Count

Print ,allOpEnds.GetAt(i).name

Next i

’compare the names of the attributes and of the opposite association ends

Print

For i = 1 To allAttrs.Count

For j = 1 To allOpEnds.Count

If allAttrs.GetAt(i).name = allOpEnds.GetAt(j).name Then

Print "WFR[4&5] Failed !"

Print ,"Attribute ’" & allAttrs.GetAt(i).name &

"’ = Association End ’" &

allOpEnds.GetAt(j).name & "’"

checkWFR = false

Exit Function

End If

Next j

Next i

Print "WFR[4&5] Passed ! "

checkWFR = True

End Function

Sub Main

Dim selectedClasses As ClassCollection

Set selectedClasses = RoseApp.Currentmodel.GetSelectedClasses()

’check the rule against the selected classes

If selectedClasses.Count = 0 Then

MsgBox "No classes selected!"

Exit Sub

End If

’open the viewport and print the results

UML MODEL CHECKING 83

Viewport.Open

For i = 1 To selectedClasses.Count

Print "--"

Dim aClass As Class

Dim ruleResult As Boolean

Set aClass = selectedClasses.GetAt(i)

ruleResult = checkWFR(aClass)

Print "--"

Print

Next i

End Sub

Evaluating the above script, for the UML Model presented in Figure 2, when
class A is selected, we will obtain:

Figure 3. Script Evaluation Result

As we can notice, the result is correct. Even if we take into account just the
“Function checkWFR(theClass As Class) As Boolean” (considering that the infor-
mation furnished by subroutines is offered by REI), we notice that the WFR OCL
specification (see Section 5) is by far more compact and clear than the above WFR
script code.

As mentioned in the previous section, using script languages has some draw-
backs. First of all, we cannot express all the WFR specified in UML. More, REI
doesn’t offer all the information accessible by means of AO. Even in cases when
the specification is possible by means of script language, this proved to be cum-
bersome.

Of course, the WFR semantic correctness represents the precondition which
needs to be fulfilled in order to do the above-mentioned checks. This “precondi-
tion” cannot be evaluated in the absence of adequate OCL Tool support. This
doesn’t have to be restrained to the syntactic and semantic WFR checking. It is

84 DAN CHIOREAN ET.AL.

mandatory that the OCL tools support the full evaluation of the OCL expressions
expressed at the metamodel level. In the next section, we will present the results
obtained using our OCL evaluator.

7. WFR evaluation using OCL

In the NEPTUNE IST 1999-20017 Research Project framework, we designed
and implemented a tool having as first goal UML model checking. In order to
support the tool’s independence with respect to UML CASE tools, two main de-
cisions were taken: to use the exchange format for UML models (XMI) and OCL
as the rule language. The tool takes the UML models saved in XMI format and
checks their correctness against WFR. Compared with USE tool and experience
presented in [Richters2000] our tool supports complete UML model checking, en-
abling the user to take into account all the WFR. (The WFR and AO semantic
errors reported in [Richters2000] are type-checking errors). The errors discussed
below are “design” errors.

In order to provide the opportunity to do some comparisons between the Rose
Script Language and OCL, we will analyze the Classifier WFR [4] and [5].

[4] The name of an Attribute may not be the same as the name of an opposite
AssociationEnd or a ModelElement contained in the Classifier.

self.feature->select(a | a.oclIsKindOf(Attribute))->forAll(a |
not self.allOppositeAssociationEnds->union(self.allContents)->collect(q | q.name)
->includes(a.name))
[5] The name of an opposite AssociationEnd may not be the same as the name

of an Attribute or a ModelElement contained in the Classifier.
self.oppositeAssociationEnds->forAll(o | not self.allAttributes->
union (self.allContents)->collect(q | q.name)->includes(o.name))
A simple analysis of these two rules gives us the opportunity to notice their

similarity. From the informal point of view, in the description made in natural
language only the phrase topic is changed. Concerning the OCL specification, in
[4] only the attributes defined in the Classifier are taken into account. On the
contrary, in [5] the attributes defined in the ancestors are also included. Our
opinion is that this second solution is correct. However some corrections have to
be made.

First of all, both in WFR[4] and [5], as mentioned in [Richters2000], we no-
tice that from the type checker point of view, the expression self.allAttributes-
>union(self.allContents) is erroneous because we try to join a Set(Attributes) with
a Set(ModelElements). In order to solve this semantic error, the solution proposed
at http://www.db.informatik.uni-bremen.de/∼mr is to change the order of
operation. A more careful analysis of the above WFR shows us that the OCL
expressions contain redundancies. The expression:

forAll(a | not self.allContents->union(self.allAttributes)->collect(q | q.name)->
includes(a.name))

UML MODEL CHECKING 85

is equivalent with:
forAll(a | not allAttributes.name->union(allContents.name) ->includes(a.name)).
Now the WFR is semantically correct and can be evaluated. For the UML model

presented in Figure 2, the evaluation will fail (see Figure 3). Analyzing Figure 3,
we find the reason. The Boolean attribute b, declared in class C1, is included in
the set allAttributes, computed for class A, but the visibility of b is private, so
it shouldn’t be included in that set. As we can see, in Figure 4, this mistake
was discarded; removing all private attributes defined in the classifier’s ancestors.
In fact the correct strategy is to do this correction in the Classifier’s allFeatures()
AO. Taking into account its usage, this represents a very important correction
in the AOs. The change will be automatically propagated in allAttributes() and
allOperations().

Figure 4. Another UML model

Solving the above-mentioned problem, another error will occur. This new error
is determined by the reunion allAttributes.name->union(allContents.name). As you
can see, the set allContents.name includes ‘b’, the name of the inner class declared
in class A(see Figure 2 – the Rational Rose browser). As a consequence, the WFR
evaluation will fail due to the name conflict between the associationEnd b and the
inner class b. The above reunion is erroneous because it forbids modeling legal
situations found in programming languages such as Java, C++, etc. Moreover,
oppositeAssociationEnds has to be replaced by allOppositeAssociationEnds because,

86 DAN CHIOREAN ET.AL.

due to inheritance, the associationEnds declared in the classifier’s ancestors are
accessible.

Taking into account all the above suggested corrections, we can now write the
Classifier’s WFR[4]:

allOppositeAssociationEnds.name->excludesAll(allAttributes.name).

Figure 5. WFR [5] Evaluation

This last proposed specification covers equally the initial Classifier’s WFR[4]
and WFR[5]. It is even more concise and clear as compared to the textual speci-
fication and can be directly evaluated; a big advantage.

In order to understand the use of our OCL evaluator, we mention that the UML
1.4 metamodel is automatically loaded every time when the evaluator is launched.
The next mandatory activities are the loading of the OCL file and the UML user
model. Their order does not matter. The third mandatory activity is the OCL file
(expression) compilation, followed by the context specification. In Figures 3 and
4, the first two lines of the output pane mark successful compilation. In the third
line, successful loading of the UML model is signaled. Finally in the fourth line,
the context specification is noticed. In both the above-mentioned figures, the last
output pane line shows the results of the invariants evaluation. In Figure 3 the lines
5-8 illustrate the evaluation of oppositeAssociationEnds, allAttributes.name, allCon-
tents.name allAttributes.name->union(allContents.name), respectively. In Figure 4,

UML MODEL CHECKING 87

Figure 6. Proposed WFR [4&5] Evaluation

the lines 5-6 show the evaluation result for: allOppositeAssociationEnds.name and
allAttributes.name. The possibility to evaluate different specification “chunks” is
very useful in debugging OCL expressions.

8. Conclusions and future work

In this paper we tried to analyze the state of the art in the UML model-checking
domain. Our research demonstrated that today, for this activity, the appropriate
formalism should be by far OCL. Using script languages is also possible. As we
showed, this last formalism has different drawbacks. The experience we acquired
in the NEPTUNE Research Project showed that in order to be efficient, the OCL
tools have to support the evaluation of expressions. The syntactic and semantic
errors like those mentioned in other papers are not sufficient. Moreover, the access
to the UML metamodel is mandatory. Evaluating UML 1.4 AO and WFR gives
us the opportunity to find a lot of conceptual errors. The space of this paper does
not allow us to mention all of them. Equally important, we identified redundant
OCL specifications and some WFR not yet mentioned in the UML specification.
Specifying AO and WFR has many solutions. It is very important to find the

88 DAN CHIOREAN ET.AL.

simplest and clearest ones. In order to check UML models, the AO and WFR
completeness and correctness represent a precondition. Consequently, our results
offer support for the accomplishment of this “precondition”. At least, as far as we
are concerned, we don’t know similar results published in other scientific papers.
We are now trying to identify all the errors in the AO and the WFR and to describe
solutions for all of them.

References

[Moors2000] Michael Moors, Consistency Checking – Rose Architect, Spring Issue,
April 2000, http://www.therationaledge.com/rosearchitect/mag/ index.html

[Richters 2000] Mark Richters, Martin Gogolla, Validating UML Models and OCL Con-
straints, “Proc. 3rd International Conference on the Unified Modeling
Language (UML)”, Springer-Verlag, 2000

[Chiorean01] Dan Chiorean, Using OCL beyond specification, Lecture Notes in In-
formatics 7, “Practical UML-Based Rigorous Development Methods –
Countering or Integrating the eXtremists, 2001, pag. 57-69

[UML 1.4] UML 1.4 Draft Specification, February 2001, http://uml.sh.com
[Warmer1999] Warmer J, Kleppe A., “The Object Constraint Language”, Addison Wes-

ley, 1999
[DresdenOCL] http://dresden-ocl.sourceforge.net/index.html

Babeş-Bolyai University, Computer Science Research Laboratory, RO 3400 Cluj-
Napoca, Str. Kogălniceanu 1, Romania

E-mail address: chiorean@cs.ubbcluj.ro

