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CIRCULAR FITTINGS FOR FINITE PLANAR POINT SETS

GHEORGHE CIMOCA

Abstract. Using the power of a point with respect to a circle, a (hopefully
new) circular fitting for a finite point set in R2 is proposed. Finally, necessary
and sufficient conditions for the collinearity and, respectively the concyclicity
of n ( n ≥ 2, respectively n ≥ 3 ) distinct points in R2 are given.

1. Introduction

Twenty five years ago, while the writing of [6] was in progress, we needed an
algorithm to approximate a finite planar point set by an arc of a circle. The
generated points were located on a certain area (specifically the foot) of a gear-
tooth profile. At that moment we were not able to find any specific reference,
but using the least squares method we quickly fitted a first model, and we later
derived a second model as a minimax approximation problem [2]. The resulting
algorithms were good enough for the specific purpose. However, the uniqueness of
the solution was not assured because of the non-linearity of the normal equations
of the first model, respectively the non-linear non-convex programming problem
arisen in the second approach.

More recently, while designing a special disc milling cutter [1], we encountered
the same approximation problem. This time, the uniqueness of the approximation
circle was essential. Consequently, we returned to the old attempts and finally, by
figuring out a new approach, we arrived at a simple and, simultaneously, very suit-
able solution. The result might be known, although we haven’t found it mentioned
anywhere, not even in the regression “Bible” [4].

In the subsequent paragraph we shall present both the non-linear fit models [2]
and the new circular approximation technique for finite planar point sets.
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2. Circular fittings of finite point sets in R2

Let S be a finite set of points in the Euclidean plane R2. Let us assume that S
contains at least 3 points, not all of them being collinear.

Our problem is to select a point C(x, y) ∈ R2 as the center of a circle, and a
positive number z as its radius, so that this circle best approximates the considered
point set S.

Related to our subject is the “minimum spanning circle” problem, in which
the smallest circle that encloses a given set of points is sought [5]. The smallest
enclosing circle is unique and is either the circumcircle of three extremal points of
the convex hull of the given point set, CH(S), or is defined by two of them as a
diameter. Hence, the algorithm based on the previous remark examines only the
extremal points of CH(S).

On the other hand, the “largest empty circle” problem (i.e., finding the largest
circle which contains no points of the set S) has neither a bounded nor a unique
solution. In order to avoid unboundedness, a certain restriction regarding the
center should be imposed. For instance, C ∈ CH(S) is presented in [5] as a
“necessary” condition, which is excessive and inaccurate. Restricting C so that it
belongs to any arbitrarily given compact subset of R2 would suffice. Anyway, the
uniqueness can’t be guaranteed.

Such problems frequently arise in industrial engineering — e.g., the siting of
emergency facilities (police stations, hospitals, &c.), the location of radio trans-
mitters, the positioning of a source of pollution or of a new business that is not
going to compete for territory with established rival outlets.

In contrast to the above-mentioned proximity (covers or gaps) problems, we
shall consider all the points of S by means of their “distances” to the circle in
question. The first two approximation models use the Euclidean distance from a
point to a circle, measured on the normal direction, whereas for the third model
the distance is replaced by the power of the point with respect to the circle. In
fact, these quantities are estimates of the errors.

Let S = {Pi(ai, bi) ∈ R2 ; i = 1, . . . , n}, where 3 ≤ n < ∞, Pi 6= Pj , for
i 6= j, i, j = 1, . . . , n, not all Pi being collinear.

Circular fit model I, using the least squares method. Minimize:
n∑

i=1

[
√

(x− ai)2 + (y − bi)2 − z]2

in respect with the real variables x, y, z, where 0 ≤ z ≤ M , M being a technological
restriction.
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The normal equations are:
n∑

i=1

(x− ai)− z ·
n∑

i=1

x− ai√
(x− ai)2 + (y − bi)2

= 0,

n∑

i=1

(y − bi)− z ·
n∑

i=1

y − bi√
(x− ai)2 + (y − bi)2

= 0,

n · z −
n∑

i=1

√
(x− ai)2 + (y − bi)2 = 0.

Substituting

z =
1
n
·

n∑

j=1

√
(x− aj)2 + (y − bj)2

we obtain the following nonlinear system:
n∑

i=1

{(x− ai)[n ·Di(x, y)−
n∑

j=1

Dj(x, y)]} = 0,

n∑

i=1

{(y − bi)[n ·Di(x, y)−
n∑

j=1

Dj(x, y)]} = 0,

where D2
i (x, y) = (x− ai)2 + (y − bi)2.

Taking the barycenter of S as the initial approximation, the well-known Newton-
Raphson algorithm [3] works quite well. Some remarks concerning the circle
uniqueness appear in [2].

Circular fit model II, using the Chebyshev norm. Minimize:

max {
∣∣∣
√

(x− ai)2 + (y − bi)2 − z
∣∣∣ , i = 1, . . . , n}

in respect with the real variables x, y, z, where 0 ≤ z ≤ M .

Introducing a new variable u, the above problem can be reformulated as the
following mathematical programming problem:

Minimize u
subject to:

x2 + y2 − z2 − u2 − 2uz − 2xai − 2ybi + a2
i + b2

i ≤ 0, i = 1, . . . , n,

x2 + y2 − z2 − u2 + 2uz − 2xai − 2ybi + a2
i + b2

i ≥ 0, i = 1, . . . , n,

x ∈ R, y ∈ R, 0 ≤ z ≤ M, 0 ≤ u ≤ ε

where ε is a maximum admissible error.

More details on this method, called the Megiddo method, can be found in [5].
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Now let’s remember that the number ρ = d2 − r2, where d is the distance from
a point P ∈ R2 to the center C of a circle of radius r, denoted by (C, r), is called
the power of the point P with respect to the circle. For any point lying outside
the circle (C, r) we have the inequality ρ > 0, and for all points lying inside that
circle we have ρ < 0. If P ∈ (C, r) we obviously have ρ = 0.

Using the power of a point with respect to a circle we can derive:

Circular fit model III. Minimize:

n∑

i=1

[(x− ai)2 + (y − bi)2 − z2]2,

in respect with the real variables x, y, z, where 0 < z ≤ M .

For this problem, the normal equations are:

n∑

i=1

(x− ai)[(x− ai)2 + (y − bi)2 − z2] = 0,

n∑

i=1

(y − bi)[(x− ai)2 + (y − bi)2 − z2] = 0,

n∑

i=1

[(x− ai)2 + (y − bi)2]− nz2 = 0.

Substituting

z2 =
1
n
·

n∑

j=1

[(x− aj)2 + (y − bj)2]

into the first two equations, we get the following system:
n∑

i=1

(x− ai){n[(x− ai)2 + (y − bi)2]−
n∑

j=1

[(x− aj)2 + (y − bj)2]} = 0,

n∑

i=1

(y − bi){n[(x− ai)2 + (y − bi)2]−
n∑

j=1

[(x− aj)2 + (y − bj)2]} = 0.

Apparently, this is a nonlinear system; yet, having performed all calculations,
we finally obtain a linear system with the following unique solution:

(1) x0 =
1
2
· B · E − C ·D

B2 −A · C
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(2) y0 =
1
2
· B ·D −A · E

B2 −A · C
where

A =
n∑

i=1

n∑

j=1

(ai − aj)2 = 2 ·
n−1∑

i=1

n∑

j=i+1

(ai − aj)2,

B =
n∑

i=1

n∑

j=1

(ai − aj)(bi − bj) = 2 ·
n−1∑

i=1

n∑

j=i+1

(ai − aj)(bi − bj),

C =
n∑

i=1

n∑

j=1

(bi − bj)2 = 2 ·
n−1∑

i=1

n∑

j=i+1

(bi − bj)2,

D =
n∑

i=1

n∑

j=1

(ai − aj)(a2
i − a2

j + b2
i − b2

j ) = 2 ·
n−1∑

i=1

n∑

j=i+1

(ai − aj)(a2
i − a2

j + b2
i − b2

j ),

E =
n∑

i=1

n∑

j=1

(bi − bj)(a2
i − a2

j + b2
i − b2

j ) = 2 ·
n−1∑

i=1

n∑

j=i+1

(bi − bj)(a2
i − a2

j + b2
i − b2

j ),

and the radius of the circle is:

z0 =

√√√√ 1
n
·

n∑

i=1

[(x0 − ai)2 + (y0 − bi)2].

3. Remarks and consequences

The fit model using the power of a point can be successfully applied also to coni-
cal (elliptic, hyperbolic or parabolic) fittings for finite planar point sets. Moreover,
this model works very well in R3 to approximate a finite non coplanar point set
by a spherical surface.

We’ll end by mentioning the following obvious consequences:

Corollary 1. The points Pi(ai, bi) ∈ R2, i = 1, . . . , n, where 2 ≤ n < ∞ are
collinear if and only if:

{
n∑

i=1

n∑

j=1

(ai − aj)(bi − bj)}2 = {
n∑

i=1

n∑

j=1

(ai − aj)2} · {
n∑

i=1

n∑

j=1

(bi − bj)2}.

The condition can be used for checking the (non)collinearity in problems related
to certain geometrical data structures, such as the triangulations or the Voronoi
diagrams [5].
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Corollary 2. The points Pi(ai, bi) ∈ R2, i = 1, · · · , n, where 3 ≤ n < ∞ are
concyclic if and only if:

n ·
n∑

i=1

[(x0 − ai)2 + (y0 − bi)2]2 = {
n∑

i=1

[(x0 − ai)2 + (y0 − bi)2]}2

where x0, y0 ∈ R are given by (1) and (2), respectively.

We believe the above condition could be exploited in computational geometry
as well.
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